
Informing Science InSITE - “Where Parallels Intersect” June 2002

Network Monitoring Tool
B. B. Meshram

Mumbai University,
 Mumbai, India

Mittal S. Bhiogade
Patni Computer Systems

Ltd., Mumbai, India

T.R.Sontakke
S.G.G.S.C.E & T,

Nanded, India
bbmeshram@roltanet.com mittalb@hotmail.com trsontakke@yahoo.com

Abstract
A Network Monitoring Tool “NETMON” is presented in this paper We have developed the tool that will
Monitor the Network of any company say “XYZ” by performing certain Tests. NETMON will monitor
the network by performing certain tests such as ping test, memory test, disk test, uptime test and URL test
that would help to analyze where exactly the problem lies in the Network. The Results of the Tests are
displayed in the forms of graphs that can be viewed on the browser. These Tests will produce the Results
as the ouput, which will be stored in the database. Test Graphs will be generated from the Test Results
stored in the database. These Test Graphs will help us to analyze where and at what time in the Network
the congestion had occurred.

Keywords: Monitor, Collector, PerformanceAgents (PASP), Tests, Test Graphs, Network, Congestion.

Introduction
The primary pattern of interaction among the cooperating applications is known as the client-server para-
digm. Client-Server interaction forms the basis of most network communication, and is fundamental be-
cause it helps us to understand the foundation on which distributed algorithm are built. The client-server
paradigm uses the direction of initiation to categorize whether a program is a client or server. The term
server applies to any program that offers a service that can be reached over a network. A server accepts a
request over the network, performs its service and returns the result to the requestor. An executing pro-
gram becomes a client when it sends a request to a server and waits for a response. Each time a client ap-
plication executes, it contacts a server, sends a request, and awaits a response. When the response arrives,
the client continues processing.

In Client-Server model applications, there are circumstances in which the externally offered load is larger
that can be handled. Then if no measures are taken to restrict the entrance of traffic into the network,
queue sizes grow indefinitely, the buffer space may be exhausted. When this happens, some of the packets
arriving will have to be discarded and later retransmitted, thereby wasting the communication resources.
As a result of which the actual network throughput decreases. [1,2,3]

In Client-Server applications the server provides certain services such as processing the database queries
or sending out the current stock prices. The Client uses the services provided by the server to either dis-
play the database query results to the user or for making stock purchase recommendations to an investor.

But sometimes the communication between the
Client and Server is very slow. The reason for this
would be network traffic bottleneck better known
as “congestion”. Thus there are various problems
in the network and one among them is congestion,
this paper discusses how the congestion in the net-
work can be located.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:mittalb@hotmail.com

Network Monitoring Tool

1052

A Network Monitoring Tool “NETMON” is presented in this paper. The paper contains the following
contents: the solution of the problem, discusses the various tests, NETMON architecture and system de-
sign to monitor the network, NETMON tool algorithms, the experiments and test graph results and lastly
we summarize the conclusion and future research directions.

Solution
The solution, which we suggest to analyze the Network is a Tool, called “NETMON” (Network Monitor-
ing). It mainly comprises of three Programs viz. Monitor and Collector, which is to be installed on the
Server machine and Performance Agents, which is to be installed on the Client machines.

The basic operation of NETMON is as follows, the Monitor (program installed at the Server machine)
assigns the Tests that are to be performed by the Performance Agents (program installed at the Client ma-
chine), the Tests carried out at the Performance Agents produces Test Results as the output, which are
sent back to the Monitor, the Monitor gives these Test Results to the Collector (program installed at the
Server machine), the Collector stores the Test Results into database. The Tests Results can be viewed in
the form of Graphs in the web browser, These Test Graphs helps us to analyze where and at what time
there was the problem in the Network.

Tests
The Tests that are to be performed at Performance Agents are as follows

Uptime Test
This Test is used to determine the Uptime of the server i.e. the time interval between the current time of
the server and the time when the server was loaded. This is to keep track of duration for which the server
has been up.

Memory Test
This Test is used to determine the Memory Details such as total memory, free memory, swap in use and
swap free memory. This is to keep track of how the Memory is utilized.

Disk Test
This Test is used to determine the Disk Details such as total disk space, used space, and free space. This is
to keep track of how the Disk Space is utilized.

URL Test
This Test is used to determine the response time of the web server for a particular service

Ping Test
This Test is used to determine whether a particular service is up or not.

The Performance Agents will be performing the above mentioned Tests at the regular time interval which
is configurable at the Monitor.

Netmon Architecture
The NETMON has five TIER architecture, which is shown in Figure1. Each TIER is explained below.

 Meshram, Bhiogade, & Sontakke

 1053

Tier I
This is the Remote-User’s computer, from which the Remote User will view the TestGraphs in the
Browser.

Tier II
This is the Application and Web Server Tier (Middle Tier) between the Remote User on Tier I and the
Object Relational Database on Tier III.

Tier III
This is the database server, which stores the information in the tables. Data is accessed from the database
in the form of queries.

Tier IV
This is the computer where the “Monitor” and “Collector” will be deployed. It is also referred as the
Server machine.

Remote
User 1

Remote
User 2

Remote
User 3

Remote
User N

Web Server

Database

PASP

Monitor and
Collector

TIER V

TIER IV

TIER III

TIER II

TIER I

Figure 1: Five Tier Architecture of NETMON

Remote
User 1

Remote
User 2

Remote
User 3

Remote
User N

Web Server

Database

PASP

Monitor and
Collector

TIER V

TIER IV

TIER III

TIER II

TIER I

Figure 1: Five Tier Architecture of NETMON

Network Monitoring Tool

1054

Tier V
This is the computer where the Performance Agent “PASP” will be deployed. It is also referred as the
Client machine.

System Design
System Design is the high level strategy for solving the problem and building a solution. System Design
includes the decision about the organisation of the system into subsystems and major conceptual and pol-
icy decisions that form the framework for detailed design.

Monitor
Monitor is the program that has to be running on the server machine, its purpose is to assign the Tests to
Performance Agents, which will perform these Tests and the Test Results that are generated by the Tests
are sent back to the Monitor, and Monitor passes these Test Results to Collector.

Performance Agents
Performance Agent is the program that has to be running on the Client machine, its purpose is to perform
the Tests that are assigned to it by the Monitor and to send the Test Results that are generated after per-
forming the Tests to the Monitor.

Collector
Collector is the program that has to be running on the server machine, its purpose is to insert the Test Re-
sult data into database, which it receives from the Monitor.

Test Graphs
Test Graphs purpose is to give the Performance Analysis of the Test Result data collected and stored in
the database in the form Graphs on the Web Interface. This is the Servlet based application that allows the

Queries For Data

Gets Required
Data

Send Results

Inserts Results

Inserts and Retrieves
Test Data

Monitor

Collector

Database

Browser to
view Test
Graphs

WebServer

PASP

Response

Assign Test

Send Results

Figure 2: System Design of NetMon

Queries For Data

Gets Required
Data

Send Results

Inserts Results

Inserts and Retrieves
Test Data

Monitor

Collector

Database

Browser to
view Test
Graphs

WebServer

PASP

Response

Assign Test

Send Results

Figure 2: System Design of NetMon

 Meshram, Bhiogade, & Sontakke

 1055

Servlet to query and retrieve the data from the database. It shows Test Graphs for all the Tests that are
performed by Performance Agents.

System Operation

Step 1
Administrator starts the Monitor, Server socket is started which continuously listens at a particular port
for Performance Agents Status Probe to get connected. At the same time Menu screen also appears which
is running in a different thread. From the Menu screen, the Administrator can Add/Modify the details
about the Performance Agents, Tests and Remote Users. During the allocation of the tests Performance
Agents Status Probe may or may not be connected. If not connected then the tests are send to appropriate
Performance Agents Status Probe as allocated by the administrator when Performance Agents Status
Probe gets connected to Monitor.

Step 2
When the Performance Agents Status Probe is started, a socket is instantiated. The Server socket on the
Monitor side accepts the connection. The Performance Agents Status Probe (PASP) enters login, pass-
word that is authenticated on the Monitor side. The Monitor checks if any Tests are allocated for that par-
ticular PASP. If yes then Monitor sends all the Test details to that PASP and PASP starts executing the
Tests at the intervals specified to it in the Test details. Once the Test is executed the results are sent to the
Monitor and gives the same to the Collector to insert it into Database.

Step 3
The Remote User will enter the Login and Password to view the Charts, after the successful validity of the
Remote User, the graphs can be viewed by the Remote User.

Netmon Algorithms
NETMON has two main algorithms viz., for the Monitor and PASP. The algorithms are as follows:

Monitor Algorithm
This algorithm describes, how Monitor listens to the PASP which are trying to connect to it, the way the
Monitor authenticates the PASP, sends the tests to PASP, and how Monitor receives the Results from the
PASP, which are passed to Collector to be inserted into the database. [5,7,8,9]

Step1
Create a server socket, which listens continuously at some port say 8085 to determine whether any PASP
is connected. MainMenu is displayed from which other screens can be invoked for the Monitor admini-
stration.

ServerSocket sockServer = new ServerSocket(8085);

GxsScrMainMenu objScr =new GxsScrMainMenu;

Step 2
If PASP is connected then create new socket for that PASP.

Network Monitoring Tool

1056

Socket sockClient = sockServer.accept()

Step 3
Store the reference of the socket connection and do the initialization.

Socket sockPASPClient = sockClient

initialise()

{

/* get the Data Input and Output Streams */

DataInputStream disInput = new DataInputStream(sockPASPClient.getInputStream());

PrintStream psOutput = new PrintStream(sockPASPClient.getOutputStream(), true);

/* get the Object Output and Input Streams */

ObjectOutputStream oosOutput = new ObjectOutputStream(psOutput);

ObjectInputStream oisInput = new ObjectInputStream(disInput);

}

Obtain Login and Password details from PASP.

/* getting Login String */

 String strLoginInfo = disInput.readLine();

Step 4
Perform the check to determine whether Login and Password details provided by PASP are valid or not.
This is achieved by the method authenticateLogin(), which return a boolean indicating whether the PASP
is valid or invalid. If the Login and Password details of the PASP are invalid then the connection between
the Monitor and PASP is closed.

 if(authenticateLogin(strLoginInfo))

 {

 psOutput.println("LOGIN_SUCCESS");

 blnValidated = true;

 }

 else

 {

 psOutput.println("LOGIN_FAILURE");

 blnValidated = false;

 sockPASPClient.close();

 System.out.println("Connection with client closed");

}

 Meshram, Bhiogade, & Sontakke

 1057

Step 5
Whereas if the Login and Password details are valid then, Monitor send the string “LOGIN_SUCCESS”
as a token to the PASP, indicating that PASP connected is valid PASP. Tests that are to be performed by
the connected PASP are sent to that PASP.

/* sending token to indicate that test are being sent from Monitor to PASP */

 psOutput.println("SENDING_TESTS");

sendTests(Integer intPASPId)

{

 /* fetch the Test Details related to the PASP from the database */

 String strSQL = ”SQL statement that fetches the Test Details from the database”

/* selectQuery() method returns the vector of Test Data, by taking the SQL statement as the input

parameter */

Vector vecData = selectQuery(strSQL);

 if((vecData == null) || (vecData.size() == 0))

 {

 return;

 }

 else

 {

GregorianCalendar gcCal = new GregorianCalendar();

Vector vecResult = new Vector();

Iterator itData = vecData.iterator();

while(itData.hasNext())

{

 String strTestName = (String)itData.next();

 String strJarName = (String)itData.next();

 String strMainName = (String)itData.next();

 int intInterval = ((Integer)itData.next()).intValue();

 int intAppId = ((Integer)itData.next()).intValue();

 String strTestData = (String)itData.next();

 int intAllocationId = ((Integer)itData.next()).intValue();

 vecResult.add(new SendTestPASP(strTestName, strJarName, strMainName,

 intInterval,intAppId, intPAId.intValue(), gcCal, strTestData,intAllocationId));

 } /* End-of-While */

psOutput.println("SENDING_TESTS");

Network Monitoring Tool

1058

/* sending the test data stored in the vector vecResult */

 oosOutput.writeObject(vecResult);

 }/* End-of-else*/

}

Step 6
The Monitor receives the results of the test performed at the PASP, these results are given to Collector,
which inserts these results into database.

 processResults()

 {

 /* got the Result object from PASP */

 TestResults objTestResults = (TestResults)oisInput.readObject();

 /* sending the token to PASP indicating Monitor received the Result from the PASP */

 psOutput.println("TEST_RESULTS_RECEIVED");

 if(objTestResults!=null)

 {

 /* giving the objTestResult object to the Collector , to be inserted into the database */

 Collector.processResults(objTestResults)

 }

Pasp Algorithm
This algorithm describes how the PASP connect to the Monitor, how does the PASP perform the Login to
the Monitor, in case of incorrect Login the connection between the Monitor and PASP is closed, whereas
after successful Login authentication it receives the tests from the Monitor and starts performing the tests,
and how the Results of the tests are sent back to Monitor. [5,7,8,9]

Step 1
Creates the socket connection to the server
 serverConnection()

 {

Socket objSocket = new Socket(InetAddress,8085); // InetAddress is the ipaddress of the Monitor

 DataInputStream input = new DataInputStream(objSocket.getInputStream());

 PrintStream output = new PrintStream(objSocket.getOutputStream(), true);

 ObjectInputStream objInput = new ObjectInputStream(input);

 ObjectOutputStream objOutput = new ObjectOutputStream(output);

 }

 Meshram, Bhiogade, & Sontakke

 1059

Step 2
Performs the Login to the Monitor, by entering the Login and Password details from the Login screen.
These Login details are sent to the Monitor. If the Login details are incorrect, the message “Invalid
Login” is displayed at the PASP. Whereas, if the Login details are correct PASP receives the Tests, it has
to perform.

sendLogin()

{

 /* gets the login */

String strLogin=objLogin.getLoginPassword();

 if(strLogin != null)

 {

 /* Login details sent to Monitor */

 output.println(strLogin);

 /* login sucess or failure */

 strResult = input.readLine();

 / * if valid login then proceed */

 if(strResult.equals("LOGIN_SUCCESS"))

 {

 String strFromServer = input.readLine();

 if(strFromServer.equals("SENDING_TESTS"))

 {

 vecTestName=(Vector)(objInput.readObject());
 } /* End-of-SendingTest */

 } /* End-of-LoginSuccess */

} /* End-of-Login */

 else

 {

 /* Message displaying Invalid UserName/Password */

 objPopUp.showMsg("Invalid Username/Password");

}

Step 3
After the Tests are received successfully by the PASP, PASP will extract all the information regarding the
Tests this is done by the method parseObject(), PASP sends the token to the Monitor indicating that the
Tests are received successfully.

 parseObject(Vector vecTestName)

 {

Network Monitoring Tool

1060

 Vector v = new Vector();

 for(int i=0;i< vecTestName.size();i++)

 {

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getTestName());

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getJarFileName());

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getMainFileName());

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getTestInterval());

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getTestData());

 v.addElement(((SendTestPASP) vecTestName.elementAt(i)).getAllocationID());}

 }

 /* token send from PASP to Monitor */

 output.println("TESTS_RECEIVED_SUCCESS")

 }

Step 4
PASP starts performing the tests as specified by the Monitor. The results of the tests performed at the
PASP are sent to Monitor.

storeResults()

{

 /* This class would create the appropriate result object */

 SetResult objSetResult = new SetResult();

 /* returns the appropriate result object */

 Test objTestResult=objSetResult.getTestObject();

 /* token send from the PASP to Monitor , to indicate that test results are being sent */

 output.println("SENDING_TEST_RESULTS");

 /*sending result object to monitor */

 objOutput.writeObject(objTestResult)

}

Experiments And Test Graph Results
We have used NETMON tool to monitor the network of the company “XYZ”, the results of this experi-
ment is shown in the form of Test Graphs. The Test Graphs are explained below,

 Meshram, Bhiogade, & Sontakke

 1061

Uptime Test Graph
From Figure 3, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there Server
Uptime in “Hours”. From the above graph it can be
seen that at “0th ” Hour the uptime of the server is
“1” Hours and at “1st ” Hour the uptime of the
server is “2” Hours and at “3rd ” Hour the uptime of
the server is “0” Hours, in the Figure 3 it can be
seen that, the “yellow label (3,0)” indicates that on
“3rd ” Hour the server was down for some reasons.
Thus from Figure 3 it was possible to determine
when the server was down.

Memory Test Graphs

Total Memory Graph
From Figure 4, it can be seen that on X-Axis there is
Interval in “Hours” and on Y-Axis there is Memory
in “MEGABYTES”. In Figure 4 it can be seen in the
“yellow label (1,255)” indicating that at “1st ” Hour
the Total Memory was “255MEGABYTES”. Thus
from Figure 4 it is possible to determine how the To-
tal Memory is utilized.

Free Memory Graph
From Figure 5, it can be seen that on X-Axis there is
Interval in “Hours” and on Y-Axis there is Memory
in “MEGABYTES”. In Figure 5 it can be seen in the
“yellow label (1,18)” indicating that at “1st ” Hour
the Free Memory was “18MEGABYTES”. Thus from
Figure 5 it is possible to determine how the Free
Memory is utilized.

Figure 3: Uptime Test Graph

Figure 4: Total Memory Test Graph

Figure 5: Free Memory Test Graph

Network Monitoring Tool

1062

Used Memory Graph
From Figure 6, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Mem-
ory in “MEGABYTES”. In Figure 6 it can be seen
in the “yellow label (1,37)” indicating that at “1st ”
Hour the Used Memory was “37MEGABYTES”.
Thus from Figure 6 it is possible to determine how
the Used Memory is utilized.

FreeSwap Memory Graph
From Figure 7, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Mem-
ory in “MEGABYTES”. In Figure 7 it can be seen
in the “yellow label (1,280)” indicating that at “1st
” Hour the FreeSwap Memory was
“280MEGABYTES”. Thus from Figure 7 it is pos-
sible to determine how the FreeSwap Memory is
utilized.

Disk Test Graphs

TotalSpace Disk Graph
From the Figure 8,it can been seen that on X-Axis
there is Interval in “Hours” and on Y-Axis there is
Disk in “MEGABYTES”. In Figure 8 it can be seen
in the “yellow label (1,9000)” indicating that at “1st
” Hour the Total Disk Space was
“9000MEGABYTES”. Thus from Figure 8 it pos-
sible to determine how the Total Disk Space is util-
ized.

Figure 6: Used Memory Test Graph

Figure 7: FreeSwap Memory Test
Graph

Figure 8: Total Space Disk Test Graph

 Meshram, Bhiogade, & Sontakke

 1063

FreeSpace Disk Graph
From Figure 9, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Disk
in “MEGABYTES”. In Figure 9 it can be seen in
the “yellow label (1,5500)” indicating that at “1st ”
Hour the Free Disk Space was
“5500MEGABYTES”. Thus from Figure 9 it pos-
sible to determine how the Free Disk Space is util-
ized.

UsedSpace Disk Graph
From Figure 10, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Disk
in “MEGABYTES”. In Figure 10 it can be seen in
the “yellow label (1,3500)” indicating that at “1st ”
Hour the Used Disk Space was
“3500MEGABYTES”. Thus from Figure 10 it pos-
sible to determine how the Used Disk Space is util-
ized.

URL Test Graph
From Figure 11, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Re-
sponse Time in “SECONDS”. In Figure 11 it can be
seen in the “yellow label (1,10)” indicating that at
“1st ” Hour the Response Time is “10 seconds”.
Similarly it can be seen that at “5th ” Hour the Re-
sponse Time is “23 seconds”. Thus from the Figure
11 we can determine that at “5th ” Hour response
time taken is more and thereby from Figure 11 it
possible to analyze the Response Time of the Web
Server.

Figure 9: Free Space Disk Test
Graph

Figure 10: Used Space Disk Test Graph

Figure 11: URL Test Graph

Network Monitoring Tool

1064

Ping Test Graph
From Figure 12, it can be seen that on X-Axis there
is Interval in “Hours” and on Y-Axis there is Re-
sponse Time in “MILLISECONDS”. In Figure 12 it
can be seen in the “yellow label (4,0)” indicating
that at “4th ” Hour the Response Time is “0 sec-
onds”. Indicating that particular service which is
pinged is not available. Thus from the Figure 12 we
can determine whether a particular service is avail-
able or not.

Thus with the help of Test Graphs we can locate the
problems of the network and we can solve these
problems manually.

Conclusion And Future Research Directions
Network Monitoring is very widely studied topic. In this paper, we have proposed a tool, NetMon to ana-
lyze the network. It performs Network Monitoring by running the different Tests to determine uptime of
the server, memory space of the server, disk space of the server, to determine whether a particular service
is available or not and to determine response time of the web server. Moreover this tool is developed us-
ing Java Technology at front-end and Object Relational Database Technology at back-end, as Java Tech-
nology is used it can be setup and run on any platform without making any change being made to its
source code.

As the NETMON tool is used to monitor the network, in future this tool can be enhanced to monitor the
web services. Today lack of performance guarantees in web services is often circumscribed by the fact
that every thing is unpredictable and nothing can be guaranteed. A number of components may cause de-
lays: the clients connection to its Internet provider, the provider’s proxy server, the web server application
server at the target site, or content provider’s backend data server. Usually the network bandwidth is not
the limiting bottleneck. Rather, the major reason for poor performance during peak hours is that requests
suffer queuing delays at congested data server or gateways we have located this problem with the help of
URL test. From a customer viewpoint, there should be money back guarantees: unacceptable performance
results in no payment of compensation by the service provider. In 2005 all services that do not provide
such guarantees should be out of business within their first month of operation. As a solution to this prob-
lem sometimes the best remedy is to make the analysis tractable. This would usually result in some per-
formance losses, but the gain lies in predictability. With simpler building blocks absolute performance can
be boosted by simply scaling up hardware resources. (i.e. memory disk . etc), while still being able to give
strong performance guarantees.

The availability of a server is the probability that a client request at any arbitrary timeouts will find the
server listening and ailing to process the request. The reason for temporarily being unavailable is transient
failures and resulting down times. After a failure a server undergoes some recovery procedure, a “repair”
and then resumes normal operation until the next failure occurs. In the long term, the availability of the
server is given by the ratio

MTTF/(MTTF+MTTR) with MTTF denoting the mean time to failure and MTTR the mean time to re-
pair. Note that periodic rebooting leads to occasional downtime and this adversely affects availability.
Given that downtime, at the user-perceivable level is so expensive bold step towards continuous availabil-
ity should have very high priority on our research agenda. The grand challenge for 2005 is to achieve less
than one minute expected downtime per year which is equivalent to 99.9999 percent availabity, a Two

Figure 12: Ping Test Graph

 Meshram, Bhiogade, & Sontakke

 1065

orders of magnitude improvement of unavailability and a good approximation of truly non-stop services
but the overriding goal of reaching 99.9999 percent availability requires significant progress on the engi-
neering side. Furthermore software maintenance must be possible without interrupting system operation.
For example it should be possible to upgrade to a new version of the operating system without having to
bring down the database system on the same computer. Finally the key to satisfying performance goals
even when some replicated components are down and have failed over to configure the overall system
appropriately. Most importantly, the degree of replication for the data and process determine not only the
absolute availability but also the effective performance, note that to overcome the problem of server
availability, we have implemented the Ping test that checks the availability of the particular server con-
tinuously, this can be extended to achieve the same for Web Services.

Acknowledgements
The authors thank Dr. S.G.Bhirud, Prof. T.M. Bansod, Mr. Sachin Rao, Mrs. Sonal Desai, Mrs. Sona
Meshram and Mrs. Vatsala Madke for their participation in several aspects of this work.

References
[1] D.E. Comer (1999), TCP-IP Vol. I, Third Edition. PHI.

[2] D.E. Comer & D.L.Stevens (1998), TCP-IP Vol. II, Second Edition, PHI.

[3] D.E. Comer & D.L.Stevens (1997), TCP-IP Vol. III, PHI.

[4] Patrick Naughton (1991), Java 2 Complete Reference, Addison Wesley.

[5] Sun Microsystems Java Documentation., “http://www.sun.java.com”

[6] Dimitri Bertsekas & Robert Gallager (1997), Data Networks, Second Edition, PHI.

[7] Matthew Siple (2000), The Complete Guide to Java Database Programming, Tata McGraw-Hill.

[8] C.S. Horstmann & G. Cornell (2000), Core Java Fundamentals Vol I, Sun Microsystems Press.

[9] C.S. Horstmann & G. Cornell (2000), Core Java Fundamentals Vol II, Sun Microsystems Press.

Biography
B. B. Meshram is currently an Assistant Professor of Dept. of Computer Technology in V.J.T.I, with the
university of Mumbai.He has received B.E. (Computer Engineer) in 1991 from Marathawada university
Aurangabad, M.E. (Electronics) in 1995 from Dr.BAMU Aurangabad He has taught various subjects like
System Analysis & Design, Compiler Construction, Theoretical Computer, Science, Advanced Databases,
Parallel computer Architecture, Object Oriented Analysis & Design, Computer Networks, Computer
Graphics at graduate & Post Graduate level. He was the Chairman of National Level Computer Science
Symposium (Interface 95) at V.J.T.I.Mumbai-19.He is the Life Member of CSI. His research areas are
Networking, Object Oriented Programming & Object Oriented Databases.

Mittal. S.Bhiogade is currently working as Software Engineer with Patni Computer Systems Ltd., he has
received B.E. (Computer Engineer.) in 1999 from Sardar Patel College of Engineering. (S.P.C.E), Mum-
bai University Maharashtra, his research areas are Networking, Socket Programming & Object Oriented
Programming.

Dr. T.R.Sontakke received the Doctoral degree from I.I.T. Bombay in 1980 and was a Professor & Head
of dept. of computer & electronics. in S.G.G,S.C.E.& T. Nanded for 15 years . He has guided many
hardware and software projects at graduate & postgraduate levels. He has published many papers in vari-
ous Nationals and international journals. Presently he is the principle and Secretary of the said Engineer-

Network Monitoring Tool

1066

ing college. His research areas are Networking, object-oriented technology, Databases & System soft-
ware.

