
Informing Science InSITE - “Where Parallels Intersect” June 2002

A Multi-Agent Architecture and Protocol for
Knowledge Production: A Case Study for

Participative Development of Learning Objects

Juan Manuel Dodero Ignacio Aedo Paloma Díaz-Pérez
Laboratorio DEI, Universidad Carlos III de Madrid, Spain

dodero@inf.uc3m.es aedo@ia.uc3m.es pdp@inf.uc3m.es

Abstract
In a distributed eLearning environment, the development of learning objects is a participative task. We
consider learning objects as knowledge pieces, which are subject to the management processes of acquisi-
tion, delivery, creation and production. A multiple-tier architecture for participative knowledge produc-
tion tasks is introduced, where knowledge-producing agents are arranged into knowledge domains or
marts, and a distributed interaction protocol is used to consolidate knowledge that is produced in a mart.
Knowledge consolidated in a given mart can be in turn negotiated in higher-level foreign marts. The pro-
posed architecture and protocol are applied to coordinate the development of learning objects by a distrib-
uted group of authors.

Keywords: multi-agent systems, knowledge management, learning objects.

Introduction
According to the Learning Technology Standards Committee (LTSC) terminology (Farance & Tonkel,
2001), a learning object is any entity, digital or non-digital, which can be used, re-used or referenced dur-
ing technology-supported learning. In a more generic sense, a learning object can be defined as any digital
resource that can be reused to support learning (Wiley, 2002).

The production of learning objects becomes a participative task in the industry of Internet-based learning
services ―what is often referred to as e-Learning―. The term learning is used in this paper and related
works according to the definition given by the Association for Learning Technology (ALT, 1996), who
understands learning technology in a broad conceptual sense as the systematic application of a body of
knowledge to the design, implementation and evaluation of learning resources. Our interpretation is not
referred to cybernetic definitions of learning (Bateson, 1972; Von Goldammer & Kaehr, 1988) and ma-
chine learning.

A Knowledge Management Vision
We consider a learning object as a set of learning
contents, integrated with a given course structure
and sequencing. From a component-oriented ap-
proach, learning objects are curriculum units that
can be assembled to build higher-level learning
contents. These units are pieces of knowledge, and
we can cope with them by means of knowledge
management techniques.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:Publisher@InformingScience.org
mailto:dodero@inf.uc3m.es
mailto:aedo@ia.uc3m.es
mailto:pdp@inf.uc3m.es

A Multi-Agent Architecture and Protocol

358

Knowledge management is a discipline that affects every process carried out in a given organization or a
group of people who work together. According to Swanstrom (1999), knowledge management processes
can be broadly classified into three categories, which are enumerated according to the common timing of
implementation:

Acquisition
Knowledge is a subset of information that has been extracted, filtered and formatted in a specific way.
Once the usefulness of information is proved, information becomes knowledge. The goal of acquisition is
to extract knowledge from available information sources.

Delivery
Knowledge needs to be constantly updated and delivered to the right places at the right time. This is a
continuous process that is devoted to delivering knowledge that is interesting to a person or community of
users.

Production
Knowledge becomes a network of ideas, plans, or artifacts that are produced by both experts and users. It
is advisable to coordinate knowledge production tasks, and to ensure that such a production effort is not
duplicated.

Since learning objects can be knowledge-managed, their development is subject to the processes of acqui-
sition, delivery, and production (Swanstrom, 1999). The main issue of this work has to do with participa-
tive production or creation of knowledge.

Participative Knowledge Production
When a group of people is participatively creating (or producing) a complex object, it is advisable to es-
tablish a set of rules to coordinate its development. This is the situation, for instance, when several people
are building some educational material (for instance, courseware or some other learning resource).

We will follow a concrete example for a better explanation of the problem. Let's suppose two instructors
who are designing respective modules, which will be part of the same learning object. During the design
stage, the necessity to develop a sub-element ―i.e, some figure or diagram― with similar purpose can be
detected by both instructors. Each one usually has his/her own pace of work in developing the common
element. Also, they can be differently skilled in that work. If the development process is not appropriately
coordinated, the following problems can arise:

• An instructor could get her work crushed, depending on the required speed and quality of the de-
sign, in comparison to her partner's competency.

• When speed is more important than quality, a more elaborated and reusable product can be readily
thrown away.

• In the best case, effort will be duplicated in several phases of the project.

Therefore, the coordination of participative production of knowledge meets the following objectives:

• Bring together participants' different pace of creation.

• Take advantage of participants' different skills in the problem domain and the tools that are man-
aged.

 Dodero, Aedo, & Díaz-Pérez

 359

• Reduce the number of conflicts provoked by interdependencies between in-production knowledge
components.

• In a more general sense, avoid duplication of effort.

An Agent-oriented Approach
Agents have been proven as a helpful tool for the coordination of human people who are performing a
given task (Maes, 1994). Agent interaction protocols govern the exchange of a series of messages among
agents, i.e. a conversation. There are currently some popular interaction protocols used heavily by multi-
agent systems. These protocols can be classified into the following approaches:

• Top-down methodologies try to design domain specific agent systems, either from a market-based
approach ―e.g, the contract net protocol (Smith, 1980)― or from an organizational approach
―e.g, the facilitator protocol (Finin et al., 1994).― With top-down methodologies, it becomes dif-
ficult to separate cooperation-level knowledge from problem-solving domain level knowledge.
Jennings and Campos (1997) claim for the existence of a social-level knowledge that provides an
abstract framework for comparing and analyzing all types of multi-agent systems.

• Bottom-up methodologies aim to generate families of components that can be assembled to build
collaborative agent systems in a more reusable fashion. When the members of a multi-agent sys-
tem are scattered over a very large scope on the Internet, Yuan and Wu (2000) sector them into
few territories and duplicate the social-level knowledge in each territory.

Depending on the protocol, a given relationship among agents is set up:

• When the agents commit themselves to common goals, their interaction is coordinated.

• In cases where agents have conflicting goals or are simply self-interested, the objective of the pro-
tocol is to maximize the payoffs of the agents, and their interaction is negotiated.

• In any case, the relationship established among agents can be competitive or cooperative.

• If there is a dominance relation among groups of agents, the relationship can be participative
―i.e, subordinates can participate in decision making.

The architecture presented in this work is a bottom-up, multi-agent approach, and our working hypothesis
is that a group of agents can help in the participative production of knowledge, by coordinating their crea-
tion activities. Therefore, different agents can act as representatives of knowledge-producing actors, ac-
cording to the following principles:

• Agents can be structured into separable knowledge domains of interaction. This structuring re-
flects the knowledge differences between developers.

• A dynamic re-thinking of the structure of interactions in different domains can help to reduce the
inter-dependencies during the process.

Once introduced the problems of participative knowledge production and our working thesis, we summa-
rize the rest of this paper. A structured model of interaction between knowledge-producing agents is pre-
sented. In our model, agents are arranged into participative knowledge domains that we call marts.
Knowledge production in a mart is participative, and a distributed interaction protocol to coordinate
knowledge-producing agents is presented. A case study of participative development of learning objects is
depicted. Finally, some conclusions and future work are described.

A Multi-Agent Architecture and Protocol

360

A Participative Knowledge Production Architecture
In our architecture, knowledge-producing agents can operate within the boundaries of a specific domain
or knowledge mart, as shown in figure 1. Nevertheless, interaction among different domains is also sup-
ported through a number of proxy agents. In order to facilitate interaction between domains, marts can be
structured in a hierarchical way. In this architecture, domains can be modeled as knowledge marts, and
marts are arranged into knowledge warehouses.

Knowledge Mart A

Collaborative
Agent

Knowledge Mart B

Knowledge Mart C

Collaborative
Agent

Proxy
Agent

Proxy
Agent

Proxy
Agent

Collaborative
Agent

Collaborative
Agent

Collaborative
Agent

Collaborative
Agent

Proxy
Agent Proxy

Agent

Figure 1: Participative knowledge marts

• A Participative Knowledge Mart (PKM) is a distributed group of agents that is trying to pro-
duce a piece of knowledge in a given domain.

• A Participative Knowledge Warehouse (PKW) is the place where knowledge produced in for-
eign marts is merged in a structured fashion.

Two or more PKMs can interact using representatives in a common PKW. When knowledge produced in
a mart can affect performance in some other domain, a special proxy agent can act as representative in the
foreign mart, according to the proxy design pattern (Gamma et al., 1994), so that interaction between
marts is not tightly coupled.

Dynamics of Marts
The architecture of heterogeneous knowledge domains into marts presents a number of questions and
problems:

1. What knowledge domain are agents member of?

2. How is the corpus of knowledge built in a specific mart, how it is accepted by every agent and
how it can evolve?

3. How are the domains initially spawned, after setting up a group of agents whose generated knowl-
edge is not known in advance?

4. What would it happen if an agent changes the kind of knowledge that it produces, and this is better
classified in another mart?

 Dodero, Aedo, & Díaz-Pérez

 361

5. As time progresses, can knowledge that is produced in a mart be biased towards a different cate-
gory?

Bringing forward the answers to these questions, it seems reasonable to dynamically establish the mem-
bership of agents into the marts. As well, division and/or fusion of marts can be needed to better reflect
the knowledge-directed proposed structure. To represent the differences between knowledge marts, we
define a cognitive distance between two agents as a measure of the similarity between the knowledge pro-
duced by both agents. The cognitive distance can be also defined between two marts, in the sense that
these are dynamically formed groups of knowledge-carrying agents. In that case, clustering techniques
can be readily applied to solve the above-mentioned problem of dynamic membership of agents into
marts. Data about the cognitive distance between marts can be taken from agents' activity logs. For in-
stance, a web server log file is a rich data source to determine a cognitive distance.

The following section introduces the dynamics of a participative multi-agent architecture, where agents in
a mart try to convince each other to accept a given knowledge in some domain, so approaching the prob-
lem of building the corpus of knowledge. The aim is to allow agents to consolidate knowledge that is con-
tinuously produced in a PKM. Knowledge consolidation in a PKM is the establishment of knowledge as
accepted by every agent operating in that PKM. Agents can reach a consensus on the PKM-wide accepted
knowledge by the exchange of messages.

Agent Interaction in a Knowledge Mart
Agents do not usually enjoy an inherent control over each other. Thus, the usual way to influence one
another is persuasion. In some cases, a persuadee agent needs a few arguments to behave according to the
persuader directives. In other cases, the persuadee is hardly determined to accept persuader's proposals.
Then, the persuadee has to be convinced to change its beliefs, goals, or preferences, in order to accept
―perhaps modified― proposals.

The minimum requirement to interact is that agents can build and deliver proposals, which can be ac-
cepted or rejected. An example is the contract net protocol (Smith & Davis, 1981). The protocol is more
sophisticated when recipients have a chance to build counterproposals that alter certain issues that were
not satisfactory in the original proposal (Sierra et al., 1997). A more elaborated form of interaction allows
parties to send justifications or arguments along with proposals. Such arguments indicate why proposals
should be accepted (Parsons & Jennings, 1996; Sawamura & Maeda, 2000; Sycara, 1990).

Interaction between agents is carried out by exchanging proposals in a common language (Mayfield et al.,
1995). Proposal interchange is directed by the goals and needs of participating agents. Although the for-
malisation of agents' communication language and goals is not included as an objective of our model, we
assume a set of conventions about the language and protocol:

1. Agent rationality is modeled in terms of preference relationships or relevance functions (Fishburn,
1969), in order to allow agents to evaluate and compare proposals.

2. Relevant aspects of the interaction can be modeled as issues and values that change as the interac-
tion progresses.

3. Agents deliberate and achieve an internal state and so record the history of interaction and their
decisions.

An agent can be involved in several interaction processes. The protocol described below is used to carry
out separate interaction processes where agents participate.

A Multi-Agent Architecture and Protocol

362

Messages
The basic types of messages that can be exchanged between agents are the following:

• proposal(k, n): Given an interaction process n, agents send a proposal message when they want a
piece of knowledge k to be consolidated in the PKM.

• consolidate(k, n): Agents send a consolidate message when they reach a given state in the interac-
tion protocol, and they want a previously submitted own proposal k to be accepted in an interac-
tion process n.

Sources and recipients of messages are not explicited as parameters in the messages described above. Ad-
dressing is concern of an underlying transport protocol that guarantees a reliable delivery. Moreover, mes-
sage delivery to every agent in the same PKM has to be supported by some multicasting facility in the
underlying transport.

Proposal Relevance
As stated above, agents rationality needs to be modeled in terms of preference relationships or relevance
functions, in order to allow agents to evaluate and compare proposals. Nevertheless, linguistic-expressed
preferences (Herrera et al., 1996) can be integrated, as proposed by Delgado et al. (1998).

Next, we give some definitions used in the protocol described below.

Proposal attributes: Proposal attributes are elementary criteria to be considered when comparing propos-
als in a PKM. Some examples of proposal attributes are:

• Submitter's hierarchical level, useful when agents present different decision privileges in the PKM
about the acceptance of proposals (e.g., lecturer vs. assistant in a faculty staff).

• Degree of fulfilment of a set of goals. For instance, before the development of a learning content, a
set of educational objectives should be defined. In the case of corporate learning, these goals are
conducted by the training needs of the organization.

• Timestamp of the moment when a proposal was firstly submitted in the PKM (normally consid-
ered in the last case, when no other attribute decides).

Proposal relevance: The relevance of a proposal is defined as the set of proposal attributes considered
when interacting.

Proposal relevance function: The relevance function u(k) of a proposal k in a PKM returns a numerical
value, dependent on attributes of k, in such a way that if ki ≠ kj, then u(ki) ≠ u(kj).

Proposal preference relationship: A proposal k1 is preferred to another k2 in a PKM, denoted as k1>k2, if
u(k1)>u(k2).

Interaction Protocol in a PKM
Let AM={A1, ..., An} be a discrete set of agents, participating in a knowledge mart M.

Start: When Ai wants a knowledge piece k to be consolidated in M, it sends a proposal(ki, n) to every
agent in M, initiating a new interaction process n. Then, Ai sets a timeout t0 before confirming its pro-
posal. During t0, messages can arrive from any other agent Aj, with j ≠ i, consisting of new proposals
―maybe the original, though modified― referring to the same interaction process n.

 Dodero, Aedo, & Díaz-Pérez

 363

Rule 1: If Ai does not receive any message referred to n during t0, it considers that there is no agent
against its proposal and tries to ratify it, by sending a consolidate(ki, n) to every agent in M. At the same
time, Ai starts a new timeout t1.

Rule 2: When Ai receives a proposal(kj, n) message from other agent Aj, referring to the same interaction
process n, Ai evaluates the new proposal kj. If ki < kj, then Ai sets a new timeout t1, waiting for proposal kj
to be ratified. Then, Ai proceeds as follows:

2.1. If Ai does not receive any proposal referred to interaction process n before t1 expires, then Ai ini-
tiates back the protocol with the same proposal ki.

2.2. If Ai receives a consolidate(kj, n), with kj > ki, for j ≠ i, before t1 expires, and referring to the
same interaction process n, then Ai gives up the initial proposal and the protocol finishes unsuc-
cessfully.

2.3. If Ai receives a new proposal(kj, n), with ki < kj, it extends the timeout t1.
We are considering two different timeouts over the course of the protocol, one for each phase that can be
noticed in the interaction. Timeout t0 is used for the distribution phase, that occurs after an agent submits a
proposal. Timeout t1 is used for the consolidation phase, that occurs if there is a proposal waiting to be
consolidated (this can occur whether t0 expired or a t0-waiting agent received a proposal that was evalu-
ated as preferred).

At any moment, the reception of a message from another agent may provoke a momentary retraction from
a previously submitted proposal, until a counter-proposal is elaborated. An agent that has not reached this
state will be waiting for t0 timeout. Then, if the agent receives a proposal that is evaluated as preferred, a
new timeout t1 is set to give it a chance. But if the preferred proposal is not eventually ratified, then the
agent goes on about its aims and will try again to consolidate its own proposal.

An agent Ai can participate in several interaction processes. Each interaction process is handled sepa-
rately, by initiating a new execution thread of the protocol.

Activation Events
In any moment, an agent Ai can be involved in an interaction process n due to the arrival of a message
from Aj referred to n. The following rules describe the actions to undertake by agent Ai when it receives a
message from another agent Aj.

• If Ai receives a proposal(kj, n) from Aj:
o Rule A: If Ai had sent a proposal(ki, n) and is waiting for t0 timeout, then it can perform

one of the following actions:

� If kj > ki, then Ai starts timeout t1 and it keeps waiting for proposal kj to be ratified
or for an alternative proposal to come.

� If kj < ki, then Ai sends again its last n-related proposal back to Aj, and extends t0
timeout.

o Rule B: If Ai had sent a proposal(ki, n) and is waiting for t1 timeout, then it can perform
one of the following actions:

� If kj > ki, then Ai acts in the same manner as in rule 2.3 and it keeps waiting for pro-
posal kj to be ratified.

� If kj < ki, then Ai sends last proposal it sent in the interaction process back to Aj, and
extends t1 timeout.

A Multi-Agent Architecture and Protocol

364

o Rule C: If Ai had not sent any message referred to the same interaction process n, it does
nothing.

• If Ai receives a consolidate(kj, n) from Aj:

o Rule A: If Ai had sent a proposal(ki, n) and is waiting for t0 timeout, then it can perform
one of the following actions:

� If kj > ki, then Ai acts in the same manner as in rule 2.2 and the protocol finishes
unsuccessfully.

� If kj < ki, then Ai sends again its last proposal back to Aj, and extends t0 timeout.

o Rule B: If Ai had sent a proposal(ki, n) and is waiting for t1 timeout, then it can perform
one of the following actions:

� If kj > ki, then Ai acts in the same manner as in rule 2.2 and the protocol finishes un-
successfully.

� If kj < ki, then Ai acts in the same manner as in rule 2.1 and initiates back the proto-
col with the same proposal.

o Rule C: If Ai had not sent any message referred to the same interaction process n, it does
nothing.

Protocol Variants
The interaction protocol described above uses two message types (i.e., proposal and consolidate), but
some variants using additional message types to express different semantics can also be formulated:

• retract(k, n): Agents can retract from a previous proposal k by issuing this message referred to an
interaction process n.

• substitute(k1, k2, n): Agents can replace a previously issued proposal k1 by a new proposal k2. It is
equivalent to retract(k1, n) followed by proposal(k2, n).

• reject(k, n): Agents can express with this message their refusal for a proposal k without formulat-
ing and issuing a new proposal.

These types of message can speed up the development of the protocol, but they are not completely neces-
sary for the success of the process.

Case Study: Participative Development of Learning Objects
Recently, organizations and companies have developed initiatives for learning resources standardization,
as LALO (Learning Architectures and Learning Objects) (CEdMA, 2000) and SCORM (Sharable Content
Object Reference Model) (ADL, 2001). Most of them are based upon specifications of IMS (Instructional
Management Systems) standards. The IMS Global Learning Consortium has recently released the final
release, version 1.1.2 of the Content Packaging Specification (IMS, 2001), which provides the functional-
ity to describe and package learning materials, such as an individual course or a collection of courses, into
interoperable, distributable packages.

The IMS specification defines the structure of a learning object by means of an XML manifest file, as
depicted in figure 2. Proposed additions or modifications are transformed into changes to the manifest
file. When constructing a learning object, the builder can use an editing tool ―for instance, Microsoft
LRN Toolkit (Microsoft, 2002) or ToolBook II (Click2learn, 2001)― that provide an implementation of
the IMS Content Packaging Specification. Participative development of learning objects is not supported

 Dodero, Aedo, & Díaz-Pérez

 365

in such tools, which present a unipersonal vision of creation, edition, viewing, and testing of learning ob-
jects.

In the participative development of a learning object, several educational designers may wish to contrib-
ute, making some modification in the structure of the course, or adding some object to the course con-
tents. Two or more authors can cooperate through the exchange of proposals, which are implemented as
changes to the manifest file. Before any change is considered as consolidated, it must be negotiated be-
tween the participating authors.

imsmanifest.xml

manifest
metadata

organizations
organization

resources

item

item

item

item

resource

resource

manifest

metadata

file

resource

imsmanifest.xml

Figure 2: IMS manifest file structure, © Microsoft Corp.

Issues within Participative Development
The participative development of learning resources becomes harder than if carried out in a centralized
environment. Firstly, in a highly distributed environment ―for instance, the faculty staff in a virtual uni-
versity―, the holding of synchronous ―physical or virtual― meetings is not frequent, since the ex-
change of ideas between members of the distributed workgroup is an asynchronous process, where par-
ticipants may keep their own pace within the interchange.

In a second stage, developers of learning objects make specific use of their knowledge on a given disci-
pline. For example, when some lecturers of a faculty staff make up a syllabus, they use their knowledge
on a group of related subjects. The determination of responsibilities within the participative development
is critical to the quality of the learning products.

Moreover, the processes accomplished in the collaboration are not isolated from one another, but they
keep inter-dependencies. It is desirable that these dependencies could be eliminated or reduced. The inten-
tion of the proposed architecture is to alleviate these issues.

A Running Example
Let us consider the development of a learning object named “Introduction to XML”. In a given moment,
an author A1 knows the currently consolidated object and elaborates a proposal p (see figure 3). In the
meantime, another author A2 elaborates a new proposal q (see figure 4). There may be several processes
initiated, each one affecting a section of the learning object that can be negotiated separately (e.g, ta-
bleofcontents, resources, and metadata). We will restrict our example to the tableofcontents

A Multi-Agent Architecture and Protocol

366

structure of the organizations section in the manifest file, and assume that the interaction process n is
devoted to the tableofcontents section. Nevertheless, participative development can be also extended
to resources or metadata sections.

When authors submit proposals, they will include the differences between both files, and referred to the
tableofcontents interaction. The rest of collaborating authors receive and evaluate the proposal, ac-
cording to a set of previously agreed criteria, like those described above. Then, the interaction protocol is
executed by every author until the proposal is eventually accepted, or substituted by a further elaborated
proposal. This process continues until an agreement is reached or some degree of consensus is achieved.
Although authors' behavior is an asynchronous process, agents interaction protocol helps to synchronize
their operations.

Figure 3: Proposal p for the manifest file while developing a learning object

In our example, the relevance of a proposal can be graded by the fulfillment of a set of instructional out-
comes from trainees within the following objectives:

1. Ability to program XHTML (i.e., XML-generated HTML) web applications

2. Ability to program server-side web applications

3. Ability to program XML data exchange applications
The sequence of events spawned by the execution of the protocol by every agent is depicted in figure 5. The inter-
action begins when agents A1 and A2 submit proposals p and q respectively.

 Dodero, Aedo, & Díaz-Pérez

 367

Figure 4: Proposal q for the manifest file while developing a learning object

A1 A2

Proposal p

A3
Proposal p

A1 A2

A3
u(p) < u(q)

Extend timeout t0

Proposal q

Proposal q
u(p) < u(q)

Start timeout t1

Start timeout t0Start timeout t0

t0 expires

OK

A1 A2

A3

Consolidate q

Consolidate q

Start timeout t1

Terminate
protocol

OK

A1 A2

A3

Protocol finishes
successfully

t1 expires

(a) Initial exchange of proposals (b) Actions after receive and evaluate proposals

(c) Consolidation after t0 expiration (d) Protocol finishes after t1 expiration

Proposal q

 Figure 5: Execution example of the interaction protocol

A Multi-Agent Architecture and Protocol

368

(a) Both A1 and A2 receive each other's proposal and begin the distribution phase, so starting timeout
t0. Proposals p and q also arrive to A3, which is not participating in the process and silently re-
ceives them.

(b) A1 compares q to p, turning out that its proposal has a worse evaluation. It is reasonable that an
evaluation of proposal p obtains a higher value than q, as for the second objective described above.
Concerning first and third objectives, any relevance function should outcome similar values for
both proposals, so they would not be decisive. Then, A1 starts timeout t1, giving q a chance to be
consolidated. On the other hand, A2 also compares both proposals and reminds A1 of the results by
sending again q, then extending timeout t0 in order to give a chance for other agents' proposals to
come.

(c) When timeout t0 expires, A2 sends a consolidation message for q that arrives to every agent in the
mart. At the reception, A1 finishes the protocol because it is expecting the consolidation for q. A3
simply accepts the notification.

(d) Finally, at the expiration of t1, A2 is confirmed about the end of the consolidation phase for q and
its execution of the protocol finishes successfully. Therefore, every agent in the mart will eventu-
ally know about the consolidation of the proposal.

A Multiple-mart Architectural Model
The situation previously described leads us to the hypothesis that a group of agents can help instructional
designers to jointly, asynchronously develop learning objects, by coordinating their creation activities.
Different agents can act as representatives of instructional designers, according to the following princi-
ples:

� Agents can be structured into separable knowledge domains of interaction, so reflecting the
knowledge differences between instructional designers.

� A dynamic re-structuring of the knowledge domains can help to reduce the inter-dependencies that
can occur within the disciplines afforded by instructional designers.

Participative development of the learning objects that make up an in-development curriculum is not a triv-
ial task. Changes or additions in some learning material can affect several courses that depend on it.
Sometimes, two or more teaching staff members have to negotiate the inclusion of some content in a
given course under his/her responsibility. In this case, the architecture of several marts can be helpful to
structure the interaction.

The interaction protocol deals with the asynchronous exchange among learning objects developers by
synchronizing the interaction among their representative agents. The learning objects that are generated
are progressively consolidated in domains that are concerned with the knowledge that is under develop-
ment. The inclusion of some content in a given course is under the responsibility of a lecturer, thus re-
flecting a chain-of-responsibility in the development.

As well, developers' specific knowledge domains are well reflected in the multi-domain structuring of
agents into knowledge marts. Moreover, inter-dependencies are reduced by the dynamic set-up of marts.

Conclusions
This work presents a model to develop a participative multi-agent architecture, suggesting its mapping to
the participative development of learning objects. Multi-agent interaction protocols can be developed ac-
cording to top-down or bottom-up approaches. Bottom-up approaches sector agents into territories and
duplicate the social-level knowledge in each territory, which can lead to the problem of inconsistency.
The architecture presented here is a bottom-up approach to the design of participative multi-agent sys-

 Dodero, Aedo, & Díaz-Pérez

 369

tems, where every PKM holds responsibilities on some domain-level knowledge, while cooperation-level
knowledge interfaces to other domains are well-defined. This structuring of knowledge marts can help to
reduce inconsistencies between agent territories.

The participative approach presented in this work is also applicable to other knowledge production tasks,
as software development, specially in analysis and design phases. Nevertheless, further validation is
needed to assess the usefulness of the protocol in different scenarios. We are also conducting tests on the
impact of the number of agents in the overall effectiveness of the model.

Improvements and Future Work
For the sake of simplicity, we defined a two-tier architecture. Nevertheless, it can be easily extended to a
multiple-tier architecture, where agents interact in lower-level domains to consolidate some knowledge,
before they try to interact in higher-level domains.

On another hand, interaction processes are not completely independent from one another. Therefore, the
participation of agents in the marts can be dynamic, such that an agent can change its membership to
some other mart, if the knowledge produced by the agent affects interaction processes carried out in that
mart. Since our work does not consider yet how knowledge marts are set up, as a future work, knowledge
mart generation and the participation of agents in PKMs are proposed to be dependent on agents' ontol-
ogy-based expressed interests.

References
ADL (2001). Sharable Content Object Reference Model, version 1.1. Advanced Distributed Learning. Retrieved January 15,

2001 from the World Wide Web: http://www.adlnet.org/scorm/docs/scorm1.1.pdf

ALT (1996). Definition of Learning Technology. Association for Learning Technology. Retrieved August 14, 2001 from the
World Wide Web http://www.warwick.ac.uk/alt-E/rolling/discussion/69

Bateson, G. (1972). Steps to an Ecology of Mind. London: International Textbook Publishing.

CEdMA (2001). Learning Architectures and Learning Objects. Computer Education Management Association. Retrieved May
15, 2001 from The World Wide Web http://www.cedma.org/guestlalo.html.

Click2learn (2001). Toolbook authoring products. Click2learn, Inc. Retrieved March 10, 2002 from the World Wide Web
http://home.click2learn.com/en/toolbook/index.asp.

Delgado, M., Herrera, F., Herrera-Viedma, E., & Martínez, L. (1998). Combining Numerical and Linguistic Information in
Group Decision Making. Information Sciences, 7, 177–194.

Farance, F., & Tonkel, J. (2001). Learning Technology Systems Architecture (LTSA) Draft 8. Technical report. IEEE Learning
Technology Standards Committee (LTSC). Retrieved April 6, 2001 from The World Wide Web
http://ltsc.ieee.org/doc/wg1/IEEE_1484_01_D01_LTSA.pdf.

Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994). KQML as an Agent Communication Language, In Proceedings of
the 3rd Int. Conf. on Information and Knowledge Management, pp. 456–463, Gaithersburg, Maryland. ACM Press.

Fishburn, P. C. (1969). Utility Theory for Decision Making. Huntington, NY: Robert E. Krieger Publishing Company.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns. Reading, Massachusetts: Addison-Wesley Publish-
ing Company.

Herrera, F., Herrera-Viedma, E., & Verdegay, J. (1996). A Linguistic Decision Process in Group Decision Making. Group
Decision and Negotiation, 5, 165–176.

IMS (2001). IMS Content Packaging Specification. Instructional Management Systems. Technical report. IMS Global Learn-
ing Consortium. Retrieved April 6, 2001 from The World Wide Web
http://www.imsproject.org/content/packaging/index.html.

Jennings, N. R., & Campos, J. R. (1997). Towards a Social Level Characterisation of Socially Responsible Agents. IEEE Pro-
ceedings on Software Engineering, 144(1), 11–25.

A Multi-Agent Architecture and Protocol

370

Maes, P. (1994). Agents that Reduce Work and Information Overload. Communications of the ACM, 37(7), 31–40.

Mayfield, J., Labrou, Y., & Finin, T. (1995). Desiderata for Agent Communication Languages. In AAAI Spring Symposium on
Information Gathering.

Microsoft (2002). LRN 3.0 Toolkit, Microsoft Corporation. Retrieved March 10, 2002 from the World Wide Web
http://www.microsoft.com/elearn/support.asp.

Parsons, S. D., & Jennings, N. R. (1996). Negotiation Through Argumentation - A Preliminary Report. In Proc. Second Int.
Conf. on Multi-Agent Systems, pages 267–274, Kyoto, Japan.

Sawamura, H., & Maeda, S. (2000). An Argumentation-based Model of Multi-Agent Systems. In H. Jaakkola and H. Kangas-
salo (eds.), Proceedings of the 10th European-Japanese Conference on Information Modelling and Knowledge Bases, pp.
96–109, Saariselkä, Finland.

Sierra, C., Faratin, P., & Jennings, N. R. (1997). A Service-Oriented Negotiation Model between Autonomous Agents. In Proc.
8th European Workshop on Modeling Autonomous Agents in a Multi-Agent World, pp. 17–35, Ronneby, Sweden.

Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver.
IEEE Transactions on Computers, 12, 1104–1113.

Smith, R. G., & Davis, R. (1981). Frameworks for Cooperation in Distributed Problem Solving. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 11(1), 61–70.

Swanstrom, E. (1999). Knowledge Management: Modeling and Managing the Knowledge Process. John Wiley & Sons.

Sycara, K. (1990). Persuasive Argumentation in Negotiation. Theory and Decision, 28, 203–242.

Von Goldammer, E., & Kaehr, R. (1988). Poly-contextural Modeling of Heterarchy in Brain Function. In R. M. J. Cottrill
(eds.), Models of Brain Function, pp. 463–497, Cambridge University Press.

Wiley, D. A. (2002). Connecting Learning Objects to Instructional Design Theory: A Definition, a Metaphor, and a Taxonomy.
In D. A. Wiley (editor), The Instructional Use of Learning Objects, pages 3–23, Agency for Instructional Technology, As-
sociation for Educational Communications & Technology.

Yuan, S. T., & Wu, Z. L. (2000). An Infrastructure for Engineering Cooperative Agents. International Journal of Software
Engineering, 10(6), 681–711.

Biographies
Juan-Manuel Dodero received a degree in Computer Science and a Master degree in Knowledge Engi-
neering from Universidad Politécnica de Madrid. He collaborated with the laboratory of Artificial Intelli-
gence of the Facultad de Informática de Madrid (School of Computer Science of Madrid). Since 1994, he
was a lecturer at the Computer Science School of the Universidad Pontificia de Salamanca en Madrid. He
has also been a consultant on object technologies and knowledge management for several companies.
Starting from 1999, he is a lecturer at the Universidad Carlos III de Madrid (Escuela Politécnica Supe-
rior). His interests mainly concern topics such as Cooperative Information Systems Architectures, Agent
Technology, Knowledge Management and their applications to education.

Ignacio Aedo received a degree and a Ph.D. in Computer Science from Universidad Politécnica de Ma-
drid. Starting from 1991, he is lecturer at the Universidad Carlos III de Madrid (Escuela Politécnica Supe-
rior). His interests mainly focus on topics such as hypermedia, media integration systems, electronic
books, electronic document systems, development methodology and knowledge representation systems.
In 1990, he started his research activity in the field of hypermedia systems, on which he is still involved.

Paloma Díaz-Pérez received a degree and a Ph.D. in Computer Science from Universidad Politécnica de
Madrid. She collaborated with the laboratory of Software Engineering of the F.I.M. Starting from 1992,
she is a lecturer at the Universidad Carlos III de Madrid (Escuela Politécnica Superior). Her interests
mainly concern topics such as hypermedia, electronic document systems, CASE, software development
methodology, and formal models for representing information.

