Informing Science

Challengesto Informing Clients: A Transdisciplinary Approach

June 2001

Designing Application Authorizations

Leszek A. Maciaszek
Macquarie University, Australia

Mieczyslaw L. Owoc
University of Economics, Poland

Abstract

Information systems must be protected from unauthorized access. Authorization has been studied extensively as the main form of preserving the
security of databases. Every database management system provides a sophisticated set of options aimed at protecting the database from unauthor-
ized access. An important practical problemis how to take advantage of the database security options to ensure that a user is permitted to access
the database through the application program but may not be allowed to access the database directly via database query tools. A related issueis
how to extend the user privileges on the client part of the application so that only authorized GUI controls are available to the user.

In this paper we propose a model for the design of necessary authorization settings into both the client and the server parts of a database applica-
tion. The settings are stored in an Authorization Database (ADB) to which the program connects to customize itself for the current user. The
customization is based on an application role granted to the user. An application roleis activated for a connection (user session). After the database
server authenticates the user, the user login to the application role can be transparently obtained by the application from the ADB.

Keywords: authorization design, database applications, security, client/server systems

Introduction

The security mechanisms must be built into the client (user
interface) and the server (database) objects. The protection
starts at the client. The client program must be able to dis-
allow unauthorized access to GUI (graphical user
interface) objects, such as menu items, action buttons, data
fields, windows. The program should configure its client
objects depending on the authorization level of the current
user (authenticated — as the minimum - by user id and
password). The program turns off access to unauthorized
GUI objects as needed.

In awell-designed authorization, the client should address
as many security loopholes as possible. This avoids unnec-
essary and expensive trips to the database (perhapsto be
informed that access to data or execution of operation is
refused by the server). Server permissions (privileges) fall
into two categories. A user may be given selective permis-
sionsto:

Material published as part of this proceedings, either on-line or in
print, is copyrighted by the author with permission granted to the
publisher of Informing Science for this printing. Permission to
make digital or paper copy of part or all of these works for per-
sonal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advan-
tage AND that copies 1) bear this notice in full and 2) give the full
citation on the first page. It is permissible to abstract these works
so long as credit is given. To copy in all other cases or to republish
or to post on a server or to redistribute to lists requires specific
permission from the author.

= accessindividua server objects (tables, views, columns,
stored procedures, etc.),

= execute SQL statements (select, update, insert, delete,
etc.).

In the database world, permissions for a user may be as-
signed directly at a user level or at agroup level. The
Security Administrator can assign permissions to a group
of usersin asingle entry. A user may belong to none or to
many groups. To allow greater flexibility with managing
authorization, most database management systems intro-
duce an extralevel of authorization —therolelevel. The
role allows the Security Administrator to grant permissions
to all userswho play a particular role in the organization.
Roles can be nested —i.e. the permissions granted to dif-
ferent role names can overlap.

In larger 1S applications, the authorization design isan
elaborate activity. To properly handle the task, an Authori-
zation Database (ADB) should be set up alongside the
application database to store and manipulate the client and
server permissions. The application program can then con-
sult the database after the user’slogin in order to identify
the user’s authorization level and configure itself to that
user.

mailto:Email@address.edu
mailto:mowoc@manager.ae.wroc.pl

Any changes to database permissions are then recorded
and managed in the ADB —i.e. nobody, even the Security
Administrator, is alowed to directly change the application
database permissions without first updating the authoriza-
tion database. The objective of this paper isto present a
generic model for the authorization database and explain
how such a database can be integrated in the overall design
of client/server applications to control effective user per-
missions.

Designing Security Chains

The security management begins with granting alogin ID
and password to a user. The application will only alow a
connection after the login ID and password are authenti-
cated. An authenticated user is granted access to the
application at the level determined by the access permis-
sions granted to that user. In modern information systems,
the users obtain the permissions indirectly through their
associations to user groups and user roles (Oracle8i
(2000); SQL Server 7.0 (2000); Sybase 12.0 (2000))

A user can be allocated to a group. The authorization set-
tings defined for a group apply to all users of that group.
Groups are defined hierarchically. A user of alower-level

L.A. Maciaszek, M.L. Owoc

group inherits the authorization settings of higher-level
groups, in addition to the authorization settings defined for
the group itself (and the authorization settings defined ex-
plicitly for the user account, if any). A user can belong to
many groups.

Although users and groups can be directly granted/denied
privileges (authorization settings), we assume in our model
that application privileges are obtained exclusively via
application roles. Users and groups belong to roles. Client
and server object permissions are assigned to application
roles. Like groups, lower-level rolesinherit permissions of
higher-level roles. A user or agroup can belong to more
than onerole.

Figure 1 represents the design of a part of the ADB schema
concerned with the definition of the security chains that
allow the user to obtain necessary authorization settings to
work with the application (Maciaszek, 2001). The diagram
shows also referential relationshipsto two tables (RoleTo-
ClientPermission and RoleToServerPermission) that link
application roles to permissions assigned to them. In the
following sections we show how the user obtains the effec-
tive permissions and how the specific client and server
permissions are defined in the ADB.

Figure 1. Design of security chains

RoleTaClientPerméssion

e ud

lignt ob

clignt_parmissman Rﬂelnﬂmrpennlaahnl

i5_grarted role id

1% demid sareer_pbjert i

SR PR pRErEs0n_1d
o le_id = mle_id if_grar'.alj
1% derigd
sale_id = parant_role_ld N |
|
l||l!lga1hrﬂtie rala_id= rals_id picup_pd = passal_groap 1
rode_id
parand_robs i _ C
rodE_riarnd - GroupTofols | L.
app_login_id role_id g role_id Ipraip qroup_id
App passwo i waup_ld T greup_id | pasnd_group_id
= i = rOUp Name
rols_ig = rols_id
graup_id 4 group_id
o = User
| UsmToale user_i L UserTaGroup |
ﬂ-_i wr_ldp use usar_name uesr_id & uswi_id USEE |;
tole_1g sEmRr o | B _ groag_id
= qiEner bagin i T
SENVEF_DaEEwnrng

353

Designing Application Authorizations

Effective Permissions of
Application Users

The effective permissions granted to a user are defined by
the precedence rules along the security chains from the
server login to the application role login. In general, the
effective permissions of a user on an application object are
the union of al granted, denied, or revoked permissions on
an object assigned to the user and the groups and rol es that
that user belongs to. The precedence rules state that a de-
nied permission at any level (user, group, or role) takes
precedence over the same permission granted at another
level.

In our model, most (if not all) permissions are maintained
in the application roles. If Anneisamember of roles A

and B, and therole A grants accessto aclient or server
object but the role B denies the same access, Anne will be
denied the access. This is because the denied access takes
precedence over the granted access.

Our model assumes that a database server supports the
DENY permission statement statements (asin SQL Server
7.0) in addition to commonly available GRANT and
REVOKE. A denied permission applies across all
authorization levels. A granted permission supersedes
(removes) the revoked or denied permission but only at the
level granted. Similarly, arevoked permission replaces the
granted or denied permission at the level granted.

Figure 2 shows a UML Activity Diagram for effective
permissions of application users. The user Mary attempts

Mary

v
Access Object
x

[Mary does not hawe direct user permission on X]

Obtain union of permissions in Mary's
\ application roles (and groups)

Grant permission on Xto any role (or >

group) that Mary belongs to No

Yes

grant pemission on X[no role/group deny]

Does Mary have
pemission on X?

Yes

Is Mary denied permission on Xin any
ro r group) that Mary belongs to?
No

Mary is prevented \‘
from accessing X
A

revoke the deny[/group deny]

deny permission on X

deny pemission on X

(Mary can
access X

rewoke the grant

Mary can gain permission
L through role (or group) ‘

Figure 2. Activity diagram for permission

354

to access the object X. X can be a client object (such as
menu item) or a server object (such asaselect from ata-
ble). We assume that Mary does not have direct permission
on X granted to her user account. To determine if Mary
can access X, the system obtains the union of permissions
that Mary inherits from her application roles and groups. If
one of these permissionsis granted on X and the permis-
sion on X isnot explicitly denied in any other Mary’sroles
or groups, then Mary can access X. Otherwise, Mary is
prevented from accessing X. The lower part of Figure 2
identifies three possible permission states and the transi-
tions allowed between these states. If Mary is currently
prevented from accessing X then thisis because of one of
two possibilities. Thefirst possibility isthat no Mary’srole
or group has been granted the permission and no Mary’s
role or group has been denied the permission. The transi-
tion"grant perm ssion on X' changesMary’'s
state so that she can access X. The second possibility is
that at least one Mary’s role or group has been denied per-
mission on X. Thetransition “ r evoke the deny” puts
Mary into the state in which she can gain permission
through role or group. Once such permission is granted
Mary is again in the state in which she can access X.

Although our model allows taking the union of all
user/group/role permissions, our recommendation isto
control permissionsin application roles only. The main
reason for providing authorization settings via application
roles (and not via groups or user accounts) is to ensure that
auser can only access the database through the applica-
tion without the possibility of gaining a back-door access
to the database via SQL query tools. In our model, the da-
tabase server login IDs and passwords and the login IDs
and passwords for application roles are stored in the ADB.

It follows that our model still requires that the user connect
to the database server using the predefined server login
(however the server login alone may only grant the data-
base connect privilege but no other database access
privileges). Without the server login the auditing of spe-
cific user activities (via application) on the database would
not be possible. Once connected, the login to the applica-
tion role istransparent to the user and the effective
permissions are obtained by the application from the ADB.

An application roleis activated for a connection (user ses-
sion). The authorization settings that the user obtained
from the application role remain in effect until the user
logs out of the application program (and, therefore, logs
out of the database server).

L.A. Maciaszek, M.L. Owoc

Designing Client Authorizations

Our model assumes that the ADB is used by the applica-
tion program to establish authorization settings with regard
to both the client and the server objects. Thisis consistent
with the requirement that an unauthorized user should be
refused to perform unauthorized activities on the client. If
that activity can compromise the integrity of the database
then the second level of protection on the server isalso
enforced.

The client permissions relate to windows and window
controls. A user may be prevented from:

* CRUD (Create, Read, Update, Delete) operations on
primary windows, secondary windows, window panes
and other recognizable parts of awindow

» CRUD operations on window fields, including text,
combo and spin boxes

e Activating window controls, including:

1) Drop-down menu items
2) Pop-up menu items

3) Toolbar buttons

4) Command buttons

5) Picklist selections

6) Keyboard keys

7) Function keys

8) Accelerator keys

9) Screen cursor movements

The ADB stores the catalogue of al application client ob-
jectsthat are subject to authorization settings. The
catalogue includes application windows, window fields
and window controls. Any hierarchical relationships be-
tween client objects are also maintained (such as panesin a
window, fieldsin awindow, or menu hierarchy).
The permissions that can be granted for client objects are:

e can_create

Permits a user to open awindow for insert operations
and to insert data valuesin the window fields.

e can_read

Permits auser to only view information in awindow,
window field or window control.

e can_update

Permits auser to open awindow for update opera-
tions and to update data valuesin the window fields.

e can_delete

355

Designing Application Authorizations

Permits a user to open awindow for delete operations
and to delete al or selected data valuesin the window
fields.

e can_activate

Permits a user to activate awindow control

Each client object can be granted or denied more than one
permission. The revoked permissions are not stored in the
ADB - they are not needed to determine the authorization
settings for the current user (arevoked permissionissim-
ply apermission that has not been granted).

The allowed mappings of permissionsto client objects are
stored in the ADB tablecalled C i ent Obj ect ToPer -
m ssi on (Figure 3). An application roleis then assigned
its permissions on application’s client objects. The assign-
ment can be either that the permission is granted or that it
isdenied. Thisinformation is stored in the ADB table

cal l ed Rol eTod i ent Per mi ssi on (theattributes
is_grantedandi s_deni ed).

Because of possible hierarchical relationships between
client objects, complex integrity rules are implemented in
the ADB to prevent inconsistencies between
granted/denied permissions. For example, it does not make

olignd abpsol d= ganeat olignd abjaok W

| |

ChienbOihject
clignt gliect ig
paren_clisnt_object_id
]
cO_nams

i _Bwpw W [vna) b, Jeold oo Darblo n, wesin e,

ClieniPermission |

sense to grant permission on a submenu if the permission
isdenied on a menu that contains it. Similarly, a denied
permission for can_read precludes a granted permission for
can_update. The integrity rules governing the effective
permissions to a user belonging to multiple roles are re-
solved according to the strategies discussed in previous
sections.

Designing Server Authorizations

Ultimately the security and integrity of the database is the
responsibility of the database itself, not the client applica-
tions accessing the database. The client authorizations can
only eliminate some security breaches early in the process
and can free the database from duplicated and unnecessary
checks. Not all potential security breaches can be ad-
dressed in the client. For example most integrity
constraints implemented in database triggers can only be
enforced once a client-authorized insert, delete or update
operation hits a database table.

The server permissions relate to database objects - tables,
views, columns, stored procedures, etc. A user may be pre-
vented from:

* CRUD (Create, Read, Update, Delete) operations on
persistent database objects

Cliz b Dilajact T Pof reds-saomn
Ehg pl_abpdd ol w dpaivl_obped 14 lignl ol £ id
1

i ESINE

aligrd_ebijsct_|d = digrt abject 00 end_ psimibe

T
clignl_parmission i Fapba ToCRaiti Por mstan
Can_creais 'Tln I||1 —

I CIEM OOlgCt |
Can_reac
dianl_parmbman_jid & A spl_paithbmon_d = Lo
can_update -F ¥ zlignl_pEmmisson id
can_delsle o =_grantad
=_deniad

reds_id= parenk_mle_id

Npgdicat iohFole
pole i
parenl_nale_id
rokE_narme
apE_login_id
apo_pas seord

Figure 3. Client Authorizations

356

* reading from views

* inserting foreign key references
e persistent objects

e executing SQL statements

e executing stored procedures

The ADB stores the catalogue of al application server ob-
jects that are subject to authorization settings. The
catalogue includes tables, views, stored procedures and
any individual table columns that must be protected from
indiscriminate access. Hierarchical relationships between
server objects are maintained (such as columnsin tables).

The permissions that can be granted for server objects are:

can_sel ect

Permits a user to retrieve data from one or more col-
umns of atableor view.

can_updat e

sener_object id= server_object_id

L.A. Maciaszek, M.L. Owoc

Permits auser to update datain one or more columns
of atable or view (subject to view updateability prin-
ciples adopted by a database system).

e can_insert

Permits a user to insert rows containing datafor one
or more columnsinto atable.

e can_delete
Permits auser to delete rows of datafrom atable.
e can_reference

Permitsauser to insert arow into atable that hasa
foreign key referencing another table to which the
user may hot have agranted permission.

e can_execute

Permits a user to execute a stored procedure.

server_object id = parent_sernrer_object_id

|

ServerQhject
semner ohject id

ServerQhbjectToPer mission

semvar object id
Sewer permission id

parent_server_object_id
so_type
s0_name

zo_type = ftable, wiew, column, stored_proc

[

servdr_object_id = server_object_id0O0Oserver_perm

seniel_permission_id = semvef_permission_id

¥
Server Permission
RoleToServerPermission SERBEN permission |
role id can_select
server object id Caﬂ_!-lpdate
server permission id Caﬂ_:jnsletr‘f
is_granted Cahn_deleme
)) iz_denied can_reference
rale_id = parent_role_id CEIFI_E}{EI:LITE
L
ApplicationRole - rebeied role_id
role id
parent_rale_id
role_name
app_login_id

ARp_password

Figure 4. Security Authorizations

357

Designing Application Authorizations

Like with client objects, each server object can be granted
or denied more than one permission. The revoked permis-
sions are not stored in the ADB.

The allowed mappings of permissions to server objects are
stored in the ADB table called Ser ver Obj ect ToPer -
m ssi on (Figure 4). An application roleis either granted
or denied permissions to server objectsto which theroleis
linked viareferential relationship. Thisinformationis
stored in the ADB table called Rol eToSer ver Per m s-
si on (theattributesi s_grant ed andi s_deni ed).

Conclusions

Database applications are normally accessible to large
number of users with varying security clearings. It isthere-
fore important that application authorizations are carefully
designed. In this paper, we have proposed that an Authori-
zation Database (ADB) - separate from the application
database - is set up. The ADB isthen used to verify the
current users' permissions and to customize the application
GUI to correspond to these permissions (such as dimming
unavailable menu items).

The application is customized on user'slogin. Theloginis
performed in two stages - the login to the server isfol-
lowed by the login to the application role (the latter can be
transparent to the user). The user gains permissions based
on his/her application roles. Other permissions that the
same user may have on the database may be invalidated for
the duration of the user's connection. The server login al-
lows auditing of user activities on the database.

We believe that the model presented in this paper fillsa
gap in the literature dealing with application security is-
sues. The paper presents a pragmatic solution for
authorization design that can be used as a blueprint for
controlling authorizations in large client/server systems. A

358

variant of the proposed design has been used by alarge
international market research company and implemented in
an advertisement monitoring system.

References

Maciaszek, L.A. (2001): Requirements Analysis and System Design.
Developing Information Systems with UML, Addison-Wesley.

Oracle8i (1999): Oracle 8i CDROM Documentation.
SQL Server 7.0 (2000): SQL Server Books Online.

Sybase 12.0 (2000): Sybase Adaptive Server Enterprise 12.0 CDROM
Documentation.

Ackowledgements

The authors would like to thank Bozena Cioch-Maciaszek
for implementing and validating the ADB models dis-
cussed in this paper.

Biographies

Leszek Maciaszek is Associate Professor of Computing at
Macquarie University, Sydney, Australia. His research has
been in databases, object-oriented technology, software
engineering and large-scal e business information systems.
Professor Maciaszek has authored close to 100 publica
tions including the books Database Design and
Implementation (Prentice Hall, 1990) and Requirements
Analysis and System Design. Developing | nformation Sys-
tems with UML (Addison-Wesley, 2001).

Mieczyslaw Owoc is Lecturer at University of Economics,
Wroclaw, Poland. His research has been in knowledge
validation and verification, knowledge management, expert
systems, artificia intelligence, database technology, dis-
tance and open learning. Dr Owaoc has published numerous
papers, articles and book chapters.

	Abstract
	Introduction
	Designing Security Chains
	Effective Permissions of �Application Users
	Designing Client Authorizations
	Designing Server Authorizations
	Conclusions
	References
	Ackowledgements
	Biographies

