
Informing Science InSITE - “Where Parallels Intersect” June 2002

A Formal Approach to the Teaching of Abstract Data Types

Laura Felice, Liliana Martinez, and Claudia Pereira
Universidad Nacional del Centro de la Provincia de Buenos Aires,

Tandil, Argentina
Lfelice@exa.unicen.edu.ar lmartine@exa.unicen.edu.ar

cpereira@exa.unicen.edu.ar

Abstract
In this paper we present a methodology for the teaching of programming applied to an elementary course
of the System Engineering career at the Universidad Nacional del Centro de la Provincia de Buenos Aires.
This methodology starts with the formal specifications of abstract data types and concludes with an im-
plementation of an efficient algorithm in C++ language.

We describe the methodology, and a case of study showing the proposed methodology.

Keywords: algorithm design techniques; formal specifications; programming teaching.

Introduction
With the emergence of structured programming language in the 60s, the concept of data type, defined as a
set of values serving the domain of some operations appears. In these languages (C, Pascal and others, all
of them Algol derived) data types allow to classify the program objects i.e. variables, parameters and con-
stants. This notion was insufficient to the large-scale software development, since the use of data into the
programs ignores other restrictions than the compiler imposed, causing inconveniences in new types users
defined. To solve this problem (in the middle of 70 s) several authors (like S.N Zilles, J.V Guttag, Gi-
gyebm Thatcher, Wagner, Wright, etc) introduced the abstract data type (ADT) concept, considering that
a data type is not only the set of values characterizing it but also the operations that handle it. All of these
operations must verify the properties that will determine the unique behavior. These authors observed the
need to employ a formal notation to describe the operations behavior, not only to avoid any ambiguous
interpretation but also to identify the mathematics model denoted by the ADT (Franch Gutierrez, 1994).

A software curriculum should involve elements or concepts that reflect a trend towards distinguishing the
true software professional from the occasional programmer. These trends have important consequences
for universities. What matters is teaching the students fundamental ways of thought that will accompany
them throughout their careers and help them grow in this ever-changing field.

As Bertrand Meyer analyses in (Meyer 2001), a software curriculum should involve five complementary
elements:

• Principles: lasting concepts that underlie the whole field;

• Practices: problem-solving techniques that good
professionals apply consciously and regularly;

• Applications: areas of expertise in which the
principles and practices find their best expres-
sion;

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:Lfelice@exa.unicen.edu.ar
mailto:lmartine@exa.unicen.edu.ar
mailto:cpereira@exa.unicen.edu.ar

Formal Approach to the Teaching of Abstract Data Types

466

• Tools: state-of-art products that facilitate the application of these principles and practices; and

• Mathematics: the formal basis that makes it possible to understand everything else.
In this paper we present a methodology, based on the above points, for the teaching of analysis and design
algorithms at the elementary course of the System Engineering career. This methodology starts at the ab-
straction level defining the problem domain and identifying the ADT intervening. Then, they are formally
specified and finally, at the implementation level, the algorithm and the formal specification of data types
are implemented in C++ language.

Background
In our career, the computer science curriculum has several programming language used to teach at three
levels. In the first course the principles of structured are taught and Pascal is the programming language
used.

In the second course we center the matters on the Design and Analysis of the algorithms. The students
identify the ADT that intervene in a problem and give a formal specification of them. The specifications
allow us to describe the object classes’ behavior in an abstract way independently of their implementation.
Formal specifications allow us to define an ADT in a precise way, avoiding any ambiguity that can be
present when using informal specifications.

In order to teach how to construct object classes hierarchy, concepts of client and inheritance relationships
are introduced.

The class specifications are integrated with algorithms linked with different design techniques like Divide
and Conquer, Greedy, Dynamic Programming and Backtracking (Cormen 1990).

Our goal is to teach the algorithms as simply and directly form as possible. The programming language
C++ allows us to do this. In the same manner, GSBL (Clérici 1988) formal language supplies all of the
formal concepts taught in this course. This language brings an approach for the incomplete specifications
construction, that is, specifications that describe partial aspects of the problem to solve.

The advantage of using C++ is that it is widely used and for its hybrid object oriented language character-
istics offers the possibility to work with object classes that belong to the problem domain and functions
that manipulate them in an independent way.

At the third level, the course of object oriented programming introduces the basic and advanced concepts
of the paradigm. They use Smalltalk and Java. When learning object oriented programming, students get
the knowledge to represent problems in terms of objects interacting in client/server relationship; to clas-
sify the problem concepts according to different relationships, and to distinguish the object oriented lan-
guage behaviors.

Also, it is possible the incremental construction of specifications reusing components early designed to
solve other problems.

Methodology
This work presents a methodology for the teaching of the programming in the analysis and design area of
algorithms, oriented to students of the initial levels of the career. Throughout this course the students will
solve practical exercises applying the different techniques of algorithm design: greedy, divide and con-
quer, backtracking, dynamic programming, etc.

The proposed methodology starts with specification levels that formally describe a problem, independ-
ently of the representations of the data types and of a particular language. It concludes in an implementa-

 Felice, Martinez, & Pereira

 467

tion level with efficient programs written in C++. We define two levels: the abstraction and implementa-
tion levels.

At the abstraction level, the problem domain is defined and the entities that intervene in the problem are
identified. In the first stage, the classes of objects are identified and they are algebraically specified. This
formalism allows defining objects, classes of objects as well as its operations in an abstract way and inde-
pendently of its implementation, that is to say in a non-operational way. The functionality of the opera-
tions and their semantics through algebraic properties are defined. In the second stage, the algorithms that
work on the classes of objects in the domain are defined.

In the implementation level, the formal specifications are translated to C++ code and the algorithms that
intervene in the solution of the problem are implemented. The C++ language, for its hybrid object-
oriented language characteristic, offers the possibility to work with object classes and functions independ-
ently. It allows modeling a problem defining the object classes that belong to the problem domain; and, on
the other hand, the processes (algorithms, programs) that manipulate them.

According to our experience, we can say that applying this methodology, the students can:

• acquire a high abstraction level of thinking, distinguishing the essential from the auxiliary in a class
specification,

• distinguish from specifications to implementations

• learn throughout the practices the ability to decide which information will be hiding or be visible
(information hiding)

• increase the reuse of specifications, the primary motivation to reuse software specifications is to re-
duce the time and effort required to build specifications of software systems (Krueger, C. 1992).

• use the recursion as a powerful mechanism to understand the behavior of the data type functions.
When the students have learned to use recursion properly, they have gained a powerful intellectual
tool.

The GSBL language
GSBL offers an approach for the construction of incomplete algebraic specifications, this is, specifica-
tions that only describe aspects of the problem to solve partially. This focus is based on adding to the de-
sign of specifications a new dimension calls vertical that expresses the process of completing specifica-
tions. With this refinement type, a new structuring relationship appears that is conceptually bound to the
subclass notion in the object-oriented languages.

The goal of this language, apart from the possibility of working with incomplete specifications, is to fos-
ter the incremental construction of specifications reusing previously designed component for the solution
of other problems.

The fundamental design principles of this specification language are the following: incomplete specifica-
tions, genericity, inheritance and mechanisms of powerful binding. The objects of the specification envi-
ronment in GSBL are denominated classes. The syntax of a GSBL class is defined by means of the
scheme showed in the figure 1.

In GSBL strictly generic components can be distinguished by means of explicit parameterization. The ex-
plicit generic parameters of the class are presented in the <parameter_list> list and it is also indicated if
some of them is restricted to a specific class, or to a subclass of this.

The syntax of a complete class can include the basic constructors clause that refers to generator opera-
tions.

Formal Approach to the Teaching of Abstract Data Types

468

The over and subclass clauses define the imported and inherited specifications respectively. The over re-
lationship corresponds to both the enrichment construction and the relationship “based_on” in the object-
oriented languages. The subclass clause builds the new specification starting from each of the specifica-
tions of the <superclass_list> list. The subclass relationship involves an inheritance mechanism that can
be multiple, in which case the resulting class is the fusion of its superclass. The subclass relationship cor-
responds with the “is-a” relationship in the object-oriented languages.

The with and defines clauses add new sorts, operations or equations. Whereas in the clause with this en-
richment is incomplete, there are not enough equations to define the behavior of the new operations or
there are not enough operations to generate all the values of a given sort, in define clause they are totally
defined.

Ops define the functionality of type operations, and Eqs express the operations semantic through a set of
axioms that are well formed formula over terms of first order predicate calculus.

A complete and detailed description can be found in (Clérici 1988).

A Case Study
A simple example that shows the proposed methodology is presented below.

The Abstraction Level
The power of ADT specifications comes from their ability to capture their essential properties without
overspecifying. For this reason, formal specifications are introduced in an early stage of our career to de-
velop the student’s abstract and formal reasoning.

Let us suppose we have the hierarchy showed in the figure 2 that was specified to solve a previous prob-
lem, based on the following considerations:

• Collection is a group of elements of the same nature,

• Set is a Collection of elements without copies,

CLASS class_name [parameter_list]
OVER < over_list >
SUBCLASS OF < superclass_list >
BASIC CONSTRUCTORS < constructor_list >
WITH
SORTS <sort_list>
OPS < operations_list >
EQS < variable_list > < equation_list >
DEFINE
SORTS < sort_list >
OPS < operations_list >
EQS < variable_list > < equation_list >
END_CLASS

Figure 1. GSBL syntax.

 Felice, Martinez, & Pereira

 469

• Sequence is a finite Collection of 0 (empty sequence) or more elements, which are ordered lineally. A
sequence can be defined as the added of an element (for right or left) to a sequence already existent. A
sequence s can be written:

(s0, s1, s2, ..., sn-1, sn)

where s0 is the element to the furthest more left of the sequence and sn is the furthest one of more
right, and si+1 is the following one of si and si is the previous of si+1.

• Queue is a sequence that serves to pile up and retrieve elements in a first-in, first-out (FIFO) manner.

Part of this hierarchy specified in GSBL language is shown in the following figure 4.

Now, an object stack is specified to solve a new problem, which can be achieved reusing existent compo-
nents. Using the above hierarchy the Stack data type could be specified as subclass of Sequence (see fig-
ure 3), considering that a stack implements the LIFO political (last-in, first-out) where the last element
entered in the stack is the first one to be removed. The stack specified in GSBL is shown in the Figure 5.a.

This stack formal specification expresses all there is to know about the notion of stack in general, exclud-
ing anything that only applies to some particular representations of stacks. A method relying on the physi-
cal representations of data structures to guide analysis and design would not be likely to yield flexible
software.

The Implementation Level
A class is an ADT equipped with a possibly partial implementation (Meyer 1997). The definition states
that the implementation may be partial, a class which is fully implemented is said to be effective, and

Figure 2. Collection hierarchy

Figure 3. Hierarchy specified in GSBL

Formal Approach to the Teaching of Abstract Data Types

470

those implemented only partially is said to be deferred. In the abstraction level they correspond with the
complete and incomplete specifications, respectively.

Therefore, to obtain a C++ class the student must provide an ADT and decide on an implementation. The
ADT is a mathematical concept; the implementation is its computer-oriented version.

Several possible physical representations exist for stacks. A linked representation was selected. The
GSBL specification of the Stack type and a possible implementation in the object-oriented language C++,
reflecting the correspondence between some of the clauses in the abstraction and implementation levels, is
shown in the figure 5.b.

CLASS Collection [item:ANY]
OVER Natural, Boolean
BASIC CONSTRUCTORS make, add
WITH
 SORTS Collection
 OPS
 make: -> Collection
 add: Collection x item -> Collection
 size: Collection -> Natural
 count: Collection x item -> Natural
DEFINE
 OPS
 empty: Collection -> Boolean
 belong: Collection x item -> Boolean
 EQS {c: Collection; e, e1: item }
 empty(make) = TRUE
 empty(add(c,e)) = FALSE
 belong(make, e) = FALSE
 belong(add(c,e), e1) = IF (e = e1) THEN TRUE
 ELSE belong(c, e1)
END_CLASS

CLASS Sequence[item:ANY]
SUBCLASS OF Collection [length : size]
BASIC CONSTRUCTORS make, add
WITH

SORTS Sequence
OPS
make: -> Sequence

 add: Sequencex item -> Sequence
 first: Sequence(s) -> item
 pre: NOT empty(s)
 rest: Sequence(s) -> Sequence
 pre: NOT empty(s)
DEFINE
 length : Sequence-> Natural
 count: Sequencex item -> Natural

 insert:Sequence(s)xitemxNatural(n) -> Sequence
 pre: length (s) >= n-1
 delete: Sequence(s) x Natural(n) -> Sequence
 pre: length (s) >= n
 get: Sequence(s) x Natural(n) -> item
 pre: length (s) >= n

EQS {s: Sequence; e, e1: item; p: Natural}
 length (make) = 0
 length (add(s,e)) = 1 + length (s)
 count(make, e) = 0
 count(add(s,e), e1) = IF (e = e1)
 THEN 1 + count(s,e1) ELSE count(s, e1)
 insert(make,e1,1) = add(make,e1)
 insert(add(s,e),e1,p)=IF(p = length (add(s,e))+1)
 THEN add(add(s,e),e1)
 ELSE add(insert(s,e1,p),e)
 delete(add(s,e),p) = IF (p = length (add(s,e)))
 THEN s ELSE add(delete(s,p),e)

get(add(s,e),p) = IF (p = length (add(s,e)))
 THEN e ELSE get(s,p)
END_CLASS

CLASS Queue [item:ANY]
SUBCLASS OF Sequence[undefine:count, un-
define:insert, undefine:delete, undefine:get, put : add,
remove: rest]
BASIC CONSTRUCTORS make, put
DEFINE

SORTS Queue
make, add
top : Queue -> item
remove: Queue -> Queue
EQS
{c: Queue; e:item}
top (put(make,e)) = e

 top (put(c,e)) = top (c)
 remove (put(make,e)) = make

remove (put(c,e)) = put (remove (c),e)
END_CLASS

Figure 4. GSBL Specifications

 Felice, Martinez, & Pereira

 471

As a last step, we have the integration of the ADT implementation with the algorithmic schema imple-
mented in C++ language. The schema is linked to different techniques applied in this course.

Conclusions
The teaching methodology is based on a design discipline through the formal specification of ADT and a
discipline of development through rigorous programming techniques.

It allows us to construct algorithms in an independent way of a particular language, to guide the imple-
mentations choices for object classes involved. In this way it is possible to introduce proper topics to a
basic course of Analysis and Design of Algorithms (formal specification, algorithm design techniques,
and a vast classic algorithms) in a framework that allows us to include object oriented notions, formal
specifications and components reusability.

According to our experience, we can say that applying this methodology, the students will achieve:

• the abstraction reasoning,

• the mechanisms of specify formally, make reuse and the use of recursion

• the principles of object oriented programming.

Figure 5. Stack Specification and Implementation

Formal Approach to the Teaching of Abstract Data Types

472

References
Clérici, S and F. Orejas (1988). "GSBL: an Algebraic Specification Language Based on Inheritance" Proc. of the European

Conference on Object-oriented Programming (ECOOP 88) pp 78-92.

Cormen, T., Lierserson, C. and Rivest, R. (1990) Introduction to Algorithms. MIT Press.

Ellis,M.A. y Stroustrup, B. (1990). The Annotated C++. Reference Manual. AT&T Bell Laboratories, Murray Hill, New Jer-
sey.

Franch Gutierrez, Xavier. (1994). Estructuras de Datos: Especificación, diseño e implementación. Ediciones UPC, Universi-
dad Politécnica de Catalunya.

Hennicker, R. , Wirsing, M.(1992) A Formal Method for the Systematic Reuse of Specification Components. Lecture Notes in
Computer Science 544, Springer-Verlag, Berlin.

Krueger, C. (1992) , Software Reuse. ACM Computing Surveys : 24 (2), 131-183.

Meyer, Bertrand (1997). Object-oriented Software Construction. Prentice Hall.

Meyer, Bertrand (2001). Software Engineering in the Academy. IEEE Computer Society. Vol. 34 Number 5. pp: 28-35.

Biographies
Laura Felice is an assistant professor at Facultad de Ciencias Exactas, Universidad Nacional del Centro
de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina. She is currently doing her MSc. thesis
and her research interests are focused on Formal Software Development and Reuse. Actually she is assis-
tant of Design and Analysis of Algorithms course. She is a member of the Technology Software Group of
the INTIA at the UNCPBA.

Liliana Martinez is an assistant professor at Facultad de Ciencias Exactas, Universidad Nacional del
Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina. Her research interests are focused
on Formal Specifications. She is a member of the Technology Software Group of the INTIA at the
UNCPBA. She is assistant of Design and Analysis of Algorithms course.

Claudia Pereira is an assistant professor at Facultad de Ciencias Exactas, Universidad Nacional del Cen-
tro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina. Her research interests are focused on
Formal Specifications. She is a member of the Technology Software Group of the INTIA at the
UNCPBA. She is assistant of Design and Analysis of Algorithms course.

