

Online July 5 – 6, 2023

Accepted by Editor Michael Jones │ Received: March 13, 2023 │ Revised: May 31, June 7, 2023 │
Accepted: June 9, 2023.
Cite as: Kampa, A. (2023). Integrating agile software development practice in a classroom setting. In M.
Jones (Ed.), Proceedings of InSITE 2023: Informing Science and Information Technology Education Conference, Article 27.
Informing Science Institute. https://doi.org/10.28945/5159

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

INTEGRATING AGILE SOFTWARE DEVELOPMENT
PRACTICE IN A CLASSROOM SETTING

Anthony Kampa Digikey Electronics, Fargo,
ND, United States

kampa051@crk.umn.edu

Christine Bakke Grand Canyon University’
Phoeniz, AZ, United States

Christine.Bakke@gcu.edu

ABSTRACT
Aim/Purpose This paper explores how best to implement Agile style courses into university

curriculum. It is a starting point for teachers who are unsure how to structure
their classes in an Agile way.

Background This paper explores the researcher’s experiences with Agile in the classroom,
outside the classroom and in a professional setting. Recommendations are made
on how to best introduce students to Agile concepts and prepare them for their
careers.

Methodology This paper is an exploratory case study in determining whether or not students
are properly equipped for their careers. Information was gathered through a
qualitative interview administered virtually. The sample is taken from students
who are recent graduates from public universities in the Midwest.

Contribution This study provides tangible and practical suggestions to best utilize Agile
methodologies in an academic setting.

Findings A project-based learning class taught using the agile methodology would pro-
vide a beneficial and flexible class for students no matter where their careers
take them. This style of class can be offered to any level of undergraduate stu-
dent but more advanced students will likely get more out of it. Advanced stu-
dents should be encouraged to work across disciplines to foster communication
skills and provide valuable experience working with non-developers.

Recommendations
for Practitioners

Agile is not a silver bullet. Not all classes will be a good fit for this style of
teaching. Practitioners should consider a blend of classes with different teaching
styles.

Recommendations
for Researchers

Researchers are encouraged to explore different methodologies for including
Agile development into a classroom environment.

https://doi.org/10.28945/5159
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:kampa051@crk.umn.edu
mailto:Christine.Bakke@gcu.edu

Integrating Agile Software Development Practice

2

Impact on Society This study will help to better prepare the next generation of software develop-
ers for eventual careers.

Future Research Practitioners and researchers can expand on this study by exploring a multi-year
study following students who had Agile curriculum and students who received
traditional class methods as they graduate and join the workforce. Researchers
can explore other methods of implementing Agile in the classroom to further
refine suggestions provided in this paper.

Keywords Agile development, Scrum, software development, information technology,
software engineering, classroom teaching

INTRODUCTION
The world of software development is constantly changing. In the last few years there have been
booms in cryptocurrency, cloud computing, IoT and AI to name but a few. As these new technolo-
gies become more and more relevant in the workplace, universities run the risk of failing to equip
their students for their future career (Garousi et al. 2020; Oguz & Oguz, 2019). To address these
rapid changes, development methodologies such as Agile and Scrum are replacing less flexible devel-
opment methodologies such as waterfall. Sahin and Celikkan (2020) found that there is a substantial
knowledge gap when it comes to the Agile Development Methodology. Implementing a project
based learning class utilizing the Agile development methodology can address these shortcomings
and help students tailor their knowledge to the changing environment.

This study does not seek to establish the well-known knowledge gap. Instead, it attempts to answer
the question of how to emulate an Agile work environment in an academic setting. Research was pri-
marily done through interviews with upperclassmen and recent college graduates. The proposals
made in this paper are meant to be built upon to suit the changing needs of the workforce and each
university.

BACKGROUND
At its core, Agile is an iterative design process that aims to put people ahead of processes (Beck et al,
2001). Work is broken down into ‘sprints.’ These sprints run on average over one or two weeks.
Every team member works off a collective backlog. This is the place where all work is stored. Work
is broken up into Product Backlog Items (PBIs) and organized in matter of importance. Items at the
top of the board are the most important and next items to be pulled in. Items further down the
board are of lower importance and are less likely to be addressed. Work on a PBI is only started once
it has been pulled into a sprint. Each PBI is assigned a number of effort points. These represent the
teams estimation as to how long the item will take to complete. Traditionally estimation is done using
the fibonacci sequence. Each team decides what constitutes one effort point.

Aside from the basic workflow of Agile, there are a series of Agile ceremonies held. Sprint Planning
is where the team meets and discusses what they will attempt to accomplish in the upcoming sprint.
This is held at the beginning of a new sprint. During planning any unfinished PBIs are brought into
the next week to continue being worked on. New PBIs are pulled into the sprint board to be worked
on. After planning the Sprint has begun and work begins on any PBIs currently in the Sprint. An-
other major Agile ceremony is the Sprint Retro. This is where an Agile team analyzes the results of
the last sprint and looks at how they can improve their process. These improvements could be at an
interpersonal level, or at a process level. The final major sprint event is refinement. This is where new
user stories are given effort points and initially prioritized on the backlog. Later the product owner
can reprioritize as they see fit.

Agile incorporates a few additional positions within the team. The primary additions are a Scrum
Master and the Product Owner. The Scrum Master is responsible for all things Agile. They are in

Kampa & Bakke

3

charge of scheduling and running the various ceremonies. Their other major responsibility is to re-
move any obstacles that the team encounters outside of the technical realm. This could be communi-
cating with another team or resolving interpersonal issues within the team. These individuals often
receive training to work effectively in this role. The Product Owner is the overarching owner of the
whole project. They have the final say as to what gets pulled in and are responsible for making sure
the backlog is prioritized.

LITERATURE REVIEW
Alongside the rigor of the academic degree, companies are looking for more than technical skills.
Companies value soft skills, having a portfolio and experience with Agile (Galster et al, 2022). Addi-
tionally, projects are one of the 4 most important factors when evaluating a potential candidate (Ste-
panova et al, 2021). These competencies and more can be addressed through the proper implementa-
tion of a project-based course taught using Agile.

The most apparent benefit is Agile experience. Outside of strengthening a resume and applicant, pre-
vious knowledge of agile reduces the cognitive load of a new job. There is already enough to learn
between a new codebase, new tools, and new deployment processes. Removing Agile from this load
allows acceleration of the onboarding process.

Regardless of culture, the most desired soft skill for a developer is communication (Ahmed et al.,
2012). Teaching in an Agile methodology promotes communication and better soft skills. Students
should take turns being the Scrum Master on a week-to-week basis. In doing so, they will have to co-
ordinate with other group members. This benefit will be further discussed in the implementation
portion. Diverse groups help introduce students to other ways of thinking and foster better commu-
nication skills.

Outside of building a portfolio, teaching a project-based class using Agile has benefits to learning
outcomes. The first is student ownership of a project has a positive effect on learning outcomes
(Umar & Ko, 2022). Allowing students to select what their project is helps invest them in their work.
Additionally, students tend to value autonomy to choose what they learn (Linden, 2018). As students
work on a project they want to build, once they complete the course they are setting themselves up
for success.

METHODOLOGY
The initial suggestion was developed through a combination of the author’s experiences earning an
undergraduate and a research project undertaken with a professor. The goal of the project was to de-
velop a website for people experiencing temporary mutism. Work on this project was done utilizing
the Agile design methodology. The professor acted as the product owner and prioritized work on a
weekly basis. The sprint duration was one week. At the beginning of each week a meeting was held
to discuss progress made during the last Sprint. A working prototype was provided early in the pro-
cess. The prototype was improved each Sprint to best comply with the vision of the product owner.
Later in the process, major revisions were made at the behest of the product owner. These included
the ability to add buttons and multiple redesigns of the page navigation style. This experience helped
form the basic class format. The idea was then improved through an interview process with recent
college graduates to determine if it would have been a valuable class to have and how to improve it.

Interview participants were asked a series of open-ended questions about Agile methodology from a
professional and educational standpoint. Professionally, respondents described their work environ-
ment, general size of company and how well their coursework prepared them for their current posi-
tion. Academic responses were collected concerning exposure to Agile in their curriculum, how they
would improve the major, any additional projects they worked on in college and provided feedback
on a suggested Agile classroom implementation. Interviews were conducted over the phone and re-
sponses documented electronically.

Integrating Agile Software Development Practice

4

Participants ranged in age from 23 to 28. Companies of employment were as small as 20 employees
all the way up to 4000+. Many different positions were interviewed such as Software Engineer, Sen-
ior Developer and backend developer. All had graduated from a small subset of public universities in
the Midwest. Graduates were graduated several years apart from each other. This helps determine
whether the curriculum at these institutions has been updated in the ensuing time.

RESULTS AND RECOMMENDATIONS
The primary complaint across multiple degrees and universities was that the focus of the major was
too broad. There was a strong emphasis placed on theory, but without real world examples to apply
the knowledge to it didn’t add a lot of value. Another common theme was the in class projects were
unrealistic. They weren’t software programs that everyday people would use. Another recurring
theme was the value of working on a project with a professor. These projects taught valuable skills
that weren’t located inside of any course such as time management and working with feedback from
stakeholders. Every participant agreed that a class taught using Agile would have been beneficial to
have taken, even for those who are not currently working in an Agile environment.

The final interview question focused on garnering feedback about this proposed project-based learn-
ing class structure. At the start of the semester, students select a project to work on. This can be
from a curated list, broad category, such as retro video games, or have freedom to choose any project
they desire. The students will be broken up into groups of 4-5 students. Each group will compose
one Agile team. The Sprint duration will be one week.

In lieu of traditional homework, students will be expected to spend between 3-5 hours outside of
class working on their selected project. Any less than 3 hours compromises a student’s ability to make
progress. Requiring anything more than 5 is too heavy of a workload. Outside of an hourly require-
ment, groups will have to meet once a week to conduct summarized Agile ceremonies.

One person out of the group will be selected as Scrum Master. This person will change on a weekly
basis. During their meeting, they will start with standup. What has each student worked on in the last
week and where did they get stuck. As part of planning, they will determine what they will be work-
ing on the upcoming week and display this on their backlog. How the backlog is implemented is up
to the discretion of the professor.

To simulate Sprint Retro, this meeting will provide an opportunity for students to discuss how they
can overcome whatever blocked them. If they are stuck they can ask the rest of the team for advice
on how to move past the blocker.

During the week, class can continue to be lecture based. One day out of the week will be presenta-
tion day. Here one group from the class will present to the entire class. If any group member has a
working prototype, it can either be demoed during the presentation or within the presentation.

This idea was met with general acceptance, but there were concerns expressed due to the simplicity
of this design. Many of these concerns can be left to the discretion of the teacher to be addressed.
One concern was the risk monotony of having one week sprints where nothing changes. Another
recurring concern was what level of undergraduate this class would suit the best. The final theme in
feedback was making sure the projects are relevant.

One of the best ways to address the risk of monotony is to require each group to implement one ad-
ditional Agile term from the Agile glossary each week. This way each group’s familiarity with all
things Agile will continue to grow, but still leave them the autonomy to tailor what they learn. This
additional requirement can be documented in their presentation.

This approach can be tailored to any undergraduate level, whether the students are freshmen or sen-
iors. This style of course should generally be offered at a sophomore or higher level to avoid over-

Kampa & Bakke

5

whelming freshmen. It also gives incoming students a chance to learn about programming before be-
ing given a more advanced class like this. If offered at a higher level or as a capstone project, the pos-
sibilities open up. Companies interested in developing a new piece of software or even students from
another major would be excellent product owners. This would further help emulate a realistic work-
ing environment balancing the time the students have with the desires of the business. It also helps
foster cross discipline communication, grows their portfolio and depending on the product owner
potentially opens the door to internships and beyond.

Adding in product owners from outside of the class also addresses concerns about the realism of the
program. This factor is strongly influenced by the professor. While students should have the ability to
focus on a project of their choosing, the professor still has the final say into whether or not that pro-
ject gets the green light. This will help keep software more firmly grounded in what a developer
might see every day instead of something very niche like an aircraft navigation program.

One apparent question that needs answering is why not make it a group project instead of an individ-
ual project? If the class is offered to upperclassmen or as a capstone project, group work may be the
way to go. This framework is meant to be adapted to fit the needs of the class and professor. Work-
ing as a group helps simulate a real work environment better. It also offers opportunities to integrate
additional technologies such as source control, whether using Git bash or a Git interface. Group
work may backfire at an undergraduate level where not everyone is invested into the success or fail-
ure of a project. At a lower level individual projects allow students to pursue their passions and invest
in their own education. There is a place for group work, and a place for individual projects. This deci-
sion should be made on a class by class basis.

EXAMPLE PROGRESSION
For underclassmen, allow students to choose a project they want to work on. Use that project as an
introduction to Agile. Encourage students to start with a small project and take it all the way from
conception to publication. This could be from a curated list of simple apps such as a calculator or
other similar programs. Once they reach a more advanced programming level, allow them to choose
any project they want. Even if a student selects too large of a project, they should be able to submit
some portion of the project as working by the end of the course.

An excellent class to replace would be a project management course, or one that explores different
methodologies of designing a project. The weekly lectures can still focus on different methodologies
such as Waterfall, Spiral and Kanban. Small quizzes to confirm reading comprehension would be an
appropriate workload alongside completing a project developed using Agile.

This approach could also be utilized as a portion of a class. Instead of running the entire class in an
Agile way, a portion could be dedicated to a smaller project. A useful and succinct project could be
accessing an API. The market value of APIs is projected to increase over 800% during the next dec-
ade (Precedence Research, 2022). There are plenty of APIs that are widely available. A good intro-
duction to all of these technologies and methodologies would be a short project. Students would cre-
ate a repository on Git. Have them commit their work at the end of each session and have them doc-
ument with screenshots to ensure they are committing regularly. For their project, they need to reach
out to an API. Provide a list of widely available ones as resources but encourage students to find
their own if nothing on the list appeals to them. Their project should reach out to any endpoint on
the API and display the result. A few free backlog services such as Jira or Trello would help groups
emulate an Agile task board and assist with workflow.

Ideally their grade should not be tied to project completion, but on the progress they make in an Ag-
ile framework. Even if the project is not completed by the end of the class, some working portion of
it should be. Have this be what is submitted at the end of the semester alongside a paper detailing
how the development went. This allows students to analyze if scope creep got the best of them, or if
they selected an appropriate sized project and estimated correctly. This style of class could be a good

Integrating Agile Software Development Practice

6

candidate for a semester 2 class. That way students with motivation would have the summer to finish
their project on their own time.

If the students are more advanced and have a grasp of Agile development, they would be good can-
didates for including product owners from elsewhere. At this point collaboration between disciplines
would be best to emulate a real work environment. Collaborate with another class of students from a
different major. Have the business students function as the ‘product owner.’ Business students pitch
their ideas to the class of developers. Each group chooses what business idea they wish to pursue.
This benefits the other discipline as well by allowing them to practice presenting an idea to a group
that might not understand what they’re talking about. These product owners won’t be expected to
perform all the Agile functions a full product owner would. Their primary job is to provide feedback
on the systems produced and provide guidance to align that system more closely to their idea.

This suggestion would make an excellent capstone project. One of the major risks here is coordina-
tion across disciplines. Keeping communication channels within one class reduces the chance of a
communication breakdown. I would suggest as part of the capstone include how working with a real
product owner went. This will allow groups to document what their struggles were and how they
overcame interpersonal challenges. Students should be allowed to fail. If the capstone falls apart, di-
agnose what happened with a postmortem. Did they commit to too large of a project? Were there
issues with who was selected as the product owner? Product owners could also be brought in from
interested businesses.

The perfect class for any given university may require several iterations. Encourage the students to
provide feedback for the course. What worked well, what didn’t work well, what improvement would
be made and just like Agile, iterate on the class. Tweak it slightly from semester to semester to make
sure students are getting benefit from the inclusion of it to the curriculum.

LIMITATIONS OF RECOMMENDATION
Not every class will be a good fit for Agile. This approach lends itself to smaller class sizes which are
not always possible. The goal is not for the entire curriculum to be taught in an Agile way, but to
more strongly emphasize what Agile is and experience a typical Agile workflow.

There are many decisions that can be implemented on a campus by campus, or even class by class ba-
sis. It is the author’s belief that a personal project is a good way to get buy-in to this form of devel-
opment. If students work on a passion project, it will be easier to ask them for hours outside of
class. If the entire group doesn’t buy into whatever project is selected, it may produce negative results
when working together.. This approach may not be considered professional enough. This idea is
meant to be modified to fit any university. If resources are available to host two environments (devel-
opment and ‘production’), use kubernetes containers and continuous deployment that will prepare
students in an even better manner. This is not possible for all campuses to achieve this level of real
world simulation.

LIMITATIONS AND FUTURE RESEARCH
This research has several limitations that could be expanded upon in the future. The first major limi-
tation is the sample size is limited to a variety of students in the Midwest. The second limitation is
the qualitative nature of this research.

This topic can be expanded in the future with quantitative research following college students in Ag-
ile college environments and traditional college environments. This would help determine the impact
of Agile development methods on GPA. Furthermore, as these students graduate and join the work-
force follow up surveys of this cohort could offer guidance on how to improve the curriculum. A
study of this magnitude would help quantify if Agile students adapt better to their new position

Kampa & Bakke

7

compared to their more traditionally educated compatriots. Furthermore, the relation could be ex-
plored between cohorts and how they perform in an Agile environment as compared to a traditional
(waterfall) work environment.

CONCLUSIONS
This study aims to provide a basic framework for a project-based learning class taught using the Agile
methodology. Ideally the entire semester would be taught in this manner, but it could be used to
teach one module within a class. The framework is intentionally left general and high level to allow
each teacher to customize it to suit their needs. They are also kept general due to the variability of
available resources to each university. By adding a project-based learning class students will be em-
powered to take control of their education and shape it more to their interests. The idea of the class
is to iterate with feedback from the students to make it more effective each semester.

REFERENCES
Ahmed, F., Capretz, L. F., & Campbell, P. (2012). Evaluating the demand for soft skills in software develop-

ment. IT Professional, 14(1), 44-49. https://doi.org/10.1109/MITP.2012.7

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith,
J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., &
Thomas, D. (2001). The agile manifesto. Agile Alliance. http://agilemanifesto.org/

Galster, M., Mitrovic, A., Malinen, S., & Holland, J. (2022). What soft skills does the software industry *really*
want? An exploratory study of software positions in New Zealand. In Proceedings of the 16th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM '22). Association for Compu-
ting Machinery, New York, NY, USA, 272–282. https://doi.org/10.1145/3544902.3546247

Garousi, V., Giray, G., Tuzun, E., Catal, C., & Felderer, M. (2020). Closing the gap between software engineer-
ing education and industrial needs. IEEE Software, 37(2), 68-77.
https://doi.org/10.1109/MS.2018.2880823

Linden, T. (2018). Scrum-based learning environment: Fostering self-regulated learning. Journal of Information
Systems Education, 29(1), 65-74.

Oguz, D., & Oguz, K. (2019). Perspectives on the gap between the software industry and the software engi-
neering education. IEEE Access, 7, 117527-117543. https://doi.org/10.1109/ACCESS.2019.2936660

Precedence Research. (2022). API Management Market (by Component: Solutions, Services; by Deployment: On Premises,
Cloud; by Organization Size: Large Enterprises, Small and Medium Enterprises; by End User: Banking and Financial
Institutes, Retail, IT and Telecommunications, Consumer Goods, Others) - Global Industry Analysis, Size, Share, Growth,
Trends, Regional Outlook, and Forecast 2022-2030. https://www.precedenceresearch.com/api-management-
market

Sahin, Y. G., & Celikkan, U. (2020). Information technology asymmetry and gaps between higher education in-
stitutions and industry. Journal of Information Technology Education: Research, 19, 339-365.
https://doi.org/10.28945/4553

Stepanova, A., Weaver, A., Lahey, J., Alexander, G., &. Hammond, T. (2021). Hiring CS graduates: What we
learned from employers. ACM Transactions on Computing Education (TOCE), 22(1), 1–20.
https://doi.org/10.1145/3474623

Umar, M., & Ko, I. (2022) E-Learning: Direct Effect of Student Learning Effectiveness and Engagement
through Project-Based Learning, Team Cohesion, and Flipped Learning during the COVID-19 Pandemic.
Sustainability. 2022, 14(3),1724. https://doi.org/10.3390/su14031724

https://doi.org/10.1109/MITP.2012.7
http://agilemanifesto.org/
https://doi.org/10.1145/3544902.3546247
https://doi.org/10.1109/MS.2018.2880823
https://doi.org/10.1109/ACCESS.2019.2936660
https://www.precedenceresearch.com/api-management-market
https://www.precedenceresearch.com/api-management-market
https://doi.org/10.28945/4553
https://doi.org/10.1145/3474623
https://doi.org/10.3390/su14031724

Integrating Agile Software Development Practice

8

AUTHOR
Anthony Kampa is a Software Engineer at Digikey Electronics. He
earned his Bachelors in Software Engineering from the University of
Minnesota Crookston. A large portion of the curriculum there was taught
using the Agile Methodology. This shaped his research interests to focus
on how to bring realistic work experiences into the classroom and investi-
gate the best way for any professor to teach a class using Agile.

Dr. Christine Bakke is an associate professor at Grand Canyon Univer-
sity where she is an instructor in Cybersecurity, Information Technology,
and Computer Science programming. After earning an IT PhD focused
on active learning and educational robotics, she taught Computer Science,
IT, and Software Engineering for Universities in Northern Minnesota.
Her work with students often incorporates prior experiences from her
professional career working with networking, cybersecurity, databases,
servers, and programming. Current research interests include complex
programming projects, active learning, robotics, development of disabil-
ity-assistive software, and IoT.

	Integrating Agile Software Development Practice in a Classroom Setting
	Abstract
	Introduction
	Background
	Literature Review
	Methodology
	Results and Recommendations
	Example Progression
	Limitations of Recommendation

	Limitations and Future Research
	Conclusions
	References
	Author

