
Informing Science InSITE - “Where Parallels Intersect” June 2002

Reusable and Usable Environment for the Digital
Courseware Domain

Elsabé Cloete & Paula Kotzé
University of South Africa (UNISA), Pretoria, South Africa

cloete@unisa.ac.za kotzep@unisa.ac.za

Abstract
This paper considers a functional framework that creates a usable authoring support environment (ASE)
for digital course design, and outputs reusable components. Within the context of considering the
courseware domain as a domain of interactive software systems, we developed an ASE prototype. The
objectives of this prototype include the provision of a usable authoring tool to develop interactive course-
ware, as well as the creation of domain products that are based on open standards to foster large-scale re-
use of these products. In this paper we describe the software architecture of the prototype, based on us-
ability requirements.

Keywords: domain modelling, e-learning, reuse, usability

Introduction
Electronic learning (e-learning) is a combination of learning services, technologies and products that pro-
vides a coherent institutional environment for instruction on the Internet. At the moment, most institutions
with e-learning programmes have small-scale deployments of fully interactive digital courses, and tend to
depend on learning management systems to create a sense of an e-learning environment. Since lecturers
are responsible for creating learning opportunities, they are often also burdened with the task of being re-
sponsible for interactive digital courses. In some instances, institutions employ educational technologists
to assist in this task. However, if the small-scale deployments ever become full-scale deployments, it is
unlikely that there will be enough educational technologists available to develop all courses as interactive
software systems. In an information technology environment, one would never expect non-experts to
write complicated software programs, but in the teaching environment, we expect teachers to create learn-
ing opportunities within a framework that requires complicated software programs. Although some
teachers may be inspired to create learning opportunities using all the technical tools at hand, few are ac-
tually able to create dynamic learning software that uses the tools in such a way that they blend into the
background. Furthermore, maintenance of interactive course software is highly demanding. Content ob-
jects that are not designed according to open standards thwart the reuse of these learning objects to a large
extent, and also prohibit the integration of content objects into central repository environments.

This paper describes the development of a domain prototype for the courseware domain. The objectives
of the domain prototype are (1) to provide a usable
authoring tool that lecturers can use to develop in-
teractive courseware, and (2) to create domain
products that are based on open standards to foster
large-scale reuse of the products. The next section
describes the courseware domain as an interactive
system environment, and distinguishes between
families of systems in the domain to clarify the

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:cloete@unisa.ac.za
mailto:kotzep@unisa.ac.za

Reusable and Usable Environment

292

context of the research. The need for an architecture of the domain prototype is described in Section 3.
Section 4 describes architecture and design considerations of the prototype. Our conclusions, in the final
section of the paper, round off the paper.

Courseware Domain as an Interactive System Environment
The domains within e-learning are not always well understood, which means that institutions or individu-
als embarking on e-learning are often confused by the array of products available in the field. The term
domain is used to ‘denote or group a set of systems, or functional areas, within systems, that exhibit simi-
lar functionality’ (Kean, 1998).

The domains within the field of e-learning can be organised in a three-tier architecture (Cloete, 2000) as
described in Figure 1. The infrastructure domain resides on the bottom layer. Target systems in this do-
main provide networking and connection services for higher layers, which include activities such as pro-
viding for the transparent transmission of network messages and defining infrastructure specifications of
hardware for domain users. Owing to the obviously technical nature of this layer, the uniqueness of the
domain is not in doubt. The distinction between the next two layers is not always clear, which results in
impossible expectations from target systems in the distinct domains.

The middle layer describes the learning management domain. The purpose of this domain is to provide
middleware services by using the underlying infrastructure services to create and facilitate a reliable and
effective learning environment. Target systems in this domain are called the learning management sys-
tems (LMSs) and they are responsible for enabling delivery, management and administration of the learn-
ing environment to take place. The learning management domain can be subdivided into four subdomains
including the:

• learning portal subdomain

• learner management subdomain

• content management subdomain

• delivery subdomain.
The reason for this subdivision is that in some of the subdomains, separate off-the-shelf target systems are
available that can be purchased and plugged into the learning management domain.

Figure 1: Three-tier architecture for e-learning domain

Infrastructure Domain

Learning Management Domain
Learning
 Portals

Learner
Management

Content
Management

Delivery
Domain

Subdomains

Courseware Domain
Interactive

Course
Software

Content
Development

Tools

 Cloete & Kotzé

 293

Families of learning portal systems provide an aggregation of learning services. These services are pre-
sented as a single access-point, via the web-browser. The learning portal is commonly embedded in the
LMS where it performs functions such as maintaining course catalogues, news forums, learner collabora-
tion forums, instructional support, etc. The learner management subdomain is responsible for activities
such tracking and managing the learner competencies, facilitating and managing student registration, pro-
viding a centralised tracking system that monitors students performances and progress, reporting func-
tions on a comprehensive set of views concerning learning programmes and learning progress, automatic
notification triggered by specific events, et cetera. The primary goal of the content management subdo-
main is to manage the content objects that are stored in a content repository through activities such as in-
dexing and retrieval of content objects, as well as implementing security measures that protect content,
ensure customer privacy and shield student data from unauthorised access. LMSs essentially provide an
environment in which the courseware resides and from where it can be delivered, which means that the
delivery mechanisms for e-learning are usually embedded in an LMS. In the same way as for the other
subdomains, separate delivery target systems are available for plug-ins. Examples of LMSs include
WebCT, BlackBoard, LotusLearning Notes, ThinQ, et cetera.

The courseware domain resides at the top layer of the architecture. This domain is subdivided into two
subdomains:

• the interactive courseware systems (the content itself)

• the content development tools that enable courseware designers to create the desired interactive
courseware systems.

Content development tools provide authoring support environments (ASE) for developers to produce cus-
tomised e-learning content for deployment on CD, the Intranet or the Internet. From the viewpoint of the
learner, digital courseware conforming to the requirement of enhancing the learning process must allow
its users to communicate interactively with the course software. Content development tools can broadly
be categorised in two classes, namely the programming class tools and the non-programming class tools.
Tools from the programming class, such as Toolbook II and Quest, are mostly products from ex-CBT
vendors who have historically delivered CD-ROM-based solutions. The use of these tools requires expert
technologists or programmers who grasp the basics of programming environments. Tools in the non-
programming class are usually less complex to manipulate and can potentially be used by non-
technologists to create interactive web courseware. Examples of these tools include products such as
Front Page, Glorion, Adobe’s Web Collection, etc.

‘Interactive courseware’ constructs a class of interactive software. This implies that the design and de-
velopment of interactive course software require the use of software engineering principles to guarantee
robustness and usability at least. However, most lecturers are not familiar with software engineering
methodologies and even if they can manage the basics of a non-programming content development tool,
the robustness and usability of the final product may be problematic. The fact is that their creators, or the
institutions that ‘sell’ them, seldom regard digital courses as software, and most probably, if they did, few
would attempt to experiment with e-learning. Although some institutions use education technologists to
develop courses, many of these courses are in fact designed and developed by their teachers, of whom
only a selected few understand or appreciate the underlying software architectures.

The Need for a System Architecture
The purpose of this section is to consider the architectural requirements for our domain prototype by re-
ferring to the context of software architectures, and the models that create a collection of multi-tiered ab-
stract objects, together forming a consensus view of the software system.

Reusable and Usable Environment

294

During the design of a software system, several views are constructed to provide a set of solution architec-
tural elements1 to which all aspects of the problem domain are mapped. These architectural elements of-
ten include the structural model, framework model, dynamic model and process model. The structural
model shows the structural decomposition of the system, depicting system components, their properties,
configurations, constraints, semantics and rationale. In the framework model, the primary emphasis falls
on the coherent structure of the whole system in its specific domain, rather on than the compositional
structure of its problem classes. The dynamic model describes the dynamics involved in the progress of
system computation and includes a description of the overall behaviour of the system, the behaviour of its
structural elements, as well as their relations and collaboration with each other. The process model of the
system, at a high level, identifies priority operations of the system and, at a detailed level, describes the
procedures or process involved in those operations. Combined, the architectural elements compose the
architecture of the software system and can be described as a topological organisation of a set of modules,
their arrangements, interactions and interdependencies, together with a set of rules governing these mod-
ules to provide the system solution according to the requirements of the system.

The purpose of a software architecture is to serve as a basis for analysis and decision-making in order to
produce consistent, integrated and usable system components over the design life cycle of the proposed
software system. At the same time this architecture serves to identify tools, methods and facilities needed
to develop the system solution (in our case a prototype of the solution) (Emery et al., 1996).

Prototyping refers to a way of presenting a minimal subset of the application's functionality before an ex-
tensive design and development life cycle begins. Low-fidelity prototypes are simple layout sketches or
presentations focussing on content and layout in order to elicit user feedback as early as possible.
High-fidelity prototypes are more complicated presentations (usually involving coding) that attempt to
address the baseline functionality of the problem domain, including fully interactive capabilities that en-
able designers and users to analyse the flow between tasks.

System requirements are often classified as functional, non-functional or constraint requirements. The
functional requirements refer to those requirements representing the functionality of the system from an
external point of view, while the non-functional requirements describe the external behaviour of the sys-
tem in terms of parameters to quantify the functional requirements, for example as performances, capaci-
ties, et cetera. Constraints are the conditions that set the system boundaries.

On an architectural level, Booch (1994) uses a systematic approach to present a more finely grained clas-
sification of requirements that are architecturally significant to a system. These include functional re-
quirements, non-functional requirements, design requirements, implementation requirements, interface
requirements and physical requirements.

To respond to the purpose of our prototype, namely to serve as a vehicle for the exploration of learning
design, as well as to substantiate the contention that it is not necessary to assault teachers with technical
coding, it was necessary to design and develop a high-fidelity prototype that includes a minimal subset of
architectural requirements. We selected the following architectural requirements to design our prototype:

• Functional requirements: to include capabilities for creating or updating a new course and export-
ing the domain products of that course to an open standard.

• Non-functional requirements: to ensure usability and robustness of the system as well as reusabil-
ity of its products.

• Design requirements: to take into consideration system constraints within which a desired solution
system (based on the prototype) should exist.

1 The architectural elements are also commonly referred to as ‘views’ or ‘models’

 Cloete & Kotzé

 295

Functional Requirements
Richter (1999) suggested an approach to obtain the functional requirements of the system at hand, by de-
fining the following:

• The designer/user defined overall goal of the system - in other words, what must the system
achieve?

• Who are the external role-playing agents in the system?
• In what goal functions are the external agents involved?
In our case, the overall goal of the system is to present a user with a usable interface allowing him or her
to create a new learning opportunity, or update an existing one, and to export the results to an XML-based
(EML2) system. The user (as course developer) is the only external agent in the system. The external
agent will be involved in the following functions:

Primary actions:
• creation of new learning opportunities
• export of learning opportunities (for reuse of domain products).
Secondary actions:
• recall and update of existing learning opportunities
• provision of a complete text view of all course components included in the course
• deletion of an existing course.

Design requirements
The focus of our design is to create a proof-of-concept prototype. Because of limited resources and the
decision on proof-of-concept, we decided to focus on the innovative aspects of the problem space where
we demonstrate that it is indeed possible to hide the implementation details of standards from the user.
We therefore created an ASE tool with limited functionality that does not reflect every aspect of interac-
tive learning, but serves instead as a domain model that could be used as an XML-wrapped content object
generator.

However, we had to work within certain design constraints: Pending negotiations between our institutions
and the creators of EML (Hermans et. al., 2000), we had to use the EML DTD as the underlying standard
and could not create our own XML tags.

Our prototype focuses on the information component subsystem of the courseware domain (see the next
section). The final product of this subsystem is a simple e-learning interface that provides course infor-
mation, not content information, to the user (learner). The course information includes aspects such as
course objectives, prerequisites, syllabus, discussions on how the learner’s progress is assessed, course
material (such as textbooks, videos, audio, etc.), as well as all the assignments of the course. The proto-
type produces a reusable EML product file that is of no use to the end user (learner). However, in the
next subsystem of the courseware domain, this EML product serves as input to the transformation subsys-
tem where it is transformed into the resulting e-learning system that the user (learner) can use (represented
by the mapping between the resulting e-learning system and the e-learning interface, as illustrated in Fig-
ure 2).

2 EML refers to the educational modelling standard.

Reusable and Usable Environment

296

Non-functional requirements
Our defined functional requirements and subsequent analysis approach affect the usability of the system.
Usability is concerned with interface aesthetics and consistency, and also forms an integral part of the
tasks, intentions, goal and models of the intended system. We describe these terms in the context of our
problem space.

Tasks are operations to manipulate the concepts of a domain, while a goal is the desired output from a
performed task. A goal requires an intention, which is a specific action to meet the objective of the goal.
Task analysis refers to the identification of the problem space for the user of an interactive system, in
terms of domain, goals, intentions and tasks (Dix, 1998). Two general approaches to task analysis exist,
namely a user-oriented approach and a system-oriented approach. In the user-oriented approach, the in-
tention behind task analysis is to capture what has to be known about using a system in order to achieve
goals. Some of these activities may involve aspects that are not, and are not expected to be, part of the
software system under design or development.

In contrast, the system-oriented approach can be defined in terms of accesses to the functionality of the
interactive system in order to determine or modify its state. According to this approach, tasks depend on
the part of the interactive system to which they refer (Paternó & Leonardi, 1994):

• Presentation-related tasks do not require access to the functional core of the application and refer
to the set of functionalities that are independent of the interaction objects used to interact with the
user. This includes tasks such as selecting, resizing or scrolling windows, selecting visualised ob-
jects, customising dialogue boxes, etc.

• Application-related tasks require access to the functional core of the application and refer to parts
of the interactive system that are independent of the general components used to interact with the
user. In our domain, this refers to the general functionality of the authoring support environments.

The first of these aspects relates to the appearance of interaction objects, while the second relates to the
application semantics. In this paper the focus is on the latter. Focussing on interaction objects in terms of
their semantic effects does not mean that appearance-related aspects are not all that relevant. Inappropri-
ate use of windowing techniques, scrolling and colours can result in tedious and confusing interaction
with the computer. Detailed domain knowledge in the design of these is thus just as important (Gulliksen,
1995).

Generally, an ASE can be defined as consisting of a number of goal-directed processes and a number of
events driving these processes. The goal of the processes and events is to produce an operational, interac-
tive e-learning system.

A fundamental model of interactive behaviour requires states and commands that transform these states
(Dix, 1998). The abstract model of the system we are going to use consists of a set of states and relation-
ships between these states, as well as certain operations that are allowed on these states. In the course-
ware domain there are four state subsets of interests when interacting with an ASE, as illustrated in Figure
2 (Kotzé, 1997):

• The internal ASE state or system state refers to the functional state of the ASE, including aspects
such as the internal state of the e-learning objects under development as represented within the
system (what the ‘recorded’ system state of the product under development is), as well as those re-
lating to the general functionality of the ASE being used (the variables needed to control the inter-
action with the author, for example what the current object being edited is, the templates and the
default values used for specifying attribute set values, the format of the prompt lines, etc.)

• The ASE interface state represents the external displays of the ASE while authoring. Also called
the display state of an ASE, this state refers to the external perceivable rendering of the internal

 Cloete & Kotzé

 297

state as reflected at the ASE interface, which is the ‘perceived’ state of the product under devel-
opment.

• The resulting e-learning state characterises the resulting e-learning system and refers to the actual
state of the e-learning program under development - the program that will determine what the stu-
dent will get in the delivered product and the rules for presentation.

• The e-learning interface state represents the external display of the e-learning system and refers to
what the student will perceive at the interface of the e-learning system - a student will perceive in-
structional content, but not the rules governing the sequence in which the instructional content will
be displayed to him or her.

Figure 2: Relationship between the four state sets

Resulting E-learning State

Internal ASE State

ASE Interface State

E-Learning Interface

Key:

Mappings

Relationships

Figure 3: Framework model for the courseware domain

User Content System
<<process>>

Transformation
System

<<process>>

Course Info
System

<<process>>

Course
EML

product
Interactive

Student
InterfaceCourse Lookup

Thread

<<thread>>

find(code)

aCourse

[add()]
[update()]
[delete()]

[add()]
[update()]
[delete()]

export()

export()

ASE Interface

E-learning Interface
(Resulting E-learning

System)

Reusable and Usable Environment

298

Our main interest lies in the relationship
between the external ASE display and
the e-learning result (how the resulting
e-learning system is reflected at the ASE
interface during the authoring process).
For the prototype we are not interested
in the relationship between the external
ASE display and the e-learning student
display (how the student will perceive
the resulting e-learning system is re-
flected at the ASE interface during the
authoring process). This decision be-
comes apparent when we describe the
architectural framework of the system.

Considering our focus for this prototype,
we are mainly interested in the usability
principles relating to the robustness of
the system. The robustness of a system
refers to the features which support the
successful achievement and assessment
of the goals, and include issues such as
observability, recoverability, respon-
siveness and task conformance (Dix,
1998). The focus of the prototype lies in
both observability and task confor-
mance. Observability refers to the abil-
ity of the user to evaluate the internal
state of the system by means of the per-
ceivable attribute representation of the
system at the interface (Dix, 1998;
Kotzé, 1997), i.e. the relationship be-

tween the Internal ASE state and the resulting e-learning state as reflected at the ASE interface. Through-
out the authoring process the author should be able to observe exactly what effect his or her actions would
have on the delivered product. As described before, the prototype results in an EML product file that is
not the final interactive e-learning system with which the students and lecturers interact. Our observabil-
ity interest is therefore not to observe the exact effects on the e-learning system, but rather to observe
what components were included. This aspect is portrayed in the ‘Text View’ of the information compo-
nent subsystem. Task conformance or compatibility refers to the degree to which the system supports all
of the tasks of interest (referred to as ‘task completeness’) and whether it performs these tasks to the users
liking (referred to as ‘task adequacy’).

An architectural view of a usable and reusable courseware domain
According to Figure 3, the framework model of the courseware domain consists of three subsystems,
namely the content subsystem, the course information subsystem and the transformation subsystem. The
objectives of the course information subsystem are to provide the user (lecturer) with an ASE tool that
assists him or her in entering general course information such as the course objectives, prerequisites, syl-
labus, assignments, et cetera. The content information subsystem, on the other hand, provides the user
with an ASE tool for entering interactive learning units and content knowledge objects, in order to

Interactive Courseware System

Share
knowledge unit

Perform learning
activity

Assess learning
activity

Share course
information

Follow-up
responses

Query

learner
lecturer

Figure 4: Use case of resulting e-learning system

Figure 5: Use case of ASE prototype

ASE System

Update
course

Create new
course

Export course
objects to EML

user (course developer))

Text view
of course objects

Delete course

 Cloete & Kotzé

 299

compose a specific course or learning opportunity. Both these subsystems output an EML file that either
consists of a single course, or different course components that may be reused when developing other
courses, either by inclusion of these components, or merely by reference to them. The transformation
subsystem uses the output from the content and course information subsystems as input to produce a us-
able e-learning interface through which end-users (lecturers and learners) can interact. The focus of our
domain prototype is only on the course information subsystem and how the user interacts with it.

Before modelling the system functions suitable for the ASE prototype, we briefly consider the functional
model of the resulting e-learning system so that it becomes clear where we are heading and exactly how
the ASE domain prototype fits into the courseware domain. Figure 4 describes how the actors (learners
and lecturers) will be using the resulting e-learning system. During a learning opportunity, learners and
lecturers interact with the interactive courseware system by sharing course information, knowledge units,
performing learning activities, asking questions (queries) and responding, performing follow-up activities.
Lecturers also assess learner progress. We focussed our domain prototype on only one of these activities,
namely the sharing of course information (the shaded use case). This focus is refined in Figure 5, illus-
trating the actors and subsystems involved in the process of sharing course information. Two primary ac-
tions are identified for the prototype, namely (1) the creation of a new course, and (2) the export of cre-
ated course components to EML. To increase the usability of the prototype three more actions were se-
lected for inclusion, namely (3) the updating of an existing course, (4) the ability to view a set of all com-
ponents that were selected for inclusion for a particular course, and (5) the removal of a course.

Figure 6 illustrates a dynamic overview of the ASE prototype by describing the temporal behaviour of the
system. According to this dynamic model, the user must be able to either create or access a specific
course. The design must therefore maintain a list of courses, each of which is identified by a course iden-
tifier (course code). A course registry can be used to look up each course instance using the course identi-
fier as qualifier. The association between the course class and the course registry is clearly illustrated in
Figure 6. As illustrated, the main actions available to the user are as follows. The user uses the qualifier
to retrieve an existing course for update or removal, or to create a new course. The prototype follows an

Figure 6: Activity diagram for the ASE tool illustrating the flow of the
system

User

a
Course

Component

Course
registry

code
a course

ok

ok

ok

ok

ok

ok

addCourse
new course created & registered

find course

textView

export2EML

add item

openCourse
existing course retrieved and opened

delete item

update item

select component

delete Course
remove course from registry & server

Reusable and Usable Environment

300

approach by which it guides the user by making available a set of course components that can be included
into a single course. Because we are constrained by the current DTD elements of the EML standard, the
number of components is also restricted. We selected only a sensible subset of all components, available
for information sharing, for inclusion in the prototype. Each course eventually comprises of a set of
course components selected by the user. The combination of components may be unique per course.
When the user selects a specific course component, depending on the component, the user can perform a
number of functions on that component such as adding new instances, of that component, updating spe-
cific instances, deleting specific instances, and paging through the instances. Figure 7 provides a different
view of the dynamic model of the system through activity diagrams describing the flow of the system.

Figure 8 depicts the static view of the complete functional model of the ASE prototype. The different
course components with the attributes and expected methods are clearly indicated. For the sake of com-
pleteness we use the assignment component to illustrate some of the details of the system.

Figure 9 illustrates the dynamic model of the system when considering interactions with the assignment
component. According to the business rules of the system, the user must include all assignments that a
learner must complete and submit throughout the course, in the component information subsystem. Each
assignment has attributes such as a description of the assignment environment, specific objectives for the
assignment, specific prerequisites for the assignment, the due date by which the assignment must be sub-
mitted for assessment, et cetera. Furthermore, an assignment is comprised of questions, and we distin-
guish between multiple choice questions and other questions. The purpose of the multiple choice ques-
tions is to allow for questions that are multiple choice in the true sense of the word, or true/false ques-
tions, or questions that may Item Ansfin d(code)return(Cou rse)

register(ne w)ad dAss()

return(o

retu rn(ok)

addAnsw

newAs s()addQu est()

retur n(ok)have more than one correct answer. Three iterative sessions are defined
within the assignment component. The inner iteration materialises in instances where a single question
may have more than one correct (or incorrect, in the case of multiple choice questions) answer. The sec-
ond iteration occurs where more than one question may be defined within a specific assignment, and the
outer iteration takes place where a course can have several assignments. Within each of these iterations
the basic operations include add, update, delete and paging through the component items (answers or
questions or assignments). Figure 10 shows a screen shot of the assignment environment within the ASE
prototype.

Figure 7: Activity diagram for the ASE tool illustrating the flow of the system

find(code)

retrieve
course

register
course

existing

new

delete
component

update
component

add
component

textView

export2
EML

Iterative cycle

 Cloete & Kotzé

 301

 Figure 8: Structural model of the complete component information subsystem

111

Add Course
Transaction

addInfoComp()
export2EML()
textView()

Update Course
Transaction

addInfoComp()
updateInfoComp()
deleteInfoComp()
export2EML()
textView()

Course
Repository

code
find()

Delete Course
Transaction

deleteInfoComp()
deleteRepEntry()

User

0..
1..*

Prerequisite Objectives Material Assignment

compType

prereqType
prereqDescrip

prereqTitle
compType
obj
objType
objDescrip

Title
compType
books
videos
audio
studyguides
articlesadd()

update()
delete()
next()
previous()

add()
update()
delete()
next()
previous()

add()
update()
delete()

Syllabus
compType
sylDescrip

add()
update()
delete()

Assessment
compType
examEntryReq
assessMethod
assessCriteria
add()
update()
delete()

dueDate
credits
objective
prerequisite
environment

assNo

addAss()
updateAss()
deleteAss()

Multi Choice
Question

questEnviron
question
hint

addAnswer()
updateAns()
deleteAns()

assNo
questNo

MC
Answer

assNo
questNo
answerType
answer

1..*

Other
Question

assNo
questNo
questEnviron
question
answer
hint

Component
Item

Course

namecode
description
faculty
period

Content

1

*

1

1

1

0..* 0..* 0..*1 1 1

addQues()
updateQues()
deleteQuest()

addQues()
updateQues()
deleteQuest()

0..* 0..*

<<process>>

Reusable and Usable Environment

302

We conclude our discussion on the ASE prototype by briefly considering the activities of the export
transaction. The export transaction interacts with an EML repository containing one-to-one mappings be-
tween the components and their corresponding EML tags. Each component has at least two tags associ-
ated with it, namely a startup-tag and a stop-tag. Furthermore, each component can also be comprised of
an unspecified number of items. These items may be iterative. During the export transaction, each com-
ponent iterates through a method of:

• Finding its own startup-tag from the repository and pre-affixing the tag to itself.
• Placing its associated stop-tag on top of the stack.
• Scanning for any items within it. For each nested item it finds, the procedure of pre-affixing the

startup tag to the item and placing the associated stop-tag on top of the stack is repeated.
• When a new (non-nested) item is encountered, the stop-tag on top of the stack is removed and ap-

pended to the last item. The scanning procedure is then repeated.
• When no more items for a specific component are available, the stack is emptied from top to bot-

tom, appending each of the stop-tags still on the tag to the (now) EML-object.

User Course

Registry a Course Component
Item

an
Assignmnt

a
Question

(an)
Answer

find(code)

return(Course)

register(new)
addAss()

return(ok)

return(ok)

addAnswer()

newAss()

addQuest()

return(ok)

Figure 9: Dynamic model of the system when considering interactions with the
assigment component

 Cloete & Kotzé

 303

Summary and Conclusions

The courseware domain is organised into a three-tier architecture comprised of three subdomains, namely
the infrastructure domain, the learning management domain and the courseware domain. The paper fo-
cussed on the latter - a functional framework within the courseware domain that creates a usable authoring
support environment (ASE) for digital course design and outputs reusable components. Our ASE domain
prototype presents a simple way to construct learning objects and export them to an open standard for re-
use without burdening the user with the technical details of the required standard. In continued research,
we are extending our framework, building more prototype components to fit the other subsystems within
the courseware domain.

References
Booch, G. (1994). Object Oriented Analysis and Design with Applications. Addison Wesley.

Cloete, E. (2001). Electronic Education System Model. Computers & Education, 36 (2), pp. 171-182.

Dix, A., Finley, J., Abowd, G., & Beale, R. (1998). Human Computer Interaction. 2nd Ed. Hemel Hempstead. Prentice Hall.

Emery, D.E., Hilliard II, R.F., Rice, T.B. (1996.) Experiences Applying a Practical Architectural Method. Retrieved in Novem-
ber 2001 from the World Wide Web: http://www.adahome.com/Resources/Papers/General/Archi-EmHiRi.html

Figure 10: Screen shot from ASE prototype in the assignments environment

http://www.adahome.com/Resources/Papers/General/Archi�EmHiRi.html

Reusable and Usable Environment

304

Gulliksen, J., Sandblad, B. (1995). Domain-specific design of user interfaces. International Journal of Human Computer In-
teraction. Vol 7 (2). pp 131-151.

Hermans H.J.H., Koper E.J.R., Loeffen A., Manderveld J.M., Rusman E.M. (2000). Reference Manual for Edubox-EML/XML
binding 1.0/1.0 (Beta version). Onderwijstechnolgisch expertisecentrum OTEC, Open Universiteit Nederland. Website:
http://www.edubox.ou.nl

Kean, L. 1998). Domain Engineering and Domain Analysis Retrieved in November 2001 from the World Wide Web:
http://www.sei.cmu.edu/str/descriptions/deda_body.html

Kotzé, P. (1997). The Use of Formal Methods in the Design of Interactive Authoring Support Environments. PhD Thesis. De-
partment of Computer Science. University of York (UK).

Paternó, F., Leonardi, A. (1994). A semantics-based approach for the design and implementation of interaction objects. Com-
puter Graphics Forum. Vol 13 (3). pp. C-195 - C204.

Richter, C. (1999) Designing Flexible Object-Oriented Systems with UML. Indianapolis, USA. MacMillan Technical Publish-
ing.

http://www.edubox.ou.nl/
http://www.sei.cmu.edu/str/descriptions/deda_body.html

