
Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001

AA FFrraammeewwoorrkk ffoorr DDeevveellooppiinngg DDiissttrriibbuutteedd CCooooppeerraattiivvee
DDeecciissiioonn SSuuppppoorrtt SSyysstteemmss –– IInncceeppttiioonn PPhhaassee

Alexandre Gachet
University of Fribourg, Switzerland

alexandre.gachet@unifr.ch

Abstract

This paper describes the inception phase of the development process of a Framework for Developing Distributed Cooperative Decision Support
Systems (DSSs). It analyzes the reasons why the broad use of DSSs has not occurred yet and makes propositions to improve this situation. It shows
that, for the most part, modern distributed computing architectures could solve many of the presented issues.
In the first section, this paper gives an overview of DSSs, based on definitions, history, taxonomies and DSS architectures. In the second section, it
covers three categories of problems in the DSS area: human factors, conceptual factors and technical factors. To finish, it proposes possible
solutions to these problems using concepts borrowed from new distributed computing architectures.

Keywords: cooperative DSS, model-driven DSS, data-driven DSS, distributed computing

Introduction

Definitions of Decision Support Systems

The concept of a decision support system (DSS) is
extremely broad and its definitions vary depending on the
author’s point of view (Druzdzel and Flynn, 1999). It can
take many different forms and can be used in many
different ways (Alter, 1980). On the one hand, Finlay
(1994) and others define a DSS broadly as “a computer-
based system that aids the process of decision-making”. In
a more precise way, Turban (1995) defines it as “an
interactive, flexible, and adaptable computer-based
information system, especially developed for supporting
the solution of a non-structured management problem for
improved decision making. It utilizes data, provides an
easy-to-use interface, and allows for the decision-maker’s
own insights.” On the other hand, Schroff (1998) quotes
Keen (1981) (“there can be no definition of Decision
Support Systems, only of Decision Support”) to claim that
it is impossible to give a precise definition including all the

facets of the DSS. But according to Power (1997), the term
Decision Support System remains a useful and inclusive
term for many types of information systems that support
decision-making. He humorously adds that every time a
computerized system is not an on-line transaction
processing system (OLTP), someone will be tempted to
call it a DSS…

For more information, we recommend reading Druzdzel
and Flynn (1999), Power (2000), Sprague and Watson
(1993), the first chapter of Power (2000a) and the first
chapter of Silver (1991).

A Brief History of DSSs

In the absence of an all-inclusive definition, we will focus
on the history of DSSs. Power (1999) remarks that,
according to Keen and Stabell, the concept of Decision
Support has evolved from two main areas of research: the
theoretical studies of organizational decision making done
at the Carnegie Institute of Technology during the late
1950s and early 1960s, and the technical work on
interactive computer systems, mainly carried out at the
Massachusetts Institute of Technology in the 1960s. It is
considered that the concept of DSS became an area of
research of its own in the middle of the 1970s, before
gaining in intensity during the 1980s (Hättenschwiler,
1999). In the middle and late 1980s, Executive
Information Systems (EIS), Group Decision Support
Systems (GDSS) and Organizational Decision Support
Systems (ODSS) evolved from the single user and model-
oriented DSS. Beginning in about 1990, data warehousing

Material published as part of this proceedings, either on-line or in
print, is copyrighted by the author with permission granted to the
publisher of Informing Science for this printing. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the author.

mailto:alexandre.gachet@unifr.ch

 Alexandre Gachet

 215

and One-Line Analytical Processing (OLAP) began
broadening the realm of DSS.

It is clear that DSSs belong to an environment with
multidisciplinary foundations, including (but not
exclusively) database research, artificial intelligence,
human-computer interaction, simulation methods, software
engineering and telecommunications.

Taxonomy of DSSs

As for the definition, there is no all-inclusive taxonomy of
DSSs either. Different authors propose different
classifications. At the user-level, Hättenschwiler (1999)
differentiates passive, active and cooperative DSSs. A
passive DSS is a system that cannot bring out decision
suggestions or solutions. An active DSS can bring out such
decision suggestions or solutions. A cooperative DSS
allows the decision-maker (or its advisor) to modify,
complete, or refine the decision suggestions provided by
the system, before sending them back to the system for
validation. The system again improves, completes, and
refines the suggestions of the decision-maker and gives
them back to him for validation, etc.

At the conceptual level, Power (2000b) differentiates
Communication-Driven DSSs, Data-Driven DSSs,
Document-Driven DSSs, Knowledge-Driven DSSs and
Model-Driven DSSs. A Model-Driven DSS emphasizes
access to and manipulation of a statistical, financial,
optimization or simulation model. Model-Driven DSSs use
data and parameters provided by decision-makers to aid
decision-makers in analyzing a situation, but they are not
necessarily data intensive. A Communication-Driven DSS
supports more than one person working on a shared task;
examples include integrated tools like Microsoft’s
NetMeeting. Data-Driven DSSs or Data-oriented DSSs
emphasize access to and manipulation of a time-series of
internal company data and, sometimes, external data.
Document-Driven DSSs manage, retrieve and manipulate
unstructured information in a variety of electronic formats.
Finally, Knowledge-Driven DSS provide specialized
problem-solving expertise stored as facts, rules,
procedures, or in similar structures.

At the technical level, Power (1997) differentiates
enterprise-wide DSS and desktop DSS. Enterprise-wide
DSSs are linked to large data warehouses and serve many
managers in a company. Desktop single-user DSSs are
small systems that reside on an individual manager’s PC.

Other authors (Alter, Holsapple and Whinston, Donovan
and Madnick, Hackathorn and Keen, Golden, Hevner and
Power) propose different taxonomies that are less relevant
in this paper. We recommend reading should read the first
chapter of Power (2000a).

Architectures of a DSS

Once again, different authors identify different components
in a DSS. Sage (1991) identifies three fundamental
components of DSSs:

• Data-Base Management System (DBMS)
• Model-Base Management System (MBMS)
• Dialog Generation and Management System (DGMS)

According to Power (2000a), academics and practitioners
have discussed building DSSs in terms of four major
components:

• The user interface
• The database
• The model and analytical tools
• The DSS architecture and network

Finally, Hättenschwiler (1999) identifies five components
of DSSs:

• Users with different roles or functions in the decision-
making process (decision-maker, advisors, domain
experts, system experts, data collectors)

• A specific and definable decision context
• A target system describing the majority of the

preferences
• A knowledge base made of:

• External data sources, knowledge databases,
working databases, data warehouses and meta-
databases

• Mathematical models and methods
• Procedures, inference and search engines
• Administrative programs and reporting systems

• A working environment for the preparation, analysis
and documentation of decision alternatives.

Situation

This paper analyzes the reasons why the broad use of DSSs
has not occurred yet and makes propositions to improve
this situation. The research that we are currently
conducting elaborates on the works of Schroff (Schroff
1998, Hättenschwiler et al. 1998, and Hättenschwiler 1999)
and his Object Manager Environment (OME).

A Framework for Developing Distributed Cooperative DSSs

216 216

On the user level, we will consider cooperative DSSs, in
order to avoid the limitations of passive and active DSSs.
On the conceptual level, we will consider both model-
driven DSSs and data-driven DSSs, following assumptions
used in OME. It is foreseen that we will also borrow a few
ideas of communication-driven DSSs as well. On the
technical level, we will explore new distributed paradigms
and thus consider enterprise-wide DSSs in multi-tier
architectures (also known as inter-organizational or intra-
organizational DSSs).

In addition, the DSSs considered in this paper conform to
the description proposed by Hättenschwiler (1999). DSSs
are highly organized information systems, designed
especially for an environment of decision with clear
boundaries, and able to be developed continuously along
with their environment. The DSSs do not make decisions
themselves, but propose to the decision-makers analyses of
the advantages and disadvantages of existing alternatives,
feasibility and unfeasibility studies, as well as specific
documentation of these alternatives. These DSSs are
typically composed of the five components described at the
end of the previous paragraph.

Problem definition

The field of DSSs is too vast to try to establish an
exhaustive list of the reasons why these systems create
rather low interest in practice. Nevertheless, we can divide
the various factors of the problem into three main
categories: human factors, conceptual factors and technical
factors.

Human factors

In this paper, human factors cover the reasons why the
people involved, users and decision-makers, subjectively
oppose the computerized decision-making systems. This
opposition is based mainly on the personal feelings of the
actors towards the proposed data-processing environment.

Ghasemzadeh and Archer (2000) note that the decision-
makers are not sufficiently implied in the process of
finding a solution. In fact, according to Schroff (1998), it
is rare that the decision-maker is even the immediate user
of the DSS. The immediate users are usually decision
assistants who interact directly with the system and play
the role of interface between the DSS and the decision-
maker. But according to Drucker (1954), the decision-
maker must understand the basic method involved in
making decisions. Without such understanding, he will

either be unable to use the new tools at all, or he will
overemphasize their contribution and see them as the key
to problem solving. This can only result in the substitution
of gadgets for thinking and of mechanics for judgment.

Even so, according to Ghasemzadeh and Archer (2000) and
Power (1997), it is very difficult to explicitly formulate in
advance all the preferences of the decision-maker. This
phenomenon exerts a negative influence on the interest and
the confidence of the decision-maker in the system used.

Moreover, the DSSs focus too often on information
management and do not provide enough support to the
users (Sauter, 1996). DSSs are designed as a substitute for
the human choice process or an elaborate report generator.

Another human factor responsible for the disinterest
towards traditional DSSs can be explained by the growing
interest in “end-user computing” (Kreie et al., 2000). The
concept of “end-user computing” refers to people
developing software applications for themselves or for
others even though they are not trained MIS professionals.
The study of Kreie et al. explains the growth of this
tendency: on the one hand, the advances in information
technology made microcomputer hardware relatively
cheap, but quite powerful. On the other hand, traditional
software packages such as spreadsheets (for example,
Microsoft Excel) integrate now in an intuitive way the
definition of reports, graphs and tables in one same
application. Another factor explaining the growth of “end-
user computing” is the fact that users are seldom involved
in the implementation of the DSS. Santhanam et al. (2000)
mention that user participation should be an important part
of any new IS implementation strategy. Although Kreie et
al. show that “end-user computing” remains of poor
quality, the users prefer this independent working method,
which increase their satisfaction and avoid communication
problems and delays when dealing with the MIS
department.

Finally, given that DSSs remain complex applications that
are difficult to use for non-specialists (i.e. most of the
decision-makers), though Sprague and Watson (1993)
mentioned that a good DSS should be easy to use to
support the interaction with non-technical users, it is
understandable that they tend to keep their distance from
these systems. This last issue will be discussed in detail
when dealing with technical factors.

 Alexandre Gachet

 217

Conceptual factors

In this paper, conceptual factors cover the problems
encountered by DSSs because of wrong or incomplete
choices carried out during the design of systems, that is to
say after the analysis, but before the implementation.
These factors concern a lower level than the human (and
subjective) factors, but do not relate yet to the purely
technical considerations of the system.

Huber (1982) mentions that DSSs are helpful in tasks such
as information retrieval, evaluation of alternatives and
choice making, but are less helpful in earlier tasks such as
problem exploration, information-needs-analysis and
creative alternative generation. This increases the
likelihood that decision-makers will then solve the wrong
problem or choose an inappropriate or low-quality solution.

In addition, a fundamental task of the cooperative DSSs
consists in modeling the environment, or context, of the
problem to be solved. Modeling describes the process of
decomposing and formalizing a problem (Druzdzel and
Flynn, 1999). Hättenschwiler (1993) et al. (1998) define
many conceptual factors precisely related to modeling in
the DSSs: missing standards and basic concepts for
modeling, missing user-friendly systems for modeling,
missing support for the evolutionary process of modeling,
missing support for the reuse of existing models.
According to Sprague and Watson (1993, p.19), the model
creation process must be flexible, with a strong modeling
language and a set of building blocks, much like
subroutines, which can be assembled to assist the modeling
process. In other words, the natural evolution of the
decision-making area, spread out between planning and
data warehousing while passing by operations research,
expert systems, databases, worksheets, modeling
environment, DSS generators and the office automation
tools, constantly neglected three conceptual factors specific
to DSSs (Hättenschwiler 1999).

Firstly, the evolution neglected the fact that a DSS is based
on situations (i.e. facts - or data - often creating an
incomplete knowledge base) that are combined with
assumptions, or scenarios. Data warehousing systems are
shown to be very powerful in extracting the facts (past
horizon) but propose few mechanisms for managing
scenarios (uncertain future horizon). In the same way,
operations research, based on mathematics, defines static
systems looking for optimal solutions to fully structured
problems (pure problems), seldom corresponding to the
open and ill-structured environments (impure problems) of
DSSs.

Secondly, the evolution neglected the fact that a DSS must
propose to the decision-maker an environment of
unconstrained decidability. At one end of the spectrum of
the possibilities offered by a DSS, the decision-maker
receives a batch of alternatives according to the situation,
the goal - or task - to reach and the exogenous decisions of
the decision-maker. At the other end of the spectrum, the
decision-maker must have the ability to propose to the
system his own alternative (possibly subjective) and
receive from the DSS a study of the consequences of this
alternative (feasibility). No current technique offers the
decision-maker an environment of unconstrained
decidability. Operations research seeks optimal solutions
to fully defined problems that the decision-maker cannot
modify without difficulty (constrained decidability), and
data warehousing is not designed to evaluate the projected
consequences of an alternative suggested by the decision-
maker. The DSSs should also offer the process of
constructing alternatives based on different types of
decisions (Drudzel and Flynn, 1999).

Thirdly, the evolution neglects the manner of presenting
the alternatives to the decision-maker (reporting). No
precise answer was given for questions such as: how many
alternatives must be offered to the decision-maker? How
to avoid overwhelming the decision-maker with numbers?
What should be presented first? How should the
advantages and disadvantages be enumerated? Etc.
However, these questions prove fundamental if we want to
avoid problems related to certain human factors presented
above.

Technical factors

In this paper, technical factors cover the problems
encountered by DSSs related to purely software or
hardware considerations. Thus, these factors are not
directly connected to the high level concepts concerning
decision-making, but rather with the constraints that data-
processing structures impose on the implementation of
these high level concepts.

Bhargava et al. (1999) mention that the complexity and
long development time inherent in building decision
support systems has thus far prevented their wide use.
Building a DSS requires significant expertise in decision
analysis, programming, and user interface design. A DSS
may also be required to work in real time with other
enterprise applications, further complicating the task.

Hättenschwiler et al. (1998) mention another technical
factor, which attributes the disinterest for DSSs to

A Framework for Developing Distributed Cooperative DSSs

218 218

inflexible frameworks applied in building highly adaptable
DSS (development costs too high, lack of reuse, monolithic
architectures).

Ill-defined user interfaces to DSSs represent another
technical factor, as systems with user interfaces that are
cumbersome, unclear, or require unusual skills are rarely
useful and accepted in practice (Druzdzel and Flynn,
1999). Effective user interfaces are especially important
for systems that will be used directly by managers (Power,
2000a). Systems have to be first designed to provide all
the DSS functions of interactive dialog, flexibility, and
tools to examine alternatives (Santhanam et al., 2000).

DSSs often must be supplemented with non-transactional,
non-accounting data, some of which has not been
computerized in the past (Sprague and Watson, 1993,
p.18).

Much research, including that of Keen (1981), Liberatore
and Titus (1983) or, more recently, Fjermestad and Hiltz
(1998), show that many decisions are made by groups of
people rather than by one isolated decision-maker. The
more complex the organizations become, the less the
decisions are taken by single individuals (Gannon, 1979).
These observations caused the emergence of Group DSSs
(GDSSs) and of Organizational DSSs (ODSSs), often
based on the architecture of multiparticipant DSSs
(MDSSs). Even though it is easy to find definitions of
such high level architectures, there exists to our knowledge
only few concrete implementations of GDSS, ODSS or
MDSS taking advantage of the new possibilities offered by
distributed computing, undoubtedly because these
architectures are new (for example, the Java 2 platform,
Enterprise Edition, the Jini technology and the JavaSpaces
service). Consequently, the implementations of DSSs often
produce centralized and static systems, which are poorly
designed for multiparticipant use, or not designed for all of
the time/place categories of the GroupWare map (that is,
people can be separated in space, or separated in time, or
both).

Moreover, current DSSs (including GDSSs and ODSSs)
poorly support the internationalization of current
distributed systems. Sauter (1999) observes that if DSSs
are truly to facilitate decision making across cultures, then
they must be sensitive to differences across cultures.

Finally, DSSs are complex systems often composed of
heterogeneous subsystems (various databases, complex
mathematical libraries, proprietary data, etc.) and are
therefore difficult to integrate in only one productive

system. This difficulty of integration–a recurring topic in
modern computing–complicates the implementation of
flexible, light and modular DSSs. On the contrary, the
existing systems are often closed, thick and monolithic.

Proposition

Following Sprague and Watson (1993) (“DSSs are not
developed according to traditional approaches but require a
form of iterative development that allows them to evolve
and change as the situation changes”), we strongly believe
that it would be utopian to try to build a “one size fit all”
Decision Support System. We will instead focus on the
definition of a framework for developing Decision Support
Systems. According to Buschmann et al. (1996), a
framework is a partially complete software (sub-) system
that is intended to be instantiated. It defines the
architecture for a family of (sub-) systems and provides the
basic building blocks to create them. It also defines the
places where adaptations for specific functionality should
be made. One of the aims of this framework is to bridge
the gap between decision support theories and real-life
DSSs. It should not be seen as a DSS Generator (Sprague
and Watson, 1993), but rather as a more fundamental DSS
Tool.

Propositions for solving human issues

Human factors, because of their very subjective nature, are
the most difficult ones to deal with. Nevertheless, we
propose in this paper some generic solutions that could
help solving some of these human issues if they are used
during the early stages of software development.

Recently, because of technological development, managers
have become more enthusiastic about implementing
innovative DSSs (Power, 2000a). Distributed computing is
undoubtedly part of this technological development.
Firstly, today’s distributed architectures are tailored for
open, highly interactive systems based on many
subsystems. This definition describes DSSs well.
Secondly, the Internet since 1996 has become a part of
every business and person’s life (Petrie, 1998). The main
impacts of the Internet on various technology sectors are:
accelerating deployment, enabling individuals to
collaborate across great distances, simplifying user
interfaces, and reducing training requirements. All of these
impacts are related to certain human issues. Moreover, the
Internet, which distributes its infrastructure worldwide, has
enhanced the notion of thin clients. Thin clients have
many advantages over fat (or thick) clients; they allow

 Alexandre Gachet

 219

corporations to distribute data and analytical tools to a
much broader user community than was previously
feasible. They define a clear distinction between data and
operations. They represent applications easier to manage,
more convenient and with an improved accessibility.
According to Power (2000a), thin clients in the realm of
DSSs naturally lead to the notion of Web-based DSS. In
other words, distributed computing should make DSSs
more familiar for decision-makers. They should provide
them with well-known and intuitive user interfaces (e.g.
web browsers, Java applications, etc.)

Furthermore, the notion of distributed computing
associated with the notion of mobility leads to the notion of
field computing (Hughes, 2000), which could leverage this
new enthusiasm for innovative DSSs. Indeed, personal
digital assistants (PDA) and hand-held computers (ideally
Java-based) that easily fit in a suit-jacket pocket are now
powerful enough to enhance the idea of distributed and
mobile computing (Graham, 2000). PDA and hand-held
computers have friendly user interfaces; with several
options for connecting these devices directly to regular
computers or remotely via wireless communications, PDA
and hand-held computers are a low-cost option for
deploying a distributed decision architecture to a work
force with minimal computing skills. Geographical
Information Systems (GIS), which are data-driven DSSs,
already use field computing.

Web-driven and Java-based distributed computing should
help solving some of the human factors laid out in the first
section, i.e. multi-users decision spaces (decision-makers,
advisors, system administrators, etc.), better support the
user thanks to well-known and proven web technologies,
renewed enthusiasm for distributed and innovative DSS in
comparison to end-user computing.

Finally, the use of a framework for developing DSSs
facilitates the implementation of new systems (using tried
and true building blocks), and thus allowing users to
participate actively in the development and implementation
process. Indeed, the section dealing with human factors
reminded us that user participation was an important part
of any new IS implementation strategy. Adequate training
during the transition phase of the development, so that
users can operate the new system effectively, can also
reduce users’ opposition to a DSS.

Propositions for solving conceptual issues

In his approach to user oriented DSSs based on the Object
Management Environment (OME), Schroff (1998)

proposed many ideas to solve most of the conceptual
factors presented above. By building our distributed
framework for developing DSSs on top of OME, we will
borrow many of those ideas.

Our distributed framework should improve and complete
the modularity proposed by OME. In OME, modules are
called object managers, and each one is aimed at solving
one part of the general requirements (i.e. system manager,
data manager, scenario manager, task manager, evaluation
manager, and representation manager). New managers
can then be added to solve new or specific conceptual
factors. The novelty of our framework will reside in the
fact that these modules will be more loosely coupled than
in OME, leading to an even more flexible and open
architecture. This will enhance the development of real
cooperative DSSs able to dynamically react to the
refinements proposed by the decision-maker or his
advisors.

Schroff’s Object Managers are themselves handled in a
user-friendly interface especially designed to enhance rapid
prototyping. Object Managers handle Decision Support
Objects (DSO), which are the building blocks
(components) of the DSS. This object-oriented design
enhances the reuse of existing components and the
components of the DSS are presented to the decision-
makers in an intuitive and structured way. Moreover, OME
uses a strong modeling language developed at the
University of Fribourg and called LPL (Huerlimann, 1998).

This cooperative, object-oriented architecture should help
solving some of the conceptual factors laid out in the first
section, i.e. modeling of situations using pertinent DSOs
(facts, scenarios, etc), unconstrained decidability provided
by the flexible and dynamic architecture and flexible
reporting, as it would be just another component in our
architecture.

For more information, we recommend reading Schroff
(1998), Hättenschwiler (1999) and Hättenschwiler et al.
(1998).

Propositions for solving technical issues

There are many compelling reasons for using distributed
computing in order to solve the technical issues described
above. At a fundamental level, distributed computing
brings many advantages: enhanced performance, enhanced
scalability, resource sharing, fault tolerance and
availability, elegance, etc.

A Framework for Developing Distributed Cooperative DSSs

220 220

At a higher level, new paradigms in the distributed
computing realm have recently become quite popular:
Enterprise Java Beans (EJB), Java Server Pages (JSP) and
Java Servlets are hot spots in today’s distributed world
(Flanagan et al., 1999, Wilcox, 2000). But other new
technologies–less e-commerce-driven–are also emerging,
unveiling some features of tomorrow’s distributed
architectures. Sun Microsystems’s Jini and its related
JavaSpaces service or Microsoft’s Universal Plug and Play
(UPnP) are amongst these. These new forms of
telecommunication technology enable work teams within
organizations to interact better and enhance their business
decisions. These technologies could help us to implement
the proposed high-level solutions for solving technical
issues using distributed computing and supporting the ideal
time/place arrangement of the GroupWare map (i.e. any
time, any place). In addition, they go far beyond
traditional distributed DSS architectures (client/server,
sharing, etc.) still presented by various authors. These new
technologies often provide features like scalability,
transactionality, fault-tolerance and security that are
expensive and time-consuming to implement if they are
designed from scratch.

Additionally, modern programming languages provide
graphical libraries that allow the rapid development of
high-quality user interfaces, using powerful graphical
builders. These new tools help the developer concentrate
on the desired GUI without losing too much time
implementing it. These tools also make GUI more flexible,
as it is easier for the developer to change part of it without
having to change all of the subsequent code. They can
prove even more powerful when combined with GUI
development framework, such as the ROMC approach
presented by Sprague and Carlson (1982).

Finally, new technologies related to application integration
and inter-application communication (e.g. CORBA) make
it easier to implement our distributed framework for
developing DSSs.

These new technologies and tools should help in solving
some of the technical factors laid out in the first section,
i.e. the complexity and long development time of DSSs, the
lack of flexibility of current frameworks, cumbersome user
interfaces, the lack of internationalization and inter-
application communication.

Future

The next phases of this project - elaboration and
construction - are in progress at the University of Fribourg,

Switzerland. It is foreseen that the framework will be
implemented using the Java programming language and the
Jini technology (with its JavaSpaces service) on a local
area network (LAN). Jini can be used in conjunction with
EJB components, servlets and Java Server Pages. For
reasons of simplicity, issues like security will not be
addressed in detail and are therefore left for other research
projects.

Object persistency will be implemented using Java's built-
in serialization mechanisms and/or the JavaSpaces service
of Jini. Database connections will be handled using Java's
JDBC and/or JDO APIs. Inter-objects communication will
be implemented using the Jini technology and RMI. Low-
level inter-applications communication will be
implemented using Java IDL and CORBA. Graphical User
Interfaces will be implemented using the Java Foundation
Classes (Swing). It should also be possible to define a pure
XML/HTML user interface. General-purpose
configuration data will be formalized using the XML
language and open source parsers.

As far as possible, mobile computing using PDA or
handheld computers should be added to the core of the
framework. Most likely, mobile computing will be covered
during the elaboration phase.

References

Alter, S.L. (1980). Decision Support Systems: Current Practice and
Continuing Challenge, Reading, MA, Addison-Wesley. (p. 71)

Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M. (1996).
Pattern – Oriented Software Architecture: A System of Patterns,
John Wiley & Sons Ltd.

Drucker, P. (1954). The Practice of Management. New York: Harper
and Brothers, p. 368

Druzdzel, M.J. and Flynn R. R. (1999). “Decision Support Systems”, to
appear in Encyclopedia of Library and Information Science, Allen
Kent (ed.), Marcel Dekker, Inc.

Finlay, P. (1994). Introducing Decision Support Systems, Oxford:
Blackwell.

Fjermestad J., Hiltz S.R. (1998). An assessment of group support
systems experiment research: methodology and results. Journal of
Management Information Systems 15 (3) (1998-1999) 7-149

Flanagan, D., Farley J., Crawford W., Magnusson K. (1999). Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., Sebastopol,
CA.

Gannon M.J. (1979). Organizational Behavior: A Managerial and
Organizational Perspective, Boston: Little, Brown.

 Alexandre Gachet

 221

Graham, L.A. (2000). Life in the Fast Lane, in GEOWorld, July 2000,
GeoTec Media, pp. 30-35

Ghasemzadeh F., Archer N.P. (2000). Project portfolio selection through
decision support. Decision Support Systems and Electronic
Commerce, July 2000

Hättenschwiler P. (1993). Computer Assisted Top Down Modeling,
Modeling Tools for Decision Support, University of Fribourg. p.
101-131

Hättenschwiler P. (1999). Neue Konzepte der Entscheidungs-
unterstützung, Working Paper 99-4, Institute of Informatics,
University of Fribourg, March 1999

Hättenschwiler P., Moresino M., Schroff A. (1998). Rapid Prototyping
of Decision Support System, conference proceedings of ICSC
Symposium, Tenerife.

Huber G. P. (1982). Group Decision Support Systems as Aids in the Use
of Structured Group Management Techniques, DSS-82, Conference
Proceedings.

Huerlimann T. (1998). LPL: A mathematical programming language,
Institute of Informatics, Working Paper, June 1998, Fribourg

Hughes, J.R. (2000). GIS Goes Mobile, in GEOWorld, June 2000,
GeoTec Media, p. 8

Keen P.G.W. (1981). Decision Support Systems: A Research
Perspective, in Decision Support Systems: Issues and Challenges,
Pergamon Press

Kreie J. Cronan T.P., Pendley J., Renwick J.S. (2000). Applications
development by end-users: can quality be improved?, Decision
Support Systems, August 2000

Liberatore M.L., Titus G.J. (1983). The practice of management science
in R&D project selection, Management Science 29 (1983), 962-974

Petrie, C. (1998). A Brief History, IEEE Internet Computing, IEEE
Computer Society, November/December 1998, pp. 6-7

Power, D.J. (1997). What is a DSS? The On-Line Executive Journal for
Data-Intensive Decision Support, October 21, 1997: Vol. 1, No. 3.

Power, D.J. (1999). A Brief History of Decision Support Systems. DSS
Resources, World Wide Web,
http://dss.cba.uni.edu/dss/dsshistory.html.

Power, D. J. (2000a). Decision Support Systems: Concepts and
Resources. Cedar Falls, IA: DSSResources.COM, pre-publication
PDF version, 2000, accessed on october 2000 at URL
http://dssresources.com/dssbook/.

Power, D. J. (2000b). Web-Based and Model-Driven Decision Support
Systems: Concepts and Issues. Prepared for AMCIS 2000,
Americas Conference on Information Systems, Long Beach,
California, August 10th - 13th, 2000, "Model-Driven and Web-
Based Decision Support Systems" Mini Track.

Sage, A.P. (1991). Decision Support Systems Engineering, John Wiley
& Sons, Inc. New York.

Santhanam R., Guimaraes T., George J. F. (2000). An empirical
investigation of ODSS impact on individuals and organizations,
Decision Support Systems, December 2000, pp. 51-72

Sauter, V.L. (1996). Decision Support Systems: An Applied Managerial
Approach, John Wiley & Sons Ltd, Chichester, England.

Schroff A. (1998). An Approach to User Oriented Decision Support
Systems, Inaugural-Dissertation Nr. 1208, Druckerei Horn,
Bruchsal.

Silver M.S. (1991). Systems that Support Decision Makers – Description
and Analysis, John Wiley & Sons Ltd, Chichester, England.

Sprague R., Carlson E. (1982). Building Effective Decision Support
Systems, Englewood Cliffs: Prentice Hall.

Sprague R., Watson H. (1993). Decision Support Systems – Putting
Theory into Practice, 3rd Edition, Englewood Cliffs: Prentice Hall.

Wilcox M. (2000). Professional Java Server Programming, J2EE
Edition, Wrox Press Ltd., Birmingham.

Biography

Alexandre Gachet has a diploma in computer science from
the University of Fribourg, Switzerland, where he is
currently working on a Ph.D. He is working on the
development of distributed decision support systems using
new distributed technologies, namely Java and Jini.

	Abstract
	Introduction
	Definitions of Decision Support Systems
	A Brief History of DSSs
	Taxonomy of DSSs
	Architectures of a DSS
	Situation

	Problem definition
	Human factors
	Conceptual factors
	Technical factors

	Proposition
	Propositions for solving human issues
	Propositions for solving conceptual issues
	Propositions for solving technical issues

	Future
	References
	Biography

