
Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001

CCaassee SSttuuddyy:: DDeessiiggnn ooff aa WWeebb--BBaasseedd
SSeerrvviiccee DDeelliivveerryy SSyysstteemm

Min Song and Il-Yeol Song
Drexel University, USA

songiy@Drexel.edu and Min.song@Drexel.edu

Abstract
In this paper, we present a case study on the design of a web-based online service delivery system using IBM's Net.Commerce system as well as the
lessons learned in completing this project. The design specification is presented using the UML notation, while database schema is presented using
the IDEF1X notation. Our design specification includes architecture, system components using package diagrams, system functions using use case
diagrams, their processing logic using activity diagrams, and database design. We present a detailed database design and comment on design and
customization considerations specific to e-commerce systems. Our experience shows that e-commerce tools still lack certain functionality such as
processing back orders, allowing for customizable returns, and sending email notification to users, but overall can speed up the development of the
system. Understanding the structure and transaction processing of e-commerce database systems will help system designers effectively develop and
maintain these systems. Readers of this paper will understand and learn a typical design specification of a web-based service delivery system and
various technical design issues.

Keywords: E-commerce, Database Design, UML, Net.Commece, Case Study

Introduction
In this paper, we present the design specification of a web-
based online service delivery system. In general, an e-
commerce system is built by following one of two ap-
proaches. The first approach is the customization approach
using a suite of tools such as IBM's Net.commerce
(Shurety, 1999), which was recently expanded into Web-
Sphere Commerce Suite. For example, the Commerce
Suite provides tools for creating the infrastructure of a vir-
tual shopping mall, including catalog, and registration tem-
plates, a shopping cart, order and payment processing, and
a customizable database. The second approach is the bot-
tom-up development of an in-house system by experts of
an individual company. In this case, the developer is
manually building a virtual shopping mall with mix-and-
match tools. In addition, a database supporting the busi-
ness model of the e-commerce system must be manually

developed. While the customization approach speeds up
the development process, it is limited by the capacity of the
tools used. On the other hand, even though the bottom-up
approach takes a longer time than the former approach, it
provides a flexible environment for customization at the
expense of integration complexity. For a more detailed
discussion on tools and approaches for developing web-
based applications, we refer to the work by Fraternali
(1999).

Whether a developer is using the customization or the bot-
tom-up approach, understanding the structure and process-
ing logic of the e-commerce system will help the developer
effectively develop and maintain the system. Our paper is
based on our experience of building a web-based online
service delivery system using the customization approach.

The system was developed using IBM’s Net.Commerce in-
frastructure to meet our business goals and needs. There
were several critical reasons that IBM’s Net.Commerce sys-
tem was chosen. First, Net.Commerce supported multiple
storefronts. Currently, we have built one storefront, but in
the future our storefront will be migrated into a multiple
storefront environment incorporating sister companies.
Second, Net.Commerce provided us with flexibility in
terms of integration with other business transaction sys-

Material published as part of this proceedings, either on-line or in
print, is copyrighted by the author with permission granted to the
publisher of Informing Science for this printing. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the author.

mailto:songiy@Drexel.edu
mailto:Min.song@Drexel.edu

Design of a Web-Based Service Delivery System

494

tems. In spite of these well-featured functionalities, we
had to customize Net.Commerce to accommodate certain
business functions such as email notifications and returns
processing. In this paper, we present system architecture
and customized modules based on Net.Commerce. We then
illustrate detailed design specifications, processing logics,
and the database structure of our web-based service deliv-
ery system. We use UML (Booch, Rumbaugh, and Jacob-
son, 1999; Fowler, 1999) to present our design specifica-
tions, except for the relational schema, which uses IDEF1X
notation (Song, Evans, and Park, 1995).

The design of the database structure for e-commerce sys-
tems requires different considerations than OLTP systems
(Buchner Mulvenna, 1998; Ceri, Fraternali, and
Paraboschi, 1999; Lohse and Spiller, 1998; Song and La-
Van-Schultz, 1999; Song and Whang, 2000), such as:

 Handling of multimedia and semi-structured data;
 Translation of a paper catalog into a standard unified for-
mat and cleansing the data;
 Supporting user interface at the database level (e.g., navi-
gation, store layout, hyperlinks);
 Schema evolution (e.g., merging two catalogs, category of
products, sold-out products, new products);
 Data evolution (e.g., changes in specification and descrip-
tion, naming, prices);
 Handling meta data;
 Capturing data for customization and personalization such
as navigating data within the context.

For example, in our system, we used many variable-length
data types to handle semi-structured data types. Our cata-
log has a lattice structure. We have designed the system so
that further evolution of the system could be gracefully
accommodated. Whenever possible, we took into account
the structure growth, function growth, and volume growth
of the system in our design considerations. Understanding
the structure and transaction processing of e-commerce
systems will help system designers effectively develop and
maintain e-commerce systems.

The rest of this paper is organized as follows: Section 2
presents the architecture of the system and an overview of
the system components. Section 3 presents the design
specifications. In this section, we present requirements in
terms of use case diagrams and their processing logic in
terms of activity diagrams including personalizing dis-
plays, browsing catalogs, and placing orders. Section 4 il-
lustrates a detailed database design and comments on de-
sign considerations specific to e-commerce database sys-
tems. Section 5 concludes the paper.

Architecture and Overview

Architecture

In this section, we briefly describe our e-commerce system
architecture, which shares a lot of commonality with the
generic Net.Commerce system. As illustrated in Figure 1,
our system consists of the four major system components
(Doemer et al., 1999):

1
2
3
4

T
s
w
t
c
t
p
p

T
o
c
t
f
w

T
N
s
s
N
t

. Secure Web Server

. Net.Commerce

. Database Manager

. Payment Server

he Secure Web Server component carries out functions
uch as receiving requests from users' browsers and for-
arding them to the appropriate application. Since the cus-

omer's private information is captured and stored, this
omponent is critical in terms of confidentiality of shopper
ransactions. In order to ensure that only authorized users
erform system administration tasks, the web server im-
lements the Secure Sockets Layer (SSL) protocol.

he Net.Commerce component plays a pivotal role in the
verall system architecture. The major function of the
omponent is to allow the system administrator to handle
he system through the secure web-based administration
acilities. In addition, it verifies commands invoked by the
eb server and process shopping requests.

he Database Manager component manages the
et.Commerce database which contains all the site data and

tore business transaction data. We use IBM DB2 Univer-
al Database V5 as the database management system. Our
et.Commerce server and Net.Data use ODBC to connect

o the database.

Min Song & Il-Yeol Song

The Payment Server component manages payments using
CyberCash. We use CyberCash as the method for process-
ing credit card transactions. We first registered for the Cy-
berCash CashRegister service, then downloaded and in-
stalled the CyberCash Merchant Connection Kit (MCK).
The CyberCash function receives the shopper's credit card
information and writes it to the database. A background
server will periodically wake up and process new pay-
ments. It will connect to the CyberCash MCK and send the
payment for processing and then update the database with
the results.

High-Level Logical Components

In this section, we describe an overview of the functional
components of our e-commerce system. The package dia-
gram shown in Figure 2 enables us to see logical compo-
nents of our e-commerce system.

A
m
o

P
n
p
w
t
p
a
w
w
a

P
s
P
f
t
b

addresses, the payment method, and the links between sub-
orders and entries in the shoppers' address books. Packages
Inventory, Catalog, and Products are closely related. Prod-
ucts holds the vendor data and products. Inventory lists all
the items that are available for sale. Catalog is a standard-
ized model that integrates various vendor-specific products
in a domain. Since one vendor could use different termi-
nology and format for the same product, Catalog protects
the actual business model from the vendor-specific varia-
tions. Catalog acts as a buffer between Products and Inven-
tory. Catalog also needs a dynamic catalog management
module to accommodate new vendors and new products
that were not considered in advance. Thus, actual imple-
mentation of the program is done against Catalog and In-
ventory. Our experience shows that developing the proper
schema for Catalog for a specific domain is most time-
consuming and complex.

The package Tax handles information about the tax catego-
ries and codes, as well as information about the codes that
are used to represent different states or tax jurisdictions.
495

 package in UML is a construct that groups inter-related
odeling elements. Each package in Figure 2 contains one

r more tables and their processing logic.

ackage Price/Discount contains information that is
eeded for discount pricing and for determining which
roducts and items are to be discounted at what rates for
hich shopper group. Package AD and Promotion involves

ables that are related to advertising, promotion, and cou-
ons. This package tracks which promotions are associ-
ted with which sessions, and which ads are displayed in
hich sessions. Package Customer Service is associated
ith customer feedback data for each user and order such

s type, nature, status, and responses.

ackage System Data holds various system parameters
uch as server configuration and access control parameters.
ackage Order keeps track of actual orders that are trans-
erred from a shopping cart. This package keeps track of
he products and items in shopping carts, the orders placed
y shoppers, the suborders destined for different shipping

The package Payment is associated with the CyberCash
and CashRegister, an application that enables secure online
transactions.

The package Transaction Analysis keeps track of a shop-
per's request and shopping behavior by logging transaction
information directly to a database table. This package con-
tains customization data.

System Function Specifications
In this section, we present functional requirements employ-
ing use case analysis and the processing logic of these use
cases, using activity diagrams. We show two class hierar-
chies, shopper and catalog to shed light on some distinct
characteristics of our e-commerce system.

Shopper Hierarchy

Use case analysis begins by identifying actors of the sys-
tem. An actor is a user group with a specific role with re-
spect to the system. The primary actors of our system are
shoppers. The major users of our system can be classified
as shown in Figure 3 below: As shown in Figure 3, shop-
pers are classified into guest shoppers and registered shop-
pers. Registered shoppers are further broken down into
general shopper groups and customized shopper groups. A
guest shopper can browse the catalog in the system, but is
not allowed to place an order. There could be counter
points to this restriction. This decision was made due to the
fact that our products are expensive, and thus it would be

Design of a Web-Based Service Delivery System

4

rare for a one-stop shopper to place an order without regis-
tration.

F
s
i
p
a
g
t
g
u
o
t
t
c

C

A
t
p
a
c
r
t

categories. Many products consist of multiple items that
are variations of the base product.

Modeling System Functionality Employing
96

or the purpose of personalization, we divide the registered
hopper category into general shopper groups and custom-
zed shopper groups. Generalized shopper groups are not
ersonalized, while customized shopper groups are person-
lized. A customized shopper group is assigned a shopper
roup ID and served with some personalized features in
erms of different catalog templates and prices. A shopper
roup ID can be distributed to either a user or a group of
sers. A group of users can be defined by geography, types
f business, or any criteria set up by the system administra-
or. For instance, we can set up the system in such a way
hat users who come from Japan will have a certain dis-
ount for a limited time period.

atalog Hierarchy

s shown in Figure 4, our catalog system is a lattice struc-
ure. This structure is stored in the database and the web
ages that display the catalog to the shopper can be built
utomatically using this data. Catalog Home Page is a root
ategory, where Catalog A and Catalog B are subcatego-
ies. Product A and Product B are instances of commodi-
ies offered by our site, and can belong to multiple parent

Use Case Analysis

Use case analysis is widely used to capture high-level sys-
tem functionality from each actor's point of view. During
the development stage of the system, to identify all the ac-
tor activities and system requirements, we attempted to
capture a set of use cases associated with the actors in our
system design. The use case diagram shown in Figure 5
visualizes use cases of our e-commerce system.

T
p
a
u
(
s
a

T
e
B
i
s

he three actors that we identified are 1) Registered Shop-
er, 2) Guest Shopper, and 3) System Administrator. In
ddition, as illustrated in Figure 5, the relationship between
se cases is shown in terms of the include relationship
Booch et al, 1999), which alleviates, otherwise, redundant
teps describing a number of behaviors that are common
cross more than one use case.

o begin with, the Browse Catalog use case starts when
ither a registered shopper or a guest shopper selects the
rowse Catalog. For the guest shopper, the regular catalog

s displayed, but for the registered shopper group the per-
onalized catalog is displayed. Since the Place Order use

Min Song & Il-Yeol Song

497

case is mandatory for any e-business system, we illustrate
it in detail in the next section. The Maintain Order use case
is associated with updating and canceling orders. When a
user ends the shopping activity by completing an order or
leaving the system without a purchase, the system updates
the order status and the customer account. The Ship Prod-
ucts use case is performed by a staff actor after an order
has been placed. The Maintain System use case is associ-
ated with a system administrator's tasks. A system admin-
istrator is involved in activities such as, staging copy and
propagation between the product server and the staging
server, monitoring user traffic, exercising data input, and
enforcing access control.

Modeling Processing Logic Using Activity
Diagrams

In this section, we illustrate the processing logic of use
cases using activity diagrams. An activity diagram captures
the workflow of a use case or a system function. Despite
the fact that an activity diagram does not make the links
among actions and objects very clear, it is suitable for
modeling the functionality of the use cases of our system.

Browse Catalog

Figure 6 shows the processing logic of the Browse Catalog
use case. The activity of Browse Catalog is first branched
depending upon whether a user is registered or a guest. If
the user is a guest shopper, only minimal benefit is pro-
vided to the user, and the user is not allowed to place an
order. If a user was registered before, the activity is further
branched depending on whether the registered shopper has
any valid shopper group IDs. If so, personalized modules

are generated so that the user can view a personalized cata-
log and prices. If the shopper does not belong to any shop-
per group at the moment, regular modules are shown to the
shopper. Regardless of shopper type, all shopper groups
may have equal access to a special offer for a limited
amount of time.

Personalize

Figure 7 illustrates how activities associated with the Per-
sonalize common use case take place. The activity of As-
sign Shopper Group ID based on purchase history and
Send it to the targeted user plays a critical role in creating a
shopper group. Currently our criteria for the selection of
the shopper group depends on the previous purchase re-
cords. For users who cancel the order that they intended to
purchase, we store this information in our independent or-
der system. Since we do not integrate the present order sys-
tem into the e-commerce site at this time, we carry out this
process manually. The activity of Enter Shopper Group ID
is branched depending on whether a user has a valid shop-
per group ID. If the user does not, the system displays the
regular catalog. If the user has a valid ID, the activity is
further branched by whether or not the user successfully
enters the shopper group ID. In the case that the user for-
gets his shopper group ID, he can provide the system with
his e-mail address and user ID which is identical to the one
he used for registration. If the e-mail and user ID are not
the same, the user must contact us by phone or another
communication tool to verify their identity. If the email and
user ID match, the user will receive an e-mail containing
the shopper group ID assigned to him.

Design of a Web-Based Service Delivery System

498

If the user enters the system with the correct shopper group
ID, the system generates a personalized catalog based on a
predetermined set of rules in our personalization module.
The rules are used to determine what products and catego-
ries are assigned to which shopper groups under what con-
ditions. In general, each shopper group ID is assigned to at
least one product or category. One shopper group ID can be
assigned to many products and categories, but only one ID
may be applied per session.

The personalization module is based on a set of rules. By
using rules derived from the business policies of our com-
pany, the personalization module can evaluate a particular
shopper or their purchases, and generate a list of products
to recommend to them. The rules take the simple form of
<if condition, then action>. For example, the following
statement represents of an example of a personalization
rule:

• If the customer has an interest in the subject field A,
then recommend a product A1.

The rule processor evaluates whether the condition is true
or not. If the condition is true, then it performs a particular
action. Since maintaining rules and combining the results
of rule processing are complex, we are in the process of
migration of the system to WebSphere Commerce Suite,
which provides all of the flexibility associated with an ob-
ject-oriented approach.

The business logic behind our personalization module is
straightforward as our module does not require sophisti-
cated techniques such as data mining and collaboration
filtering. As pointed out by Aggarwal and Yu (2000), per-
sonalization can be fine-tuned by explicit methods such as
user feedback and ratings, or implicit methods, such as the
observation of user buying behavior. In the next generation
of our system, we will implement a personalization module
with data mining techniques so that the statistics of the us-
ers' previous shopping behaviors are reflected in personal-
ization.

Place Order

Figure 8 shows how activities in the Place Order use case
occur. This use case represents the most critical component
of the entire e-commerce system. The activity of Select
Order Detail is branched depending upon whether the
shipping address is the same as the address entered during
registration. If the user prefers to receive the ordered prod-
uct at an address different from the one in system, the user
will be asked to enter this shipping information. Otherwise,

th
a

O
la
d
fo
sh

If
w
w
o
th
ta
th
a
th
p
o
c
o
ID
d
u
fi

In
c
in
w
sh
N
sc
O

e system assumes that the product will be shipped to the
ddress specified during registration.

nce the shipping address is captured, the system calcu-
tes discount and tax, and displays the subtotal of the or-
er. Even though a discount was applied to the product be-
re, we still need a discount feature that allows us to get a
opper discount after tax is calculated for some products.

 the user wants to pay by credit card, the user is assisted
hile entering his credit card information. Also, if the user
ould like to receive an invoice, he can choose the option
f Send Invoice. If the credit card information is incorrect,
e system displays an error message so that the user can
ke proper action. Once the activity of Submit is finished,
e system takes the user to the order confirmation page,

nd an e-mail order confirmation is simultaneously sent to
e user at the e-mail address specified in the registration

rocess. The Update Account activity is associated with the
rder status and the order history. If the users want to can-
el the order, they will need to access a sub-module of our
rder system, called refund system, by entering their user

, password, and credit information used to place the or-
er. Upon completion of the cancellation process, the
ser’s account is updated and an e-mail with a cancel con-
rmation is sent to the user accordingly.

Database Structure
 this section, we present a database schema for our e-

ommerce transaction processing (ECTP) system that sells
ventory items. An overview of the ystem components
as presented as a package diagram in Figure 2. Figure 9
ows the ECTP schema slightly modified from
et.Commerce (Doemer et al, 1999; Shurety, 1999). The
hema includes some portions from the Catalog, Product,
rder, Payment, and Price/Discount packages. Although

Min Song & Il-Yeol Song

499

we intended to reflect the real world e-commerce database
in Figure 9, the actual schema would vary and be more
complicated at the time of system implementation. In addi-
tion, depending on the underlying business model and
needs, the detailed schema will differ from case to case.
Note that Figure 9 uses the IDEFIX notation (Song, Evans,
and Park, 1995).

For most tables, we use a system-generated (surrogate)
primary key (PK) to avoid dependence on data change.
Smart keys, which have embedded meanings, create de-
pendencies on the data. Thus, changes to the data causes
changes to the primary keys. All tables in Figure 9 use sur-
rogate keys. PKs are in the first compartment whereas non-
PKs are in the second. FK represents a foreign key.

Figure 9 shows two types of relationships for specifying
the cardinality of the relationships in IDEF1X; (1) one-to-
many identifying relationship represented by a solid line;
(2) one-to-many non-identifying relationship represented
by a dashed line. For example, the relationship between
SHOPPER and USER ACCOUNT is a one-to-many identi-
fying relationship because the primary key of SHOPPER,
SHOPPER REFERENCE NO#, becomes a part of the pri-
mary key of USER ACCOUNT. The relationship between
SHIPTO and PRODUCT is a one-to-many non-identifying
relationship because the primary key of PRODUCT,

PRODUCT REFERENCE NO#, becomes a foreign key of
SHIPTO, but not a part of the primary key of SHIPTO.

With regard to referential integrity, the following three
types of deletion actions are considered: 1) Delete Cascade,
2) Delete No Action, and 3) Delete Set Null. The
Net.Commerce system implements delete cascades to pre-
serve the referential integrity of the database. When data is
deleted from a table, the delete cascade causes the same
data from related tables to be deleted. For example, OR-
DER and ORDERPAY is maintained by the Delete Cas-
cade action. All tables are influenced by delete cascade.

The second type of the deletion action, delete no action, is
used when the foreign key value needs to be preserved
even when the primary key is deleted. For example,
PRODUCT and SHIP TO relations use this type of deletion
action. When a PRODUCT REF NO in PRODUCT is
deleted, the foreign key at SHIP TO remains the same.
This ensures that no information on any shipping order is
lost when a PRODUCT REF NO in table PRODUCT is
deleted . USER ACCOUNT and ORDER also use Delete
No Action. Since only a registered shopper can place an
order and a registered shopper cannot be deleted from the
database, deletion of the shopper reference number is not
allowed. However, when a shopper moves, the shopper
can provide new contact address information, and a new
entry is added to SHOPPER ADDRESS BOOK. The old
address information is not discarded, but it is flagged as a
temporary address in by the StatusFlag attribute, the
temporary address can then be deleted by the Cleanupafter
60 days utility provided by Net.Commerce.

The third type of deletion action, set value to null, is used
when the foreign key value does not have any meaningful
value and when we do not want to delete the row with the
foreign key. For example, TAX PRODUCT CODE in SHIP
TO uses this deletion action. In these cases, if the unique
TAX PRODUCT CODE is deleted, the product code as-
signed to the product for taxation purposes as defined by
the Taxware Sales/Use Tax system is set to null.

There are a few custom-defined tables such as CREDIT
CARD LOG, SHIP TO EXTENSION, and
COUNTRY. The CREDIT CARD LOG table was created
because it is needed for the refund procedure used by
payment. The SHIP TO EXTENSION table was created to
satisfy the need for storing extra values required by the
company's tagged data files, which is used later for
reporting to the fulfillment service department. The
COUNTRY table was created for storing the company's
country abbreviation from the Global conversion table,

Figure 9. A database schema for an e-commerce
transaction processing system

Design of a Web-Based Service Delivery System

500

which is the company's accounting system. ORDER
COUNTRY table matches orders coming from a country
that has an agency for the company.

Lesson Learned
In this section, we summarize the lessons learned in
developing our system with Net.Commerce.

1. A project plan for customization

The original plan of developing our e-commerce site was
to adapt an “out of box” model provided by the
Net.Commerce software. We experienced difficulty when
using the “out of box” model to directly meet the require-
ments of the internal client, which led to the need to cus-
tomize Net.Commerce. Since Net.Commerce was supposed
to be used for any domain, the tool was quite complicated
in terms of understanding and customization. We had to
simplify certain modules such as single storefront and or-
der processing. Due to the complexity, the customization
required more time to complete than we expected. One of
the obstacles was a lack of consensus between a develop-
ment team and the internal client in the early design phase.
For instance, we were to develop a system function of
blocking customers from certain countries where agents
got contracts to sell our products. The decision was made
not to block the customers, but instead, to take them to the
agent sites when they wanted to order products through our
system. Other customization efforts included email notifi-
cations and handling of returns based on company proce-
dures.

2. Deficient information about the system
architecture

 The Net.Commerce system architecture was not clearly
explained in the software package. In the first design
phase, we had difficulty understanding the system due to
this deficiency. In particular, the lack of detailed under-
standing of the software architecture made it harder for us
to customize Net.Commerce to meet our business needs. In
addition, Net.Commerce did not come with adequate
documentation for customization, forcing us to rely on
costly consultants.

3. Lack of communication among the development
team

We realized an effective communication channel between
development team members must be developed. Several
developers wrote different pieces of the C++ classes based
on Net.Commerce libraries , simultaneously. As a result,

we experienced some inconsistency and redundancy in the
writing of the program. In addition, the project suffered
from ineffective communication among the internal clients,
project mangers, and developers.

4. Integration with the legacy systems

We experienced difficulty integrating the e-commerce sys-
tem with the existing business systems such as the account-
ing and tax systems. Due to the lack of automated valida-
tion and reporting capabilities in Net.Commerce, we had to
build an interface module that automatically handled trans-
actions between our e-commerce system and the legacy
system.

5. Educating all related stakeholders

We also observed that some members resisted the change
caused by the new e-commerce system and experienced
project delay as a result. This reconfirms the importance of
educating all related stakeholders regarding the develop-
ment of the project from the beginning.

6. Catalog design, construction and maintenance

Given various types of products, it was critical for us to
come up with an appropriate catalog structure. Although
we spent a good deal of time designing the catalog and
constructing the catalog system, we continually had to up-
date the catalog structure due to lack of complete under-
standing of the products. This problem resulted from mis-
communication between the system developing team and
the internal system users. This issue reconfirms the
importance of thorough requirements modeling in
minimizing costly updates and maintenance.

7. Training the Storefront Administrator

In our case, the marketing group was responsible for man-
aging the storefront through the web-based administration
tool. Due to their lack of technical knowledge, they were
afraid of using the administration tool and tended to de-
pend on the developers to complete their tasks. Although
Net.Commerce provides the web-based administration tool,
called NCADMIN, it was not designed so that the novice
user could utilize it, which led to many unnecessary mis-
takes.

8. Handling Referential Integrity Constraints

We learned that not every referential integrity constraint
could be automatically enforced. Depending on the seman-
tics of the relationships, different types of referential ac-

Min Song & Il-Yeol Song

501

tions such as DELETE CASACDE, DELETE NO AC-
TION, or DELETE SET NULL must be carefully selected.

The overall lesson learned is that the project team should
take an iterative design approach in building the system.
During project planning, software demonstration and de-
ployment should be integrated into the schedule. Less em-
phasis should be placed on the number of technologies in-
volved, but rather on the impact these technologies will
have and the value they will add to the business. Project
team members should have a firm understanding of innova-
tive and large-scale from the beginning of the project.

Net.Commerce is full-featured and powerful but requires
experienced programmers to implement its capabilities. Its
development and maintenance tools, however, are still
fairly rudimentary, and it needs more GUI interfaces and
wizards, as well as better integration of existing modules
into a more coherent package.

Conclusion
In this paper, we presented a case study on the design of a
web-based service delivery system using IBM's
Net.Commerce system. We have presented technical de-
sign specifications and lessons learned from the project.
We presented architecture, system components using pack-
age diagrams, system functions employing use case dia-
grams, their processing logic using activity diagrams, and
database design. With the power of Net.Commerce and
some help from consultants, we were able to successfully
customize the system for our business needs.

We also presented a detailed database schema for our e-
commerce transaction processing system. Most real-world
e-commerce database schema for a service delivery system
will have a similar framework as we presented in this pa-
per. Understanding the structure of e-commerce systems
and its processing logics will help to effectively develop
and maintain the system, regardless of the approach taken
and tools used. Our experience shows that e-commerce
tools still lack certain functionality such as processing back
orders, allowing for customizable returns, and emailing
notification to users, but overall can speed up the develop-
ment of the system.

The lessons learned from this project show that the devel-
opment of a web-based system should also be based on a
typical system development methodology. Hurdles met
included a thorough understanding on system architecture,

integration with legacy systems, a thorough requirement
modeling, educating all the stakeholders, training users,
and careful handling of referential integrity constraints.

Reference
Booch G., Rumbaugh, J. and Jacobson, I. (1999) UML User's Guide,

Addison Wesley.

Buchner, A and Mulvenna, M. (1998) Discovering Internet Market
Intelligence through Online Analytical Web Usage Mining.
SIGMOD Record, 27(4): 54-61.

Charu C. Aggarwal and Yu, Philip S. (2000) Data Mining Techniques
for Personalization, IEEE Data Engineering, 23(1): 4-9.

Ceri S., Fraternali P. & Paraboschi, S. (1999) Design Principles for
Data-Intensive Web Sites. SIGMOD Record, 28(1): 84-89.

Doemer R., Ezers P., Gustavsson P., May C., and Shull G. (1999) Build-
ing e-commerce Solutions with Net.Commerce: A Project Guide-
book, IBM.

Fraternali P. (1999) Tools and Approaches for Developing Data-
Intensive Web Applications: A Survey. ACM Computing Surveys,
33(3): 227-263.

Fowler, M. (1999) UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley: Harlow, England.

Lohse, G. L. and Spiller P. (1998) Electronic Shopping. Communica-
tions of the ACM, 41(7): 81-88.

Shurety S. (1999) E-Business with Net.Commerce. Prentice Hall.

Song I., Evans M, and Park E. (1995) A Comparative Analysis of En-
tity-Relationship Diagrams. Journal of Computer and Software En-
gineering, 3(4): 427-459.

Song I and LeVan-Schultz K. (1999) Data Warehouse Design for E-
Commerce Environments. Lecture Notes in Computer Science,
1727: 374-388.

Song I and Whang K (2000) Design of Real-World E-commerce Sys-
tems. IEEE Data Engineering Bulletin, 23(1): 23-28.

Treese, G.W. and Stewart, L.C. (1998) Designing Systems for Internet
Commerce, Addison Wesley.

Biographies
Min Song is a Software Engineer at ISI Thomson. He is a
certified IBM Net.Commerce developer and currently a
PhD student of College of Information Science and Tech-
nology at Drexel University.

Il-Yeol Song is a professor of Drexel University since
1988. Prof. Song has authored over 75 papers on the sub-
ject of database design, object-oriented analysis & design,
and data warehousing. Prof. Song co-chaired ACM CIKM
’99, DOLAP ’98 and DOLAP ’99

	Abstract
	Introduction
	Architecture and Overview
	Architecture
	High-Level Logical Components

	System Function Specifications
	Shopper Hierarchy
	Catalog Hierarchy
	Modeling System Functionality Employing Use Case Analysis
	Modeling Processing Logic Using Activity Diagrams
	Browse Catalog
	Personalize
	Place Order

	Database Structure
	Lesson Learned
	
	1. A project plan for customization
	2. Deficient information about the system �architecture
	3. Lack of communication among the development team
	4. Integration with the legacy systems
	5. Educating all related stakeholders
	6. Catalog design, construction and maintenance
	7. Training the Storefront Administrator
	8. Handling Referential Integrity Constraints

	Conclusion
	Reference
	Biographies

