
Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001

AA TTooooll ttoo SSuuppppoorrtt tthhee UUssee ooff PPaarrtt--CCoommpplleettee SSoolluuttiioonnss
iinn tthhee LLeeaarrnniinngg ooff PPrrooggrraammmmiinngg

Stuart Garner
Edith Cowan University, Australia

s.garner@ecu.edu.au

Abstract
The purpose of this paper is to present a new software tool that has been developed, the purpose of which is to help novices learn programming. The
tool supports what is know as the “completion” method of learning to program.

It begins by discussing the difficulties that students face when learning to program and the use of part-complete solutions as a teaching and learning
method. CORT has been developed to support this use of part-complete solutions and its features are outlined. When used by a student, a part-
complete solution to a given programming problem is displayed in one window and possible lines of code that can be used to complete the solution
are displayed within another window. The lines can easily be moved between the windows in order to complete the solution, the solution then being
transferred to the target programming environment for testing purposes.

Preliminary feedback from students indicates that CORT is easy to use and perceived to be helping them in their learning of programming. Three
different methods of using CORT have been identified and these will be the subject of future research.

Keywords: Scaffolding, Programming, Flexible Learning

Introduction
Learning to write computer programs is not easy (du
Boulay, 1986; Scholtz & Wiedenbeck, 1992) and this is
reflected in the low levels of achievement experienced by
many students in first programming courses. For example
Lisack (Lisack, 1998) states that:

Students have difficulty learning
programming as they are trying to develop
skills in three areas at the same time, these
being: using the program development
environment; learning the programming
language syntax; and developing logic
design.

Also, the learning of programming is becoming more
difficult because the event driven nature of such languages

adds to the already high cognitive load of the subject. As
Lisack points out:

With the new event-driven environments, the
complexity of the design process is magnified
for some students.

Much has been written about the problems that students
have in learning programming and many ideas and
initiatives have been put forward for improvements in the
teaching and learning process with varying degrees of
success. In practice, the ways in which teaching and
learning takes place in the domain of programming have
changed little and many students still find the learning of
programming a very difficult process. As Fowler and
Fowler (Fowler & Fowler, 1993) point out, the challenge of
learning programming in introductory courses lies in
simultaneously learning: general problem solving skills;
algorithm design; program design; a programming
language in which to implement algorithms as programs;
and an environment to support the program design and
implementation. In addition, students need to learn testing
and debugging techniques to validate programs and to
identify and fix problems that they may have within their
programs.

Material published as part of this proceedings, either on-line or in
print, is copyrighted by the author with permission granted to the
publisher of Informing Science for this printing. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the author.

mailto:s.garner@ecu.edu.au

 Stuart Garner

 223

Additionally, we are moving ever more rapidly to use more
student centred and flexible learning methods within the
teaching and learning process. This means that our
instructional design for programming courses needs to take
notice of these moves and utilise these methods.
Fortunately technological improvements have also been
significant over the last few years enabling us to more
easily produce engaging courseware that can help students
studying in a flexible learning mode. As courseware
designers, we can produce electronic scaffolds to help
students in their learning processes when they are studying
on their own with limited access to a human tutor.

Use of Worked Examples in the
Teaching and Learning of Problem

Solving and Programming
One of the methods used in the teaching and learning of
programming makes extensive use of worked examples.
Several researchers have experimented with the use of
worked examples in place of conventional instruction and
found strong advantages. In the domain of algebra, Sweller
and Cooper suggested that students would learn better by
studying worked examples until they had "mastered" them
rather than attempting to solve problems as soon as they
had been presented with, or familiarised themselves, with
new material (Sweller & Cooper, 1985). In their research,
students studied worked examples and teachers answered
any questions that the students had. Students then had to
explain the goal of each problem together with the steps
involved in the solution and then complete similar
problems until they could be solved without errors. Sweller

and Cooper found that this method was less time-
consuming than the conventional practice-based model and
that students made fewer errors in solving similar problems
than students who were exposed to the conventional
practice-based model of instruction. There was no
significant difference between the "worked example" group
and the "conventional" problem solving group when they
attempted to solve novel problems and it was therefore
concluded that learning was more efficient and yet no less
effective when this worked example method was used.

The “reading” method of learning programming makes use
of worked examples. According to Van Merrienboer (van
Merrienboer & Krammer, 1987; Van Merrienboer,
Krammer, & Maaswinkel, 1994), the reading approach
emphasises the reading, comprehension, modification and
amplification of non-trivial, well-designed working
programs. However, they also suggest that presenting
worked examples to students is not sufficient as the
students may not “abstract” the programming plans from
them, a plan being a stereotyped sequence of computer
instructions as shown in figure 1.

“Mindful” abstraction of plans is required by the voluntary
investment of effort and the question then arises as to how
we can get students to study the worked examples properly.
In practice, students tend to rush through the examples,
even if they have been asked to trace them in a debugger,
as they often believe that they are only making progress in
their learning when they are attempting to solve problems.

One suggestion (Lieberman, 1986) is that students should

Let count = 0
Let sum = 0

Do While Not eof(1)
 Input #1, number
 Let sum = sum + number
 Let count = count + 1
Wend

If count > 0 Then
 Let average = sum / count
 picResults.Print "Average is "; avaerage
Else
 picResults.Print "There were no numbers on file"
End If

Skip guard
plan

Running total
loop plan

Counter
variable
plan

Figure 1

A Tool to Support the Use of Part-Complete Solutions in the Learning of Programming

224

annotate worked examples with information about what
they do or what they illustrate. Another suggestion is to use
part-complete, well-structured and understandable program
examples that require students to generate the missing code
or “complete” the examples. This latter approach forces
students to study the part-complete examples as it would
not be possible for their completion without a thorough
understanding of the examples’ workings. An important
aspect is that the part-complete examples are carefully
designed as they have to contain enough “clues” in the
code to guide the students in their completion. It is
suggested that this method facilitates both automation,
students having blueprints available for mapping to new
problem situations, and schemata acquisition as they are
forced to mindfully abstract these from the incomplete
programs (Van Merrienboer & Paas, 1990).

The stimulation of the “mindful of abstraction” of
schemata in students can possibly be improved further
requiring them to also annotate the solutions with details of
the scope and goals of the solutions and to answer
questions on the inner workings of the solutions. The
“degree” of completion of the solutions is an important
aspect within the completion strategy and in some later
work (van Merrienboer et al., 1994) examples are given of
completion assignments that might be used early and later
in a programming course. In an early part of a course, an
example may indeed be complete and include explanations
and a question on its inner workings. In the latter part of a
course, the example may be largely incomplete and include
a question on its workings and an instructional task.
Between these two extremes, examples will have varying
degree of completeness and in all cases, the incomplete
examples are acting as scaffolds for the students.

The Cloze Procedure
CORT, the scaffolding tool that has been produced, allows
students to fill in lines of missing code from programs and
this method is based upon the cloze procedure. The term is
derived from “closure”, a Gestalt psychology term
referring to the human tendency to complete a familiar but
not quite finished pattern (Cook, Bregar, & Foote, 1984).
The use of cloze was first used to measure comprehension
in English readability (Klare, 1974-75) however it has also
been used in the teaching and learning of programming as a
way of measuring student understanding of programs (Hall
& Zweben, 1986; Thomas & Zweben, 1986). Such
program comprehension tests are constructed by replacing
some of the “words” or tokens by blanks and requiring
students to fill in the blanks during a test. The use of the
cloze procedure in testing was found to correlate well with
conventional comprehension, question – answer, type

quizzes and is also much easier to create and administer,
see for example (Cook et al., 1984).

Other researchers have experimented with the testing of
program comprehension by omitting complete lines of
code from programs and requiring students to fill in those
lines (Norcio, 1980a; Norcio, 1980b; Norcio, 1981; Norcio,
1982; Ehrlich & Soloway, 1984). Norcio found that
students were more likely to supply correct statements if
they had been omitted within a logic segment rather than
from the beginning of a segment. This is consistent with
the chunking hypothesis (Miller, 1956) that specifies that
the first element of a chunk provides the key to the
contents of the entire unit. Ehrlich looked at the differences
between experts and novices in filling in missing lines
within various programming plans and, as expected, found
that the experts filled in the lines correctly taking into
account the surrounding plan whereas novices had more
difficulty.

In the various experiments in program comprehension
using the cloze procedure, the students had to fill in the
lines of code without being given a selection of lines to
choose from. In some work done in an area unrelated to
programming, students were expected to create an essay
using a file of statements, only some of which were
relevant to the topic (Edward, 1997). The students were
expected to copy and paste only the statements which they
believed to be relevant and then to link them with their
own text and it was suggested that learners would
consolidate their understanding of the topics by having to
actively evaluate all possible statements. The file of
statements was acting as a scaffold to student learning.

Although the literature suggests that the cloze procedure
has only been used in measuring program comprehension,
it appears that it could prove useful as a way of scaffolding
student learning of programming. An incomplete solution
to a programming problem could be given to a student
together with a choice of statements that might be used in
the solution. The student would then have to study the
incomplete solution and the choice of statements and
decide which statements to use and where to put them.
CORT uses this idea making the mechanics of placing the
statements into the incomplete solution very
straightforward for the student and eliminating typing
errors and therefore also syntax errors.

The Code Restructuring Tool (CORT)
CORT has been designed to support the “completion”
method of learning to program and it was decided that the
following features would be required in the first prototype:

 Stuart Garner

 225

• Support for part-complete solutions to programming
problems. Such solutions help in schemata creation and
also reduce cognitive load.

• A mechanism so that missing statements can easily be
inserted into a part-complete solution and also moved
within that solution. This provides scaffolding for
students.

• A facility so that students can add and amend lines of
code. This would allow scaffolding to be reduced and
for students to add more of their own code.

• For visual programming, a facility for students to
easily view the target interface. The interface should be
annotated with the various object names thereby
reducing any split-attention effect and helping reduce
cognitive load (Chandler & Sweller, 1991).

• A facility to access tutor created questions concerning
the programming problems being attempted and for

students to enter answers to those questions. This will
promote reflection and higher order thinking.

• A facility to easily transfer a completed solution from
CORT to the target programming environment.

• A facility to easily transfer programming code from the
target programming environment back into CORT for
further amendment.

The CORT Design

The user interface of CORT has been designed taking into
consideration the three issues that have been suggested by
Marcus (Marcus, 1992) as being fundamental to interface
design, namely development, useability, and acceptance.
The interface for CORT is shown in figure 2.

The ways in which the CORT design supports the list of

A Tool to Support the Use of Part-Complete Solutions in the Learning of Programming

226

required features are described in table 1.

Use of CORT by Students

A student would typically use CORT as follows:

1. A student loads in a CORT file and the two windows
display a part-complete solution to a problem together
with possible lines to be used. There is a facility
available for the contents of the two windows to be
printed out.

2. The student can view the problem statement and the
Visual BASIC solution interface by clicking on the
appropriate tool bars on the moveable toolbar. The
problem statement may have already been provided to
the student in the form of a handout, however there
will also be a facility to print it from within CORT.

3. The student moves certain lines from the left hand

window to the right hand window in an attempt to
complete the solution. Lines can be moved up or down,
and indented or outdented in the right hand window.
Some problems have too many lines in the left hand
window, some of those lines being incorrect.

4. If necessary, the student can invoke a simple editor to
amend, add or delete lines of code.

5. The student clicks on the appropriate button to copy
the contents of the right hand window to the Windows
clipboard.

6. The student invokes Visual BASIC and loads the file
that contains the interface for the solution. This is in
effect the Visual BASIC solution to the problem
without the lines of code and was created by the tutor.

7. The student pastes the contents of the Windows
clipboard into the Visual BASIC editor and tests the
program to determine if it works correctly. Use is made
of the trace and debugging facilities of Visual BASIC.

Feature Support in CORT Design

Support for part-complete solutions to
programming problems

The part-complete solutions will be automatically
loaded into the right hand window and possible
statements into the left hand window. Students will
load these from a file.

A mechanism so that missing statements can
easily be inserted into a part-complete solution and
also moved within that solution

Two buttons in the middle of the screen will move
lines between the windows. One line, or several
lines will be able to be selected and moved across.

A facility so that students can add and amend lines
of code

A simple editor will be provided so that students
can add their own lines or amend existing lines.

For visual programming, a facility for students to
easily view the target interface

Access to this feature will be via a button on the
moveable toolbar.

A facility to access tutor created questions on the
workings of the programming examples and to
enter student answers

Access to this feature will be via a line menu item.

A facility to easily transfer a completed solution
from CORT to the target programming environment

This is provided by a button on the main toolbar. A
single click will copy the contents of the right hand
window to the Windows clipboard ready for pasting
into the Visual BASIC programming environment.

A facility to easily transfer programming code from
the target programming environment back into
CORT for further amendment

This is provided by a button on the main toolbar. A
single click will paste the contents of the Windows
clipboard into the right hand window, overwriting
what is there.

Table 1: Features of CORT

 Stuart Garner

 227

These facilities provide an insight to the workings of
the notional machine.

8. If the student finds a problem with the working of the
program, they can return to CORT and make the
changes to the code there.

9. The student repeats steps 3 to 8 until they have a
working program.

10. The student answers the tutor’s questions concerning
the programming problem that they have just
attempted.

Initial Student Feedback

CORT has been used for two semesters with both
undergraduate and postgraduate students in the Faculty of
Business and Public Management who are learning
programming. The particular units are in software
development and the language that the students learn is
Visual BASIC.

Each week the students had to undertake completion
programming exercises using CORT and after each
problem they were asked to comment on the use of CORT
for the particular problem that they had just finished. The
data was collected on-line through the Web. Below are
some of the comments that were received:

1. It's very helpful. I can see the interface of the program
before actually running it.

2. Comments on CORT: I think CORT is a very useful
tool to play around the codes. It saves me time copying
and pasting.

3. Considering the increased workload as the semester
progresses it is a bit of a relief that the exercises are
much easier with the "fill in the gap" type format in
CORT.

4. Without CORT, it's sure that I'll have a lot trouble with
this particular problem, which focuses on arrays (a
difficult topic). Thanks CORT...

5. CORT was useful in that the part solution helped to
understand the logic of VB code

6. CORT is useful . However, I have used the unit text to
try to understand the indentation format when writing
the code. The directional keys are great for editing the
code to meet the required format.

7. This was a challenge! I think that CORT is useful so
long as I am not tempted to simply manipulate code
until the program runs. If I were having to write
programs from scratch I would use CORT so as to
format and manipulate code and modules or sub
procedures etc.

Conclusions
As can be seen from the above, the initial feedback on the
use of CORT appears to have been favourable. We have
found that students can undertake two or three small
programming problems within a one hour tutorial whereas
without CORT they could only undertake one such
problem. Also, without using CORT students often never
manage to successfully complete their assigned problems
and this certainly affected their motivation.

By using CORT, students do not have to be concerned with
the design of programming interfaces that considerably
reduces the cognitive load in the initial stages of learning
programming. Also, the reduction of “split attention affect”
by labelling all the objects with their names has been very
popular with the students.

The above has described a preliminary study of the use of
CORT and it has been undertaken to determine its
suitability and to fine tune some of its features. CORT can
be used in several ways and three distinct methods have
now been identified. These will be the subject of further
research. The three methods are as follows:

1. All of the lines that are required to complete a program
are made available in the left hand window of CORT.
There are no extra lines displayed in the left hand
window.

2. All of the lines that are required to complete a program
are made available in the left hand window of CORT.
There are also additional lines displayed in the left
hand window that are not required within the program.
The extra lines are similar to the required lines,
however they are incorrect and act as “red herrings”.

3. Some of the lines that are required to complete a
program are made available in the left hand window of
CORT. Other lines that are required for the program
completion need to be keyed in by the student.

References
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format

of instruction. Cognition and Instruction, 8, 293-332.

Cook, C., Bregar, W., & Foote, D. (1984). A Preliminary Investigation
of the use of the Cloze Procedure as a Measure of program
Understanding. Information Processing & Management, 20(1-2),
199-208.

du Boulay, B. (1986). Some Difficulties in Learning to Program.
Journal of Educational Computing Research, 2(1), 57-73.

Edward, N. (1997). Development of a cost effective computer assisted
learning (CAL) package to facilitate conceptual understanding.
Paper presented at the CAL97, University of Exeter, UK.

A Tool to Support the Use of Part-Complete Solutions in the Learning of Programming

228

Ehrlich, K., & Soloway, E. (1984). An Empirical Investigation of the
Tacit Plan Knowledge in Programming. In J. Thomas & M. L.
Schneider (Eds.), Human Factors in Compter Systems (pp. 113-
133). Norwood, New Jersey: Ablex.

Fowler, W. A. L., & Fowler, R. H. (1993). A Hypertext Approach to
Computer Science Education Unifying programming Principles.
Journal of Multimedia and Hypermedia, 2(4), 433-441.

Hall, W. E., III, & Zweben, S. H. (1986). The Cloze Procedure and
Software Comprehensibility Measurement. IEEE Transactions on
Software Engineering, May 1986, 608-623.

Klare, G. R. (1974-75). Assessing Readability. Reading research
quarterly (10), 63-102.

Lieberman, H. (1986). An Example Based Environment for beginning
Programmers. Instructional Science, 14(3), 277-292.

Lisack, S. K. (1998, October 1-3, 1998). Helping Students Succeed in a
First programming Course: A Way to Correct Background
Deficiencies. Paper presented at the International Association for
Computer Information Systems Conference, Cancun, Mexico.

Marcus, A. (1992). Graphic Design for Electronic Documents and User
Interfaces. New York: ACM Press.

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two:
Some Limits on our Capacity to Process Information.
Psychological Review (63), 81-97.

Norcio, A. F. (1980a). Comprehension Aids for Computer Programs.
Paper presented at the American Psychological Association Annual
Meeting, Montreal.

Norcio, A. F. (1980b). Human Memory Processes for Comprehending
Computer Programs. Paper presented at the Cybernetics and
Society, Cambridge, Massachusetts.

Norcio, A. F. (1981). Chunking and Understanding Computer
Programs. Paper presented at the Human-Machine Systems
Symposium, Boston, USA.

Norcio, A. F. (1982). Indentation, Documentation and Programmer
Comprehension. Paper presented at the Human Factors in
Computer Systems, Gaithersburg, Maryland.

Scholtz, J., & Wiedenbeck, S. (1992). The role of planning in learning a
new programming language. International journal of man-machine
studies, 37, 191-214.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a
substitute for problem solving in learning algebra. Cognition and
Instruction, 2(1), 59-89.

Thomas, M., & Zweben, S. (1986). The Effects of Program-Dependent
and Program-Independent Deletions on Software Cloze Tests.
Empirical Studies of Programmers, 138-152.

van Merrienboer, J. J. G., & Krammer, H. (1987). Instructional
Strategies and tactics for the design of Introductory Computer
programming Courses in High School. Instructional Science, 16(3),
251-285.

van Merrienboer, J. J. G., Krammer, H. P. M., & Maaswinkel, R. M.
(1994). Automating the planning and construction of programming
assignments for teaching introductory computer programming. In
R. D. Tennyson (Ed.), Automating Instructional Design,
Development, and Delivery (NATO ASI Series F, Vol. 119) (pp.
61-77): Springer Verlag, Berlin.

van Merrienboer, J. J. G., & Paas, F. (1990). Automation and Schema
Acquisition in learning elementary computer programming.
Computers in Human Behavior (6), 273-289.

Biography
Stuart Garner is a member of the school of Management
Information Systems within the faculty of Business and
Public Management at Edith Cowan University in Perth,
Western Australia. He teaches in the areas of systems and
software development and Web commerce development.

	Abstract
	Introduction
	Use of Worked Examples in the Teaching and Learning of Problem Solving and Programming
	The Cloze Procedure
	The Code Restructuring Tool (CORT)
	The CORT Design
	Use of CORT by Students
	Initial Student Feedback

	Conclusions
	References
	Biography

