
Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001

AA HHeeuurriissttiicc ffoorr DDeevveellooppiinngg OObbjjeecctt
IInntteerraaccttiioonn DDiiaaggrraammss

Il-Yeol Song
Drexel University, USA

Songiy@Drexel.edu

Abstract
The UML (Unified Modeling Language) has been widely accepted as a standard language for object-oriented analysis and design. Among the UML
diagrams, one of the most difficult and time-consuming diagrams to develop is the object interaction diagram (OID), which is rendered as either a
sequence diagram or a collaboration diagram. Our experience shows that developers have significant trouble in understanding and developing
OIDs. In this paper, we present an effective heuristic for developing interaction diagrams and illustrate the technique with a case study. We found
that students effectively developed OIDs using this heuristic method.

Keywords: UML, object-oriented design, interaction diagram, sequence diagram, collaboration diagram

Introduction
The UML (Unified Modeling Language) claims to be a
language, rather than a method. The UML provides a set
of notations and concepts that are necessary for developing
object-oriented software or systems. Among the UML
diagrams, one of the most difficult and time-consuming
diagrams to develop is the object interaction diagram
(OID), which is rendered as either a sequence diagram or a
collaboration diagram. OIDs model dynamic behavior by
showing how system components interact to complete core
tasks defined in use case design (Booch, Rumbaugh, Ja-
cobson, 1999). While many novice designers put emphasis
upon static models, they often fail to emphasize the use of
dynamic models, which are very important for properly
allocating responsibility among objects (Larman 1998).
The purposes of interaction diagrams are (Booch et al.,
1999; Rosenberg, 1999; Eriksson & Penker. 1998, Larman,
1998; Yourdon, Whitehead, Thomann, Oppel, and Nev-
ermann, 1995):

• Use to model interactions between objects.

• Assist in understanding how a system (a use case)
actually works.

• Verify that a use case description can be supported
by the existing object classes

• Identify responsibilities/operations and assign
them to classes

While seemingly intuitive, methods for constructing an
OID have not been described in literature. Our teaching
experience shows that students have significant trouble in
understanding and developing OIDs. Based on the au-
thor’s many years’ teaching object-oriented analysis and
design, we show an effective heuristic for developing in-
teraction diagrams and illustrate the technique with a case
study.

Our heuristic assumes that the developer has already de-
veloped use case diagrams; use case descriptions, and the
class diagram. We develop interaction diagrams based on
each primary use case. For the rest of the paper, we show
how to develop sequence diagrams for each use case.
Since a sequence diagram can be easily converted into a
collaboration diagram, our heuristic can be equally applied
to developing collaboration diagrams.

For the rest of the paper, we briefly summarize the notation
of sequence diagrams in Section 2. The heuristics are pre-
sented in Section 3, while the case study is presented in
Section 4. Section 5 concludes our paper.

Material published as part of this proceedings, either on-line or in
print, is copyrighted by the author with permission granted to the
publisher of Informing Science for this printing. Permission to
make digital or paper copy of part or all of these works for per-
sonal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advan-
tage AND that copies 1) bear this notice in full and 2) give the full
citation on the first page. It is permissible to abstract these works
so long as credit is given. To copy in all other cases or to republish
or to post on a server or to redistribute to lists requires specific
permission from the author.

mailto:Songiy@Drexel.edu

A Heuristic for Developing Object Interaction Diagrams

488 488

Sequence Diagrams and
Their Development

The popularity of the sequence diagram, originally called
an object interaction diagram, is attributed to Jacobson et
al. (1992). A sequence diagram focuses on time sequenc-
ing or time ordering of messages or the order in which
messages are sent. The emphasis in these diagrams is what
happens first, second, and so on. They represent the pas-
sage of time graphically. These diagrams have two axes:
the horizontal axis displays the objects and the vertical
axis shows time. In addition, sequence diagrams have two
features not present in collaboration diagrams: an object’s
lifeline and the period it is active (Booch et al., 1999).

Object lifelines are used in the sequence diagram to repre-
sent the existence of the object during a scenario. While
most objects will be in existence during the entire scenario,
at times objects are created or deleted during the scenario
(Booch et al, 1999). For example a transaction or order
could be created and a reservation could be deleted.

The limitation of the sequence diagram is that it does not
explicitly show the relationships or links between objects.
These relationships are the primary emphasis of the col-
laboration diagram. One of the goals behind the
development of the UML was to keep it as simple as pos-
sible while still being able to model the spectrum of
systems that needed to be built (Booch et al., 1999). How-
ever it is more complicated than previously developed
object-oriented methods, because it is intended to be more
comprehensive. As a result, the UML diagrams are often
difficult to develop. In the case of developing the first draft
of an interaction diagram, there are a lot of important de-
sign decisions to make. The interaction diagram may also
be difficult to develop because the UML does not provide
a process or specific steps that can be followed to produce
an effective diagram. As previously discussed, it is up to
the designer to choose or develop a method that will assist
him or her in creating an effective diagram. We found very
few authors who even mentioned possible methods, proc-
esses or steps that could be used to develop effective UML
diagrams.

Amber (1998) outlines his suggestions for the steps for
constructing a sequence diagram. His steps describe, in a
very brief form, what needs to be done to put together the
main parts of the diagram. However these steps do not
give any type of detailed instruction on “how.” Rosenberg
(1999) discusses the development of sequence diagrams
using robustness analysis, which was introduced by Jacob-

son et al. (1992). However, Rosenberg, does not include
step-by step guidelines for a developer to follow.

Booch et al (1999) outline separate steps for constructing
the sequence diagram, as well as the collaboration dia-
gram. While some of the steps overlap, there are different
steps that represent the differences in the two diagrams.
These steps are more detailed than Ambler’s but still con-
centrate on what needs to be done rather than addressing
‘how’ it can be done. Booch et al (1999) also outline a
number of characteristics for a well-structured interaction
diagram and a number of tips for developing an interaction
diagram. While not specific, these are very helpful sugges-
tions, especially for the novice and should be given some
attention to.

Heuristics for Developing
Sequence Diagrams

For easy presentation of our paper, we have divided our
method into two steps: pre-step and application step. The
pre-step summarizes the necessary work that needs to be
done to apply our heuristic. The application step shows
the details of the heuristic.

Pre-Steps:
• Develop a problem statement
• Develop a use case diagram
• Develop use case descriptions for major primary use

cases
• Develop a class diagram for the problem
• Develop pre-conditions and post-conditions for each

primary use case

Heuristic on Sequence Diagram Development

1. Select the initiating actor and initiating external event
from the use case description.

2. Identify the primary display screen needed for imple-
menting the use case. Call it the Primary boundary
stereotype object.

3. Introduce a use-case controller (control stereotype) to
handle communication between boundary stereotype
object and domain objects.

4. Identify the number of major screens necessary to im-
plement the use case. Create one helper boundary
stereotype object for each of the major screens.

 Il-Yeol Song

 489

5. From the class diagram, list all domain classes partici-
pating in the use case by reviewing the use case
description. If any class identified from the use case
description does not exist in the Class Diagram, add it
to the class diagram.

6. Use those classes just identified as block labels (Col-
umn names) in the sequence diagram. List classes in
the following order:

6.1. The primary boundary stereotype

6.2. Use case controller

6.3. Domain classes (list in the order of access)

7. Identify all major operations based on the following
classifications:

7.1. Instance creation and destruction

7.2. Association forming

7.3. Attribute modification:

7.3.1. Calculation

7.3.2. Change States

7.3.3. Any reporting requirements

7.3.4. Interface with external objects or systems

8. Order/rearrange the sequence of messages among the
object classes for implementing the use case based on
design patterns

9. Name each message and supply it with optional pa-
rameters.

Case Study

In this section, we illustrate our heuristic. We apply the
heuristics to a video rental system and develop sequence
diagrams for the rent items use case.

Problem Statement

This is about a small, local video rental store (VRS). The
problem will be limited to rental, return, management of
inventory (add/delete new tapes, change rental prices, etc.),
and producing reports summarizing various business ac-
tivities. The rental items of the store are limited to video
tapes. Customer ID number (arbitrary number), phone
number or the combination of first name and last name are
entered to identify customer data and create an order. The
bar code ID for each item is entered and video information

from inventory is displayed. The video inventory file is
decreased by one. When all tape IDs are entered, the sys-
tem computes the total rental fee and payments are
processed. The rental form is created, printed, and stored.
The customer signs the rental form, takes the tape(s), and
leaves. A return is processed by reading the bar code of
returned tapes.

Any outstanding video rentals are displayed with the
amount due on each tape and a total amount due. The past-
due amount must be reduced to zero when new tapes are
taken out. For new customers, the unique customer ID is
generated and the customer information is entered into the
system. Videos are stacked by their category such as
Drama, Comedy, Action, etc. Any conflict between a cus-
tomer and computer data is resolved by the store manager.
Rental fees can be paid by either cash, check, or a major
credit card. Reporting requirements include viewing cus-
tomer rental history, video rental history, titles by category,
top 10 rentals, items by status, overdue videos by custom-
ers, and outstanding balances by customers.

Use Case Diagram

The use case diagram for the above VRS is shown in Fig-
ure 1.

Log in

Maintain Inventory

Generate Reports

Start up

Management OverrideManager

Customer

Validate Customer Credit Card System

Rent Items Maintain Customer

<<include>>

<<include>>

Staff

Return Items

Figure 1. Use case diagram for VRS

A Heuristic for Developing Object Interaction Diagrams

490 490

Class Diagram

The class diagram for the above VRS is shown in Figure 2.
Note that we assumed that one item can be associated with
zero or more RentalItems. This is because we wanted to
keep all the rental data for six months.

Application of Heuristics

A sequence diagram can easily become complicated as the
complexity of the problem domain increases. In order to
reduce the complexity of the sequence diagram, we use the
idea of a system sequence diagram used by Larman (1998).

In ve n t o r y

la s t U p d a t e

L o a n P o l i c y

L P n a m e
r e n t a lC h a r g e
la t e C h a r g e
r e n t a lD u r a t io n

T i t l e

t it l e N a m e
/ to t a l C o p ie s
/ a va i l a b le C o p ie s
c a t e g o r y

1 . . n1 . . n

0 . . n1 0 . . n1

It e m

b a r C o d e ID
s t a t u s

0 . . n

1

0 . . n

1

R e n t a l I t e m

r e n t a lF e e
/ d u e D a t e
in D a t e
s t a t u s

0 . . n

1

0 . . n

1

P a y m e n t

p a y m e n t D a t e
p a y m e n t A m o u n t
p a y m e n t T y p e
p a y m e n t M e t h o d

R e n t a l

r e n t a lD a t e
/ t o t a l F e e
/ s t a t u s
r e n t a l Id

1 . . n1 . . n

C u s t o m e r

c u s to m e r ID
fi rs t N a m e
la s t N a m e
a d d re s s
p h o n e
t o t a l# R e n t s

0 . . n0 . . n

0 . . n1 0 . . n1

C a s h P m t C h e c k P m t

c k #
C r e d i t C a r d P m t

C C t y p e
C C #
n a m e

Figure 2. The class diagram for VRS

Figure 3. The system sequence diagram
for Rent Items use case

Staff
 : VRS System

enterCustomer()

enterRentalData()

enterPaymentData()

endRental()

Table 1. The application of the heuristic

 Il-Yeol Song

 491

A system sequence diagram shows all the system events
between the system actor and the system as a black box
(Larman 1988). A system event is an input that is gener-
ated by an actor to the system. Using this approach, an
entire sequence diagram for a use case is decomposed into
a set of system events allowing us to develop one sequence
diagram for one or more system events. Figure 3 shows
the system sequence diagram of VRS having four system
events.

For lack of space, we only apply our heuristics for the sec-
ond and third system events, enterRentalData() and
endRental(), in developing our sequence diagram. Note
that customer data will be handled in the enterCustomer()
event, and payment will be created and processed in the
enterPaymentData() event. Thus, they will not be shown
in our sequence diagram in Figure 4.

Conclusion

In this paper, we have presented a 9-step heuristic for de-
veloping sequence diagrams. We believe that the technique
presented in this paper is highly applicable regardless of

problem domains and can be easily customized to the spe-
cific application. Our experience shows that students who
used this method developed sequence diagrams easily and
quickly.

Reference

Ambler, S. (1998) Focus on UML: How the UML Models Fit Together
Software Development. Available at
http://www.sdmagazine.com/uml/focus.ambler.htm

Booch, G., Rumbaugh, J., and Jacobson, I (1999). The Unified Model-
ing Language: User Guide. Addison Wesley,

Eriksson, H. and Magnus P. (1998). UML Toolkit. New York: John
Wiley & Sons, Inc.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G.. Object-
Oriented Software Engineering: A Use Case Driven Approach.
Harlow, England: Addison-Wesley, 1992.

Larman, C., Applying UML and Patterns, Prentice Hall, 1998.

Rosenberg, D. (1999). Use Case Driven Object Modeling with UML: A
Practical Approach, Addison Wesley.

 : Sta ff : Renta l Window : Renta lHandler : Renta l : Renta l Item : Item : T i t le : Loan Po li cy

enterRe nta lData()
create()

create()
* create ()

getItem ()

getT i tle()

setRenta lDate()

c al cD ueD ate()

updateRenta l Item Status()

decreaseAvai lab le Cop ies()

get Dura tion()

get Fee()

set Du eDa te()

en dR en ta l()

m a ke Tota l()

ca lcT ota lRenta l ()

* getRenta lFee()

getRenta lData()

Figure 4. Sequence diagram for Enter Rental Data system event

A Heuristic for Developing Object Interaction Diagrams

492 492

Yourdon, E., Whitehead, K., Thomann, J., Oppel, K., and Nevermann,
P. Mainstream Objects: An Analysis and Design Approach for
Business. Upper Saddle River, NJ: Yourdon Press, 1995.

Biographies
Il-Yeol Song is a professor of Drexel University since
1988. Prof. Song has authored over 75 papers on the sub-
ject of database design, object-oriented analysis & design,
and data warehousing. Prof. Song co-chaired ACM CIKM
’99, DOLAP ’98 and DOLAP ’99.

	Abstract
	Introduction
	Sequence Diagrams and �Their Development
	Heuristics for Developing �Sequence Diagrams
	Pre-Steps:
	Heuristic on Sequence Diagram Development

	Case Study
	In this section, we illustrate our heuristic. We apply the heuristics to a video rental system and develop sequence diagrams for the rent items use case.
	Problem Statement
	Use Case Diagram
	Class Diagram
	Application of Heuristics

	Conclusion
	Reference
	Biographies

