
Informing Science InSITE - “Where Parallels Intersect” June 2002

Tailoring Information to the Needs of Clients
Peter Rittgen

Technical University Darmstadt, Darmstadt, Germany

rittgen@bwl.tu-darmstadt.de

Abstract
The vision of providing clients with information that is tailored to their needs has sparked off a tremen-
dous interest in languages that are on the one hand standardized and hence widely applicable but which
are on the other hand also highly flexible and can hence be customized to specific applications. The uni-
versal exchange format XML (eXtended Markup Language) is a candidate for such a language but we ar-
gue that it does not go far in solving the problems of integrating information from different sources and
being provided or used by different actors especially across organizational boundaries. We therefore show
existing approaches of enriching XML with application-specific semantics and argue why these are not
applicable in many cases. This leads us to introduce a process-oriented method for effectively informing
clients on the basis of XML by tailoring documents to their specific needs.

Keywords: Electronic Business, Event-Method Chain, XML Common Business Library, commerce
XML, information model

Introduction
Few technologies have inspired so much enthusiasm, in both the academic and the professional world, as
the universal data exchange format XML. New languages based on XML or XML tools are introduced on
a weekly basis. It is beyond dispute that XML will play an important role in many organizations in the
near future. This development is fuelled by the rapidly spreading use of XML for defining exchange for-
mats in e-business and the increasing number of cheap or even free-of-charge tools that support creating,
managing and processing XML documents including, for example, concepts and tools that allow for a
tight integration of XML with HTML and Java.

To provide for a systematic and effective use of XML we first have to identify potential areas of applica-
tion. XML was developed to support the exchange of information between informing systems. If we look
at a single organization we already find that different systems are used by groups (e.g. departments) or
even individuals within the organization. But these systems do not exist in complete isolation: they sup-
port sub-processes that eventually contribute to achieving a common goal. To do so they have to share
information.

Within one organization we might think about the ‘ideal solution’, i.e. rebuilding these informing systems
so that they all share a common information model, e.g. an object model (Frank, 1998). This would pro-
vide us with a high semantical level of integration and the applications could then simply communicate

these objects directly without the need of conver-
sion to another format. This could be done e.g. on
the basis of the common object request broker ar-
chitecture CORBA. But in many situations this al-
ternative is not available due to budget restrictions
etc. In these cases we might want to “integrate” the
systems on a lower semantical level by exchanging
well-defined documents between them. But even

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:rittgen@bwl.tu-darmstadt.de

Tailoring Information to the Needs of Clients

1344

then we need a “common understanding” of these documents.

An even more compelling need for exchanging documents arises when we consider the fact that today
fewer and fewer organizations operate on their own and more and more enterprises engage in building
virtual networks to do electronic business. Building a monolithic system for informing the whole network
of participants might well prove impossible, so integration has to be achieved via documents.

But how can this be done? Different informing systems typically manage data in a different way: they use
different formats (syntax) and they often attribute different meanings to similar or identical items (e.g.
fields) or use the same field for different concepts (semantics). To exchange information in the form of
documents, the participants have to agree on

1. a common format (document type) and, more importantly, on

2. a common understanding of a class of documents, i.e. a reference semantics.

XML is about to become the de-facto standard for the first issue. But the second issue is typically ne-
glected in the XML literature. Approaches aiming in that direction, i.e. adding application semantics to
XML, are discussed in section 2. We argue that these lack important features, for example: abstraction,
flexibility and the support of “client-specific” documents. So in order to define reasonable document
types and to instantiate them with the appropriate data we have to take into account the processes generat-
ing and processing the information contained in the documents. How this can be done is described in sec-
tion 3.

XML and E-Business
XML has ist roots in the Standard Generalized Markup Language, or SGML, which was developed by
Goldfarb, Mosher and Lorie at the IBM Laboratories during the 70s (Goldfarb, & Rubinsky, 1990). The
objective behind the development of SGML was a device and system-independent language for describ-
ing the logical structure of a document, or more specific a document class or type. SGML is a metalan-
guage, that is, a means of formally describing a language, in this case, a markup language. Historically,
the word markup has been used to describe annotation or other marks within a text intended to instruct a
compositor or typist how a particular passage should be printed or laid out such as wavy underlining to
indicate boldface, special symbols for passages to be omitted or printed in a particular font and so forth.

XML is a subset of SGML. A detailed description can be found in (Goldfarb, & Prescod, 2000). XML
differs other markup languages (such as HTML) in at least 3 respects:

1. the markup is descriptive (i.e. contains no code);

2. the concept of a document type;

3. system independence.

A descriptive markup system uses markup codes which simply provide names to categorize parts of a
document. Markup codes such as <para> or \end{list} simply identify a portion of a document and assert
of it that “the following item is a paragraph,” or “this is the end of the most recently begun list,” etc. Sec-
ondly, XML introduces the notion of a document type, and hence a document type definition (DTD).
Documents are regarded as having types, just as other data processed by computers do. The type of a
document is formally defined by its constituent parts and their structure. The definition of a report, for
example, might be that it consisted of a title and possibly an author, followed by an abstract and a se-
quence of one or more paragraphs. Anything lacking a title, according to this formal definition, would not
formally be a report.

If documents are of known types, a parser can be used to process a document claiming to be of a particu-
lar type and check that all the elements required for that document type are indeed present and correctly

 Rittgen

 1345

ordered. More significantly, different documents of the same type can be processed in a uniform way.
Programs can be written which take advantage of the knowledge encapsulated in the document structure
information, and which can thus incorporate a richer functionality. A DTD for a breakfast menu might,
for example, look like this:

<!ELEMENT breakfast-menu (food+) >
<!ELEMENT food (name, price, description, calories) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT calories (#PCDATA) >
It declares that a breakfast menu consists of several food items (hence the +). Each food element contains
the element’s name, price description and calories. These are also called the attributes of food because
they are of the basic type #PCDATA (string), i.e. they are not subdivided further. Regard that XML has
only one simple type so there is no way of preventing “hundred” from appearing as a calorie value instead
of “100”. An example document of this type, i.e. an actual menu conforming to this DTD might be:

<?xml version="1.0" ?>
<breakfast-menu>

<food>
<name>Belgian Waffles</name>

<price>$5.95</price>

<description>two of our famous Belgian Waffles with plenty of
real maple syrup</description>

<calories>650</calories>

</food>
…

</breakfast-menu>

Well-formedness, that is correctness of the syntactical structure, and validity, i.e. conformance to the
DTD, can be checked automatically by a parser. The following XML document is not well-formed:

<food>
<name>Belgian Waffles</food>

<price>$5.95

 </name>

because the scopes of food and name cross and the price field is not terminated. The next example is well-
formed but it does not conform to the DTD above and is hence not valid because the value of the price is
not of basic type:

Tailoring Information to the Needs of Clients

1346

<food>
 <text> Belgian Waffles </text>

 <price> <dollars> 5.95 </dollars> <euros> 6.20 </euros> </price>

</food>

Ever since XML was introduced as a universal data exchange format many organizations have tried to
build upon it an infrastructure for the exchange of application-specific documents. Two important ap-
proaches investing XML with business-oriented semantics are cXML by Ariba and xCBL by Commer-
ceOne. We are going to sketch them here briefly. For a more detailed account we refer the reader to
(Frank, 2000).

cXML (commerce XML) aims at product catalogs and orders. Catalogs come in a static and a dynamic
form both with the same content but the latter supporting navigation through the products with a conven-
tional WWW browser. cXML is specified as a set of XML document types which allows for a syntactical
check by one of the numerous XML tools. But the semantics has to be validated by specific cXML tools.
Existing standards for product details are used such as the product codes and measurement units defined
by the United Nations and the ISO Language Code. The details of cXML can be found under
http://www.cXML.org/. cXML is documented in the User Guide (Ariba, 2000) which currently defines 23
document types such as Contract, OrderRequest and OrderResponse accompanied by examples. It is not
supported by a graphical notation so the reader is forced to deal with XML code to understand the seman-
tics of the document types. As an example for a cXML document we show the particulars of a purchase
order:

<Contract effectiveDate="2000-01-03T18:39:09-08:00"
 expirationDate="2000-07-03T18:39:09-08:00">
<SupplierID domain="InternalSupplierID">29</SupplierID>
<ItemSegment segmentKey=Plant12>

<ContractItem>
<ItemID>

<SupplierPartID>pn12345</SupplierPartID>
</ItemID>
<UnitPrice>

<Money currency=USD>40.00</Money>
</UnitPrice>

</ContractItem>
…

</ItemSegment>
</Contract>

cXML is a proprietary approach but the tools are (at the moment) easily accessible and cheap. Unfortu-
nately it is limited to specific documents (catalogues and orders) only. And although these certainly repre-
sent an important class of documents they only account for a small percentage of existing document types.
With other, less frequently used, types standardization is less attractive. Here a different approach is more
promising (see section 3). cXML also severely restricts the definition of a document’s semantics because -

http://www.cxml.org/

 Rittgen

 1347

as in XML - the only elementary data type is the string. Numbers, dates, currencies etc. are all encoded as
strings and hence threaten to violate the integrity of the informing systems of buyer and seller. Moreover,
it is not possible to add features to the documents that are only relevant to a small number of organiza-
tions.

xCBL (XML Common Business Library, (Commerce One, 2000)) is a more ambitious effort that not only
aims at data exchange but also at supporting E-business applications. Consequently xCBL offers a richer
semantics than cXML by introducing an additional layer between XML and xCBL, the so-called schema
language SOX. A schema language is a metagrammar for defining the syntactical structure and partial
semantics of XML document types. This can be used to partially incorporate semantical features into a
language like XML. Two major schema languages for XML are SOX and XML Schema.

SOX (Schema for object-oriented XML) has been specified by Commerce One. It can be found under
http://www.w3.org/TR/NOTE-SOX/. It is defined as an XML DTD and it enriches XML with “object-
oriented” features (although the important feature of encapsulation was not considered). Nevertheless,
SOX represents a notable improvement over XML because SOX allows for the specification of schemata.
Just as an XML document has to conform to its DTD, a SOX document has to adhere to its schema. But
while XML only provides a check for syntactic validity, a SOX document can also be verified with regard
to certain semantical aspects because the set of predefined data types can be augmented by user-defined
data types. Moreover, a schema can be specialized from an existing one. Finally, SOX also supports a
kind of polymorphism because you can use an instance of a subtype of an element where the correspond-
ing schema requires the supertype. SOX has been submitted to the W3 consortium but the emerging stan-
dard, the XML Schema Language, is likely to divert from SOX. In this case CommerceOne plans a new
issue of xCBL based on XML Schema.

To summarize, SOX extends the language of DTDs by supporting:

• An extensive (and extensible) set of datatypes,

• Inheritance among element types,

• Namespaces,

• Polymorphic content,

• Embedded documentation and

• Features to enable robust distributed schema management.
All of these features are supported with strong type-checking and validation. A SOX schema is also a
valid XML instance according to the SOX DTD, enabling the application of XML content management
tools to schema management. The XML Schema Language aims at the same target as SOX but without
considering object-oriented features.

xCBL itself is defined as a set of SOX schemas. It contains 55 data types, 11 document type elements
(PurchaseOrder, PurchaseOrderResponse, PriceCatalog, ProductCatalog etc.) and more than 300 elements
on subordinate levels such as “sections” which correspond to parts of a document (e.g. OrderHeader). The
library can be extended by new elements. Beyond the definition of common concepts CommerceOne also
provides for an integration on instance level required by certain interorganizational business processes.
This is done via “agencies” which manage unique keys for certain product types. It ensures that all par-
ticipating business partners use the keys in the same way.

http://www.w3.org/TR/NOTE-SOX/

Tailoring Information to the Needs of Clients

1348

Document types in xCBL are described with the help of a graphical representation (see Fig. 1) and also in
the form of corresponding XML code annotated by explanatory text in natural language. So for an order
detail we have e.g.:

Repeating element OrderDetail
OrderDetail Information about a line item in an order.
 BaseItemDetail General information about the line item.
 LineItemNum int The line number on which the item appears in the order.
 SubLineItemNum (optional) int Further identifies the item’s position within the order.
 SupplierPartNum (optional) The supplier’s part number for the item.
 PartNum
 Agency
 @AgencyID AgencyCode: the agency that assigned the part number. For

a list of agency names, see AgencyCode on page 153. If the
agency that assigned the part number is not included in this
list, specify an AgencyID of "Other" and use the
@AgencyOther attribute to specify the agency’s actual
name.

 PartID string The unique identifier for the part.
 PartIDExt (optional) string The part number extension.
 BuyerPartNum (optional) The buyer’s part number for the item.
…

Compared to cXML, xCBL offers significant advantages. The higher semantical level due to SOX im-
proves maintenance and integrity of the library. This is supported by organizational measures such as a
certified registration database. This ensures a certain level of quality of proposed and accepted extensions
to the library.
On the negative side the participating organizations put their investments in xCBL infrastructure at risk if
the new standard for schema languages differs significantly from SOX.

Informing Clients with XML
The applicability of both cXML and xCBL is limited to the exchange of predefined goods for money be-
tween medium to large organizations. The documents are specified to such detail that no flexibility re-
mains for small to medium organizations which are typically highly specialized and hence require docu-
ments that are likewise specialized to their specific needs. Moreover, neither approach supports transac-
tions other than the standard buy/sell type. But many organizations engage into other forms of coopera-

 Purchase
Order

Order
Header

ListOf
OrderDetail

Order
Summary

Fig. 1: Structure of a purchase order in xCBL

 Rittgen

 1349

tion. For example, two companies might agree that the one develops products and the other produces them
(and yet a third might market and distribute them). The documents that have to be exchanged here (blue
prints, production schedules etc.) are frequently beyond standardization. In addition, approaches such as
cXML and xCBL can never handle documents found in project-like settings, i.e. in a one-time coopera-
tion launched for a specific purpose.
What we need in these cases is an approach to design documents according to the specific situation. The
following sections elaborate this idea.

Event-driven Method Chain
Information can only be interpreted sensibly in the context in which it is used. Processes are both the
source and the sink of information and thus provide information with meaning. An approach for aiming at
client-specific information must therefore also address and model the processes dealing with the informa-
tion. For this purpose we suggest the use of the so-called Event-driven Method Chain (EMC) described in
(Rittgen, 2000). This process modeling language is based on the Event-driven Process Chain (EPC) of
ARIS (Scheer, 1999) which is typically used by many consultants and large IT departments. Hence a
process language based on EPC has a better chance of being accepted by the practitioner than some com-
pletely new artefact. The EMC incorporates information objects (generalized to classes) together with
their attributes, services provided by a class of objects (also called methods) and resources required for
the execution of these services. Execution of a method is triggered by an event. The syntax of an EMC is
shown in Fig. 2.

As an example for the use of the EMC, Fig. 3 shows a part of the processing of an order within some web
application. We assume that the process is fully automated, i.e. it requires no external resources. Upon the
arrival of an order, it has to be entered into the system. This service is provided by the class order but it
involves also the class customer because the respective customer has to be recorded in the order. Note: the
fact that the service enter order is provided by order and not by customer is not represented in the EMC.
But this information, more generally any assignment of services to classes, is vital for the following de-
sign phase and hence should be expressed in the information model (see Fig. 4). According to the EMC,
the attributes of order are order id (e.g. a number) and items (a list of ordered items and quantities). These
attributes also constitute the skeleton of the respective class definition in the information model (see Fig.
4).

Fig. 2: General syntax of an EMC

Tailoring Information to the Needs of Clients

1350

After entering the order, it is checked for validity. The outcome of this check is represented by the occur-
rence of either the event “order OK” or the event “order not OK”. The XOR split denotes that these
events are mutually exclusive. In the case of an invalid order, a refusal of the order is generated and sent
via email. The items of a valid order, i.e. the software packages ordered by the customer, are delivered
(e.g. via ftp) and the bill is prepared. After this, further processing may occur. Note that no attributes are
specified for the class refusal. The reason might be that the modeler could not think of appropriate attrib-
utes and hence left this to the later stage of developing the information model.
On the basis of this EMC, an initial information model can be specified without further thinking: it simply
consists of all classes and their respective attributes as found in the EMC. After this, the following steps
yield a complete information model:
1. assigning services to objects: from the classes involved in a service, the one providing it has to be se-

Fig. 3: An example EMC for a web application

 Rittgen

 1351

lected. There the service is recorded.
2. finding missing attributes: each class is thoroughly examined to check whether attributes have been

forgotten e.g. because they are not necessary in the context of the current EMC. This step is best per-
formed after all EMCs for the application lie before us.

3. identifying potentials for generalization: classes sharing common attributes or services are potential
candidates for generalization inheriting these attributes from a common super-class.

4. establishing associations between classes: if more than one class is involved in providing a service,
there is usually an association between the involved classes.

Starting with the initial information model for the EMC of Fig. 3, we assign the services to classes as in-
dicated in Fig. 4. The EMC gave no attributes for refusal. Looking at actual orders, bills and refusals
stored in our file cabinet, we find that a refusal contains some explanatory text and that all letters carry a
date. We update the classes accordingly (step 2), and we generalize them to the super-class document with
attribute date (step 3). In the last step, we discover that customer and order are involved in enter order,
which leads us to establish an association places between them, where a customer can place arbitrarily
many orders (0..n) but an order is placed by exactly one customer (1..1). The black triangle indicates the

Fig. 4: Information model (class diagram) for the example

Tailoring Information to the Needs of Clients

1352

reading direction: customer places order. In a similar way, bill and refusal are connected to order.
Please observe that the redundancy of having some of the information present in both EMC and informa-
tion model (e.g. classes, attributes and services) helps to check inter-model consistency and thus serves
model integration. The resulting information model is then an ideal starting point for the definition of
document types in XML.

Example
The following example illustrates the process described so far. It shows how the DTD templates can be
generated for a specific application. Imagine two companies in a supplier-customer relation with frequent
and large transactions. They both decide to handle the future exchange of documents electronically to
speed up the delivery and payment processes, to cut on administrative and inventory costs and to have
both constant and up-to-date information for inventory control and other controlling purposes. Because
appropriate tools are readily available they choose XML as an exchange format.
In this scenario a typical procedure would be to list all required documents and to specify them with a
conceptual modeling language such as ERM (Entity-Relationship Model, (Chen, 1979)). This ERM
would then serve directly as the basis for defining the DTDs. But employing this approach there is no way
to decide whether all information required by the business processes of both partners is present and, most
of all, if each attribute/field is understood in the same way by the people or information systems responsi-
ble for the execution of the individual activities. Common ambiguities include:

• origin and destination of information/data

• intended use

• format of data

• meaning of blank fields

• etc.
To prevent such ambiguities we have to know where the information is produced and where it is used, i.e.
the processes generating and “consuming” it. So we have to develop a process model first. Fig. 5 shows a
part of an example process in EMC notation. It depicts the order processing on both sides, the supplier

delivery w/
del. note

place
order

check
delivery

check
invoice

pay
invoice

check
order

make out
invoice

enter
payment

item
exists ?

ordered item =
delivered item =
item on del. note

ordered amount=
delivered amount=
amount on del. note

item on del.note =
item on invoice,
correct price?

amount on del.note =
amount on invoice

Customer

Supplier

Fig. 5: Interorganizational business process

 Rittgen

 1353

side (lower chain) and the customer side (upper chain).
Now, if we want to design the XML documents exchanged between customer and supplier we need to
know more about the subprocesses: what exactly does “check delivery” mean? If we ask the manager of
the purchase department, he will tell us that this entails two sub-subprocesses: first comparing the delivery
note against the delivery (which is done by the warehouseman), and then comparing the delivery note
with the actual order by a purchase clerk (see Fig. 6, left side). An interview with the warehouseman re-
veals that the first process is further subdivided as indicated on the right side of Fig. 6.
If we go on detailing the remaining subprocesses we will finally identify all information required by the
subprocesses and hence we can derive the structure of the documents that are exchanged. Fig. 5 shows the
relevant information revealed by the detailed modeling.
Now, the information present in the “annotated” EMC of Fig. 5 represents a guideline for designing the
DTDs for all involved XML documents. For example, for the validity check of the order we have to as-
sess whether the ordered items belong to the range of supplied products. For that we need the item num-
ber and/or its description on the order. Now, to verify the delivery against the order we proceed in two
steps as suggested by Fig. 6 because the warehouseman has no access to orders and the clerk from pur-
chasing never sees the actual delivery. Hence we need an intermediate document that accompanies the
delivery and is passed on to the purchase department, the delivery note. In order to check the delivery
against the note, we compare the items and amounts on the note (which consequently must be listed there)
with the ones actually delivered. To verify that all delivered items have indeed been ordered and that the
amounts are correct (step two), the same information belongs on the order. In addition, the fact that we
have to compare the delivery note against the order also tells us that the delivery note has to refer to the

delivered item =
item on del. note

XOR

next item on
delivery note

finished

item
delivered?

compare
delivery & note

compare
order & note

correct
amount?

end of
item list?

delivered amount=
amount on del. note

no

yes

Fig. 6: Subprocess “check delivery”

Tailoring Information to the Needs of Clients

1354

corresponding order, e.g. by containing the order number.
Putting these pieces together we arrive at the DTDs shown in Fig. 7. The same is done to design the DTD
for the invoice and other possible documents involved in the ordering process.
Now, modeling all involved processes in detail may seem a lot of work to do when we just have in mind
to design the structure of exchanged documents. But apart from the apparent advantages in building well-
structured and flexible documents, the modeling gives us additional benefits: it points at potentially inef-
ficient processes and helps us to determine how to improve these processes. The models guide us in reen-
gineering the current processes and documents and in adapting the organization and the IT infrastructure
accordingly.
For example, we might ask why we need the delivery note at all in an EDI setting. It was originally moti-
vated by the fact that the warehouseman does not have access to IT infrastructure. A revised version of
this process might not only remove the delivery note and its exchange but also the necessity of a second
check in the purchase department.

Conclusion
We started with the assumption that XML plays an increasingly important role as a standard in exchang-
ing documents both within an organization and between organizations. Many providers of e-business in-
frastructure such as Ariba and CommerceOne rely on it as a basis for defining electronic documents such
as catalogs. But the structure of these documents is rigid and cannot be adapted to the needs of a specific
organization. Moreover only standard buy-sell transactions are supported. We argue that structure and
content of a document depend heavily on the way this document is used, i.e. on the providers and clients
of this information. As core processes vary from organization to organization so do the relevant docu-
ments. We therefore suggest that the definition of the document types is done after, and based on, the
modeling of the relevant informing processes. In order to achieve this aim we introduced a method to de-
scribe informing processes as an EMC annotated by details of the information required for each step of
the process. Such a model can then be transformed semi-automatically into an information model and
from there into a set of DTDs. This approach makes sure that all necessary information is incorporated in
some document and that the document’s structure is tailored specifically to the needs of the process to be
supported.

item exists ?

del. item = item on d.n.

order item = item on d.n.

amounts equal

amounts equal

compare d.n. & invoice

<order>

 <order #>

 <item>

 <item #>

 <description>

 <amount>

<deliveryNote>

 <dn #>

 <order #>

 <item>

 <item #>

 <description>

 <amount>

Fig. 7: DTDs for the example process

 Rittgen

 1355

References
Ariba (2000). cXML User’s Guide. Version 1.1. Retrieved February 19, 2002 from the World Wide Web

http://www.cXML.org.

Chen, P.P. (1979). The Entity-Relationship Model - Toward a Unified View of Data. In Chu, W.W., & Chen, P.P.: Tutorial:
Centralized and Distributed Data Base Systems, 1st International Conference on Distributed Computing Systems, October
1-4, 1979, Huntsville, Alabama. Long Beach, CA: IEEE Computer Society, pp. 166-193.

CommerceOne (2000): Common Business Library. Version 2.0.1, Retrieved February 19, 2002 from the World Wide Web
http://www.commerceOne .com/xml/.

Frank, U. (1998). The Memo Object Modelling Language (MEMO-OML), Technical Report 10, University Koblenz-Landau.

Frank, U. (2000). Vergleichende Betrachtung von Standardisierungsvorhaben zur Realisierung von Infrastrukturen für das E-
Business (Comparison of Standardization Efforts Towards E-Business Infrastructures). Technical Report 22, University
Koblenz-Landau.

Goldfarb, C.F., & Prescod, P. (2000). The XML Handbook. 2nd edition. Upper Saddle River, NJ: Prentice Hall.

Goldfarb, C., & Rubinsky, Y. (1990). The SGML Handbook. Oxford: Clarendon Press.

Rittgen, P. (2002): E-Commerce Software: From Analysis to Design. In Gangopadhyay, A.: Managing Business with Elec-
tronic Commerce: Issues & Trends. Hershey, PA: Idea Group, pp. 17-36.

Scheer, A.-W. (1999). ARIS - Business Process Modeling. Berlin: Springer.

Biography
Peter Rittgen studied Applied Computer Science and Computational Linguistics at University Koblenz-
Landau and graduated with an MSc. After 3 years in industry he worked as Research Assistant in Infor-
mation Systems at Frankfurt University and received a PhD in Business Administration and Economics
with a dissertation on “Process Theory of Scheduling”. In 1997 he joined University Koblenz-Landau as
Assistant Professor where he did research on Enterprise Modeling and Software Engineering. Currently
he works as Associate Professor at Technical University Darmstadt.

