

Online July 6-7, 2022

Accepted by Editor Michael Jones │ Received: January 12, 2022 │ Revised: April 17, 2022 │
Accepted: April 20, 2022.
Cite as: Quindazzi, E., & Sambasivam, S. (2022). An exploration of a virtual connection for researchers and
educators by exploring strategies enterprise information systems specialists need to integrate novel neural net-
work algorithms into an imaging application – A design science study. In M. Jones (Ed.), Proceedings of InSITE
2022: Informing Science and Information Technology Education Conference, Article 24. Informing Science Institute.
https://doi.org/10.28945/4953

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

AN EXPLORATION OF A VIRTUAL CONNECTION FOR
RESEARCHERS AND EDUCATORS BY EXPLORING

STRATEGIES ENTERPRISE INFORMATION SYSTEMS
SPECIALISTS NEED TO INTEGRATE NOVEL NEURAL

NETWORK ALGORITHMS INTO AN IMAGING
APPLICATION – A DESIGN SCIENCE STUDY

Emma Quindazzi Infosys, Tampa, Florida, USA emma@emmaquindazzi.com

Samuel Sambasivam* Woodbury University, Burbank,
CA, USA

Samuel.Sambasivam@Woodbury.edu

* Corresponding author

ABSTRACT
Aim/Purpose The problem statement in the proposed study focuses on what strategies enter-

prise information systems specialists need to integrate novel algorithms into an
imaging application that had not yet been identified. The aim is to demonstrate
that a cross-convolutional neural network can be implemented within the home
laboratory – an exploration of a virtual connection for research. An analysis of
the works provides the basis for future extensibility of the software application
for ImageJ2.

Background The study was guided by the research question: What strategies do enterprise in-
formation systems specialists need to integrate novel algorithms into an imaging
application? This study demonstrates how to bring a lab-tested application
online within a home laboratory to further build upon those findings.

Methodology A conceptual analysis was utilized for the artifact’s creation within the umbrella
of design science to aid in the data interpretation segment. A conceptual frame-
work was developed to determine relevant subject matter, such as useful soft-
ware applications and technological enhancements to an image application. A
research sample was not used in this study.

https://doi.org/10.28945/4953
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:emma@emmaquindazzi.com
mailto:Samuel.Sambasivam@Woodbury.edu

An Exploration of a Virtual Connection for Researchers and Educators

2

Contribution This research contributed to the body of knowledge by using a cross-convolu-
tional neural network to explore novel algorithms as an enterprise information
system specialist and set up the imaging application called ImageJ2 for develop-
ment. The study’s setup is documented in a series of steps to demonstrate the
how-to set up such a study.

Findings The findings were that it is possible to implement an existing work from within
the home laboratory, steps of which are outlined for those to follow. Future
work can be extended from the baseline workings. Furthermore, an analysis of
the existing code was determined to see if the existing PyTorch code could be
developed within Java to act as an extension to ImageJ2 later. By examining the
programming code and the cross-convolutional functionality, a determination
was made on the best Java mapping. A set of highlights of the processes used
are included.

Recommendations
for Practitioners

The study intersects two differing realms: artificial intelligence and the enter-
prise information systems network. This study builds upon an AWS system and
details the steps to implement an artificial intelligence system on the Amazon
Web Service (AWS) platform. The researcher investigated existing software im-
aging Java applications and probed the areas of potential extensibility for imple-
menting the artificial intelligence novel algorithms.

Recommendations
for Researchers

The concept of being able to bring online a turnkey set of computer hardware
off-the-shelf within the home laboratory may be an unexplored avenue to some
researchers. The recommendation is to encourage researchers to see past the
constraints that a lack of hardware may bring about for computer science re-
search. The researcher no longer has to be within an office laboratory on cam-
pus to access power computers. The doors are open to exploring a whole new
world. It explores how to move through the various linkage issues with old li-
braries and new systems. Other avenues this research can enhance are extending
the ImageJ libraries as a Java plugin with the novel algorithms such as the cross-
convolutional network implemented on the AWS platform.

Impact on Society Expanding the accessibility to the researcher and practitioner field could be pro-
found. No longer is the researcher or practitioner constrained to the office la-
boratory. This work shows how to move through the issues to invoke the soft-
ware to produce and investigate existing software. The findings and guidance of
this study are profound.

Future Research Future research should focus on implementing the mappings table as deter-
mined in previous research. A future design could be pursued from the analysis
and implementation of a Java neural network algorithm as a basic implementa-
tion. Java can chain elements to begin replicating the algorithm by Xue et al.
(2019). The cross-convolutional element should have further analysis to ensure
the full replication within Java.

A cross-convolutional neural network (CCNN) Java algorithm could be imple-
mented and trial run within the code; this would allow for the leverage of the
heavy lifting of the program code to predict image motion. There seemed to be
few approaches regarding predicting motion frames of a future image, and such
predictions could be a giant leap for the health care world regarding micro-
scopic and x-ray images.

Quindazzi & Sambasivam

3

Keywords artificial intelligence, artificial intelligence in medicine, butterfly recognition,
CIBR, computer vision, content-based image retrieval systems and Java, convo-
lutional neural network, cross-convolutional neural network, deep learning, digi-
tal imaging, future image prediction, image recognition, ImageJ, ImageJ2, recur-
rent neural network, video motion

INTRODUCTION
To date, analysis is ongoing in image recognition with predicting future frames captured from video.
Since its launch by Wayne Rasband and, later on, by Schneider et al. (2012), ImageJ has been a Java-
based imaging software application. ImageJ was a world-renowned open-source software product,
and ImageJ2 was a later launch of the original ImageJ software. The core part of the software library
from ImageJ was included in ImageJ2. ImageJ2 (Rueden et al., 2017) was an open-source software
application to manipulate static images.

The research problem addressed in the proposed study was to explore the strategies enterprise infor-
mation systems specialists needed to integrate novel algorithms into an imaging application (Rueden
et al., 2017; Schneider et al., 2012). Various algorithms were analyzed, primarily the cross-convolu-
tional neural network by Wu (2020). Furthermore, later analysis involved the prediction of the 2D
image movement of a butterfly. The sample evaluated the existing Lua-based cross-convolutional al-
gorithm developed by Wu (2020) and Xue et al. (2019).

Image prediction from video analytics was a field of increasing interest. Having computers interpret
images as a 2-year-old would visualize them was an ongoing challenge (Szeliski, 2010). Several studies
have analyzed video content that produced frames for prediction. The work of Liu (2009), Wu
(2020), and Xue et al. (2019) determined image prediction by a series of steps using encoders and de-
coders. These encoders and decoders manipulated the image to be captured for motion prediction
through a series of frames, synthesizing out several frames from one central frame (Liu, 2009; Wu,
2020; Xue et al., 2019).

Within this study, an exploration took place via steps to bring online the demonstration run by Xue
et al. (2019) from within a home office. The demonstration used motion encoders, image encoders,
feature maps, and kernel decoders. Measurements of the movement were captured as predicted, and
ground truth element comparisons were given between software platforms. The study explored the
software ImageJ2 (Rueden et al., 2017), widely used within the medical field and renowned for its
handling of images. Suggestions for future work were covered within this study with ImageJ2 and the
prediction of an image from motion or a video sequence.

As a solution to the issue of synthesizing frames, the researcher investigated plugins for ImageJ2 that
could predict unwanted clinical outcomes, such as Gomez‐Perez et al. (2016) mentioned. This study
partially focused on medical imaging tools and research demonstration software using cross-convolu-
tional neural networks. The medical field has contributed significantly to the progression of image
analysis, and there was a lack of efficient automated deep convolutional neural network analysis tools
for medical imaging (Suleymanova et al., 2018). The cross-convolutional technique was a novel algo-
rithm (Wu, 2020). After extensive research, the researcher found a lack of plugins and the ImageJ2
core library source code lacking in the cross-convolutional algorithmic technique.

The researcher had determined that the solution was to explore the possibility of executing the
demonstration run by Xue et al. (2019) from within the home office lab. The researcher presented
images on the invocation of an initial plugin. This study aimed to analyze the demonstration by Xue
et al. (2019). The future integrations of the plugin and core code will be suggested in future work.

An Exploration of a Virtual Connection for Researchers and Educators

4

PROBLEM STATEMENT
The problem to be addressed in the proposed study was what strategies enterprise information sys-
tems specialists need to integrate novel algorithms into an imaging application that had not yet been
identified (Rueden et al., 2017; Schneider et al., 2012). Wu (2020) provided a cross-convolutional neu-
ral network novel algorithm that could predict 2D image movement from video motion. Studies by
Rueden et al. (2017) offered the ImageJ2 next generation of the image analysis tool. Furthermore,
Wolfgang et al. (2020) compared various algorithms for image analysis. The research emerged, cover-
ing motion with video using ImageJ2 as a testing platform (Popek & Iskander, 2020).

Previous studies incorporated the slanted edge algorithm as a well-known function to determine an
image’s quality (Roland, 2015). Furthermore, bioimaging has produced other open-source tools,
namely BioImageXD, a well-known and widely used application (Kankaanpää et al., 2012). However,
ImageJ2 and BioImageXD were vastly different. ImageJ2 was a platform for manipulating singular
images, and BioImageXD was an autonomous platform that used multiple algorithms for 3D visuali-
zation. Consequently, the core libraries for ImageJ2 included many algorithms but lacked novel algo-
rithms (Arena et al., 2016; Rueden et al., 2017).

The baseline of this study was to determine if it was possible to implement the demonstration code
produced by Xue et al. (2019). By analyzing the baseline, the researcher would understand how the
algorithms operate. Additionally, the researcher had to gain a foundational knowledge of existing re-
search. The study analyzed work elsewhere established with static images and convolutional neural
networks in a software application, one of which was called Glucotrol XL (Wolfgang et al., 2020).
Optical coherence tomography (OCT) was a well-known imaging technology within medicine that
used 2D and 3D images. Furthermore, biological research has included cell classification using mi-
croscopic images using convolutional neural networks (Oei et al., 2019).

ImageJ2 is used for static image analysis, and any image enhancement is implemented with Python
Imaging Library Pillow. The ImageNet (ILSVRC2012) dataset provided a wealth of images for the
study by Oei et al. (2019). Despite these studies, there seemed to be a lack of research that imple-
mented motion prediction using a cross-convolutional algorithm in the main codebase of ImageJ2.
Research has emerged as an emerging area for motion prediction as a frame, with video prediction
remaining an unsolved issue (Wu, 2020).

Increasingly, artificial intelligence has shaped enterprise networks worldwide (Gilbert, 2018). With the
advent of digital transformation and lowering operational costs, companies looked for artificial intel-
ligence to drive the business forward. This study was from an enterprise information specialist’s per-
spective exploring artificial intelligence functionality regarding a novel algorithm integrating into a
Java-based software imaging application. The Java programming language significantly contributed to
enterprise applications’ success (Antoniadis et al., 2020). This study included invoking a Java imaging
application as a suggestion for integrating the state-of-the-art neural network technique.

PURPOSE
The purpose of the proposed design science study was to explore what strategies enterprise infor-
mation systems specialists need to integrate novel algorithms into an imaging application. The re-
search focused on existing and novel algorithms, such as the cross-convolutional neural network al-
gorithm. The study did not involve human subjects. The research followed the design science ap-
proach (Dresch et al., 2014; Wieringa, 2014). The use of the design science methodology allowed for
the exploration of a software artifact.

SIGNIFICANCE OF THE STUDY
This study is significant as it could offer guidance on implementing a novel algorithm, such as the
cross-convolutional neural network (Wu, 2020), within a home laboratory. Cross-convolutional neural

Quindazzi & Sambasivam

5

networks have been used to predict image movement from a motion video. Work has been per-
formed within Java, ImageJ2, an open-source software application using plugins and other standalone
forms of software for image retrieval and image matching. This study included work from previous
researchers, such as Liu (2009), Wu (2020), and Xue et al. (2019). For this reason, the study focused
on the demonstration code for the recent studies obtained in the public domain, obtaining a baseline
for this study.

The existing demonstration code by Wu (2020) synthesized future frames using deep learning. A
comparison of the motion of image shapes was made, and the KL divergence was calculated. Move-
ments were predicted from a single snapshot. For example, a person exercising would move their leg
up and down; furthermore, the work of Xue et al. (2019) was used as a foundation for the study by
Wu (2020).

Experiments were performed by Wu (2020) with Atari games of basketball players, with the quantita-
tive results measured as ground truth segments for 30 images. A comparison was drawn between two
baselines, and the test was named the parts, structure, and dynamics (PSD) test. The focus of this
study was on the set of shapes provided by previous research.

The results found that the human exercise (Liu, 2009; Wu, 2020; Xue et al., 2019) dataset tested as an
intersection over union vastly outperformed the two baseline models. This study used another da-
taset, the toy shapes dataset (Liu, 2009; Wu, 2020; Xue et al., 2019), and did not use any human sub-
jects in the research. The convolutional neural network algorithm had to be implemented initially.
The work of this research study was groundbreaking; the researcher had not found any existence of
such a study that has focused on setting up and attempting to run a demonstration by Xue et al.
(2019).

LITERATURE REVIEW

THE HISTORY OF BUTTERFLY EVOLUTION AND IDENTIFICATION
The butterfly image can be used in future work for this research and serves as a challenging area for
predicting butterfly type. To begin, the researcher implemented a set of images and neural networks
provided by Liu (2009), Wu (2020), and Xue et al. (2019). An exploration can incorporate the video
motion of a butterfly and the prediction of image scenes; consequently, obtaining the pattern from
the butterfly and predicting the type of butterfly.

Furthermore, to understand how images were retrieved using butterflies as an example, one must ex-
amine the existing research on how butterfly colors, patterns, and wing shapes were formed. Several
researchers studied wing pigment synthesis to understand how the different color patterns (Futahashi
et al., 2012; Nijhout, 1980) were formulated on a butterfly. Since Darwin’s theory, mimicry has been
in existence (Mallet, 2001). Mimicry is when a butterfly develops patterns that look like or mimic an-
other butterfly species to avoid predation.

The groundplan (Nijhout, 2001) covers the various pattern variants on a butterfly wing. The basal,
central, border ocelli, marginal, and submarginal bands all make up the ground plan elements. Conse-
quently, eyespots on butterflies could be externally manipulated to reproduce the pattern – studies of
gene-expression patterns determined how the butterfly obtained its eyespots (Beldade & Brakefield,
2002). The groundplan may contribute to image retrieval and specifics for feature vector maps.

THE BENEFITS OF THE JAVA PROGRAMMING LANGUAGE
Java is an open-source programming language now owned by the Oracle Corporation. Java is mainly
for business use and is an object-oriented programming language. Matlab (n.d.) is a commercial soft-
ware package often used within the scientific community for artificial intelligence. Commercial soft-
ware’s disadvantages were that they tend to be costly to use and requires a site-wide license (Sage &

An Exploration of a Virtual Connection for Researchers and Educators

6

Unser, 2003). Furthermore, Java offered the enterprise functionality with its Java enterprise platform
(JEE) and had an open-use policy.

Additionally, existing software applications lacked a way to communicate with one another. The Java
programming language was used in many situations to create a bridge between two applications. In-
deed, Inés et al. (2019) highlighted a lack of a software bridge between bio-tools, ImageJ, and
DeepLearning4j. According to Kainz et al. (2015), commercial image retrieval software did not have
the extensibility advantage of open-source software, and licensing issues for commercial software
were one of the biggest reasons for lack of use.

The Java programming language has an extensive library that can be implemented for neural net-
works. Java is a prevalent language within the artificial intelligence field and has been used for so
many research applications ranging from sentiment analysis for writing (Zahidi et al., 2021) to cancer
type prediction with recurrent type networks (Karim, 2018).

ARTIFICIAL INTELLIGENCE, DEEP LEARNING, AND THE ROLE OF
MULLERIAN MIMICRY
The research by W. Zhang et al. (2018) mentioned a lack of a general definition for the term deep
learning. An investigation of existing definitions of deep learning was performed. The conclusions
were that deep learning was defined as the knowledge that resides over two or more variables or
instances that establish a relationship. An in-depth learning methodology was proposed with a series
of steps and remarks. Bishop’s (2006) early work outlined that searching for patterns in data has long
been an issue.

Research continued to evolve with deep learning to transform challenging datasets. Barbastathis’
(2020) research stated that machine learning is highly efficient with the hardware system it was run
on, and it delivered excellent results for computational imaging. Additionally, these architectures
mainly used deep learning networks.

Neural networks are nonlinear regression techniques (Kuhn & Johnson, 2013) and operate on the
theoretical concept of how the brain works. Many computer vision algorithms and techniques have
been used, and more efficient algorithms have been trending (Szeliski, 2010). Research has found that
deep learning approaches have been highly successful (Karim et al., 2020).

Deep learning-based approaches that are state-of-the-art tend to outperform classical clustering
analysis (Karim et al., 2020). Deep learning has grown and has been highly successful in image
recognition. A total of 80 million different connections may be obtained from layer number one.
Convolutional neural networks can automatically implement a more vital descriptive ability (Tan et
al., 2020). The automation of descriptives would prove highly advantageous over manually sifting
through data.

Lepidoptera, also known as the butterfly insect species, ranges from 15,000 to 21,000, according to
Almryad and Kutucu (2020). Some of the issues of butterfly classification consisted of slow retrieval
and low accuracy ratings. The study concluded that an 80% successful match rate could be achieved
using deep learning and a convolutional neural network. Fine-grained categorization of butterfly
specimens was a current study area such to Lin et al. (2019). Consequently, there was a need for an
automated system for fast image classification that did not need human intervention throughout the
entire process.

CONVOLUTIONAL NEURAL NETWORKS (CNN) FOR IMAGE RECOGNITION
SOFTWARE
Directly applicable to the realm of neural networks were CNNs. CNNs were a set of connections
defined as a convolutional layer (Karim, 2018). A CNN recollects its previous knowledge, a form of

Quindazzi & Sambasivam

7

memory. The lower layer focuses on small areas of an image, whereas the higher layer overlaps the
lower-level features making them much more extensive. The neighborhood filtering, also known as
convolution, is detailed in the research by Szeliski (2010). Figure 3 shows the input image along with
the various convolutions.

The new image output was a convolutional map, where the maps are made into flattened vectors
named characteristics, also known as the CNN code. To conclude, CNN was highly advantageous
over supervised learning due to the vast amounts of data the machine can learn and accurately de-
liver. Karim (2018) states that CNN has been widely used in computer vision.

State-of-the-art neural network algorithms
Artificial neural networks (ANNs) consist of many state-of-the-art algorithms under the guise of
deep learning. Deep learning resided under the umbrella of machine learning within artificial intelli-
gence (Karim, 2018). Deep neural networks were considered state-of-the-art in deep learning. One
of the most successful models was the multilayer perceptron using the feed-forward function
(Bishop, 2006). An investigation into cross CNNs with image recognition follows.

Cross-Convolutional Neural Networks (CCNNs) for image recognition
Recently, research expanded to include CCNNs. Y. Zhang et al. (2019) introduced the CCNNs for
intrusion detection. The You Only Look Once (YOLO) algorithm aimed to reduce the neural net-
work volume and the time taken to train the model. Indeed, speed improvements were significant
benefits to the nascent model. A timed comparison of a 3x3 convolutional model using four other
models found that as the network depth increases, so did the optimization of the parameters. Previ-
ously, work by Du (2018) evaluated the use of the YOLO algorithm.

Furthermore, this algorithm also surpassed the R-CNN algorithm. Work has been ongoing by Wu
(2020) regarding cross-convolutional networks with 2D shapes and animated sprites in games. The
analysis had also involved video footage and analysis of image pairing, and a relationship was deter-
mined without any supervision. Convolutional kernels were models with motion prior to and future
captured (Burger & Burge, 2016). Additionally, the nascent recurrent neural networks were currently
in development.

Recurrent Neural Networks (RNNs) for image recognition
RNNs can map their sequential input data to an output, which gives the network a form of memori-
zation technique (Wang et al., 2020). There were two improvements to existing models: the long-term
memory and gated recurrent units (Karim, 2018). The nodes in each RNN layer had a relationship
with the neighboring node; however, the issue with RNN was that there was a gradient problem with
the data. Memorization of the data was vital and allowed for efficiency.

RNNs allowed for data memorization due to the nodes’ cross-functionality (Wang et al., 2020). Stud-
ies on pothole detection, single rain streak removal, and multi-deep ranking for supervised hashing
with image retrieval were ongoing. Frameworks were proposed, and classification work continued to
gain ground in the field. Furthermore, work continued in the healthcare sector, such as Karim (2018),
a cancer patient project using an RNN using DeepLearning4j. Also, there were many existing auto-
matic identification and retrieval software systems, some of which are described next.

Existing automatic identification and retrieval software applications
There was a wealth of automatic identification software; however, these systems had accuracy issues
(Pavithra & Sharmila, 2019). Many studies have attempted to retrieve images by recognizing objects.
A study involving medical image analysis by Litjens et al. (2017) could have contributed to the pro-
gression of the butterfly image dataset.

An Exploration of a Virtual Connection for Researchers and Educators

8

RESEARCH METHOD AND DESIGN
This study’s research method is design science and consists of an object of research, namely several
artifacts, one of which is the demonstration by Xue et al. (2019). The second is ImageJ2. The study
would have a direct approach, investigating the artifact (Wieringa, 2014). The study does not involve
the use of human subjects. This research aimed to produce an artifact implementation set that could
be used for open-source software novices to implement.

Design science was a method that could be used to solve a problem in the creative science realm. De-
sign science is instrumental when a clear path to a solution was unknown (Wieringa, 2014). For ex-
ample, within this context, the design of a fast calculation for artificial intelligence using an enterprise
programming language such as Java. In this study, the research question was to move toward imple-
menting the artificial intelligence model from a home laboratory with the model’s novel algorithms’
implementations. The study uses the 12-step method for design science research as Dresch et al.
(2014) proposed.

Figure 1. The proposed method for design science research

A hypothesis was not imposed on the study’s data; therefore, this study does not include a hypothesis.
Quantitative approaches could be used, but the meaning of why those techniques are used is vital
(Glaser, as cited in Holton & Walsh, 2016). This design science study would involve (1) conducting
background research, (2) simulating the experiments, (3) implementing the plugin for ImageJ2, and
(4) analyzing the artifact. An approach taken by Xue et al. (2019) and Wu (2020) has been used. In
design science, the artifact would be the demonstration, the implementation of the ImageJ software,

Quindazzi & Sambasivam

9

and the analysis of the source code from the demonstration. Further, a detailed analysis of a Java to
PyTorch mapping for future work.

Participants
There were no participants in the study directly. Images used from previous works by Xue et al.
(2019) and Wu (2020) were used.

Instruments
The researcher used a single-case mechanism type of experiment - a form of program test via soft-
ware implementation for a cross-convolutional neural network.

Procedures
The procedures used were diary notes and images of screenshots of the steps taken and processes
used to resolve issues with the software implementations.

Design
The study design followed the 12-step process mentioned in Figure 1 for design science (Dresch et
al., 2014).

Data analysis
Data analysis would involve using the installation and execution of the existing code base for ImageJ
and ImageJ2. Along with installing the demo software for the work with CNNs (Wu, 2020; Xue et al.,
2019).

RESEARCH QUESTION
The research question for this design science study was:

RQ1: What strategies do enterprise information systems specialists need to integrate novel algo-
rithms into an imaging application?

DATA COLLECTION
The study implemented a conceptual analysis for the approach (Wieringa, 2014) while implementing
a conceptual framework within design science. The conceptual analysis incorporated the documents
such as articles in periodicals, conference proceedings, and other peer-reviewed, highly cited, and rel-
evant literature, books, and software artifacts gathered in part from the discovery of the conceptual
framework. The traditional research approach is limited to artifact design. The primary goal of the
design science methodology is to provide a better fit regarding the inception, construction, and crea-
tion of an artifact into a methodology. The traditional sciences such as biology, chemistry, physics,
and sociology focus more on the “how”, such as how can one chemical compound affect another
compound (Simon, as cited in Dresch et al., 2014).

The data collection instrument was a Mac Pro with 16 GB with 1TB of data. The Mac Pro was run-
ning version 10.15.7, a Mac Operating system Catalina version. The data collection would consist of
investigating the existing software artifact as a downloadable demonstration from MIT by Xue et al.
(2019). The Amazon Web Service (AWS, 2021) (was implemented via a paid subscription basis). The
Amazon Web Service allowed for the functionality of the CUDA GPU, for which the researcher’s ex-
isting machine did not have the capacity. The Eclipse IDE (The Eclipse Foundation, 2021) was
downloadable as freeware, and the ImageJ plugin implementation tutorial libraries were also a freely
available download (Rueden & Schindelin, n.d.).

An Exploration of a Virtual Connection for Researchers and Educators

10

DATA ANALYSIS
The data analysis was classified as requirements gathering within a design science research methodol-
ogy (Wieringa, 2014). Data analysis involved using the installation and execution of the existing code
base for ImageJ and ImageJ2, along with installing the demo software for the work with CNNs (Wu,
2020; Xue et al., 2019). The requirements were analyzed via a source code line-by-line set of com-
ments. The existing API for PyTorch was referenced, and a table mapping was implemented for the
bridge between Java and PyTorch.

The study ran into some issues with access to the online demonstration code by Wu (2020) and Xue
et al. (2019). The exercise demonstration was the only one accessible, and the researcher reached out
via email, and access was granted. The researcher did not have to use alternative datasets such as the
Middlebury optic flow evaluation website (Baker, as cited in Szeliski, 2010). Another is the TV-L1
Optical Flow on the GPU (Zach, as cited in Szeliski, 2010).

Additionally, there were alternatives to the cross-convolutional algorithm. A direct convolution that
used video motion or extended short-term memory networks could have been an option. Alterna-
tively, the study of DeepClass4Bio API by Inés et al. (2019) could have bridged the gap between the
ImageJ2 and PyTorch. The algorithm by Wu (2020) could have been added via the bridge to ImageJ2.

FINDINGS
The data collection study focused on the work by Wu (2020) and Xue et al. (2019). The researcher set
up the Cuda GPU and used the Ubuntu 18.04 operating system for the demonstration for compila-
tion and execution. The report following outlined the steps taken with figurative screenshots. The
Eclipse environment was set up locally on the Mac OS within the home office laboratory, and ImageJ
was set up locally. Eclipse, Maven, and ImageJ software were installed.

Table 1 defines a mapping between Java using the DeepLearning4j and PyTorch libraries, a first pass
of the existing code. The demo.py code produced by Xue et al. (2019) and adapated with source code
comments can be found in the Appendix. Previously, the various encoders and decoders were inher-
ited via the nn.Module deep learning class. The researcher used this approach with Java, like a series
of chain commands to configure the various manipulations on the tensor. The various layers could
be built and instantiated individually, such as ConvolutionLayer layer0 = new Convolu-
tionLayer.Builder(5,5). Within Java, this layer could call methods on the convolution, one of which
can be a stride: the number of pixels the window moves over once the operation is complete (Amidi
& Amidi, 2021). Other methods were dropout(0.4) which decreases the overfitting, and nOut(10),
determined as the number of feature maps (Karim, 2018).

Table 1. Exploratory first pass view of mapping of demo.py classes to Java classes

Mapping of PyTorch PyTorch Library
Name Mapping of Java Java Library Name

ImageEncoder

MotionEncoder

KernelDecoder

ImageDecoder

Super class
nn.Module

Image Encoder/Decoder

Motion Encoder/Decoder

org.deeplearning4j.nn.conf.Neural-
NetConfiguration

Conv2DLayer Lasagne Convolution2D org.deeplearning4j.nn.conf.lay-
ers.Convolution2D

LinearLayer nn.Linear MultiLayerConfiguration org.deeplearning4j.nn.conf.Multi-
LayerConfiguration

Quindazzi & Sambasivam

11

UNet UNet UNet org.deeplearn-
ing4j.zoo.model.UNet

The build method created the layers as a chained command at the end of the method calls. The ex-
ample in Figure 1 had a 5 x 5 kernel with one channel, a stride of 3 x 3, and a feature map of 15. The
activation type was rectified in linear units. There are three types of ReLU; these are ReLu,
LeakyReLU, and ELU (Amidi & Amidi, 2021). This function aimed to bring nonlinear elements into
the network. The LeakyReLU is used in the demonstration by Xue et al. (2019), which aimed at elimi-
nating the dying ReLu negative values issue.

ConvolutionLayer layer0 = new ConvolutionLayer.Builder(5,5)
 .nIn(nNoOfChannels)
 .stride(3,3)
 .nOut(15)
 .dropOut(0.4)
 .activation(Activation.RELU)
 .build()

Figure 2. Chained Java command for a convolutional layer

Table 2 details the function mapping from PyTorch for the convolutional 2D unsqueeze function.
There was no direct mapping for this functionality within Java to the researcher’s knowledge. In this
instance, a potential option was to use a bridge with a C++ frontend and a PyTorch backend (Audet,
2021). JavaCPP allowed for the use of the C++ API via the Java programming language. The C++
API provided an equivalent unsqueeze method that could potentially be implemented that changed
the tensor dimensions, i.e., from a 2D to a 3D tensor (Iacob, 2021), thus making the implementation
accessible via the Java language.

Table 2. Exploratory first pass view of mapping of demo.py method to Java

Mapping of
PyTorch

PyTorch Method
Name

Mapping of Alternative
Language

conv_cross2d Conv2d unsqueeze,
appended, and con-
catenated to an out-

put array

C++ API provides an equivalent
unsqueeze method, which can be

accessed via JavaCPP. A C++
frontend is used in conjunction

with PyTorch

org.bytedeco.PyTorch.presets

According to Nguyen et al. (2019), Torch7 was no longer under development, and the most recent
version at the time of research was Torch7. The PyTorch library was mainly used; a Python interface
was used with the Torch7 same underlying C libraries. Therefore, the researcher concluded that it was
viable to use the PyTorch API library as a reference to analyze the code functions.

Furthermore, it has become apparent that t7 models were no longer compatible with PyTorch. The
serialization libraries used in Torch7 were also not available for PyTorch. According to Amir (2019),
the t7 models cannot be imported from Lua Torch to PyTorch. Xue et al. (2019) also created a sec-
ond demonstration code project with a person exercising developed in Lua Torch7. The Lua Torch7
model could be converted using pre-existing libraries such as Pip in a Conda environment. A pre-ex-
isting repository was created to do this Clcarwin (2017) as outlined by Arul (2021, April 19). The t7
model could be converted from Torch7 into PyTorch. However, this study did not use this research,
and the focus of this study was on the shapes dataset.

An Exploration of a Virtual Connection for Researchers and Educators

12

This study is further detailed in Quindazzi (2021), demonstrating the preliminary steps to arrive at
Figure 3. As shown in Figure 3, the error was rectified by importing the torchvision libraries via the
pip3 install torchvision command. The classes were downloaded and installed for Torch. Next, the
researcher reverted to running the original command for the shapes demo software. pipenv run py-
thon demo.py --GPU 2 ran.

Figure 3. Torch module not found error

The researcher has almost completed the execution of the demonstration shapes file. The bottom of
the screen shows in Figure 4 a runtime error for CUDA with an invalid device ordinal. The following
steps investigated the CUDA GPU and what was available on this instance via AWS EC2 Tesla T4.
As can be seen in Figure 5, the hardware was available. The researcher started to investigate why
there was an issue regarding invoking the GPU. Strangely it seemed no CUDA runtime was available.
NVIDIA recommended the CUDA GPU makers to run the following commands in this situation:
sudo make and ./devicequery in the relevant directories (Franklin, 2021). The Tesla T4 device query
was executed without any issue. If the GPU had not been available, this terminal output would not
have been executed. Figure 6 shows that there is 1 CUDA-capable device.

Quindazzi & Sambasivam

13

Figure 4. Demo.py (Xue et al., 2019) beginning to run

Figure 5. AWS EC2 G4dn.large TESLA T4 instance

An Exploration of a Virtual Connection for Researchers and Educators

14

Figure 6. CUDA available

Figure 7 showed the result as a PASS for the CUDA GPU, the device was operating correctly, and the
GPU had been detected in the container. It would have received a FAIL result had the GPU not been
detected. To follow was an analysis of the results of the terminal output of the final execution of the
recommended command: pipenv run python demo.py --GPU 1.

Quindazzi & Sambasivam

15

Figure 7. The number of devices listed and the pass for the CUDA GPU

On further debugging the GPU issue and changing the GPU ID for the actual GPU number of de-
vices on the amazon instance, the command was changed to pipenv run python demo.py --GPU 1;
however, the same previous runtime error on the CUDA GPU still occurred. Figure 4 previously
showed the lines of code where the issue occurred with the Runtime error: CUDA error: invalid de-
vice ordinal. The demo.py file was investigated further, and an analysis of the following lines of code
that were potentially causing the issue in the demo.py (Xue et al., 2019):

def main(args):

 # set device (CPU / GPU)

 if args.GPU == '-1':

 device = torch.device('CPU)

 else:

 device = torch.device('cuda:{}'.format(args.GPU))

The execution failed to invoke the GPU NVIDIA CUDA device with an argument of 1.

Figure 8 details the output and shows the GPU device set to 1. Figure 8 shows the demo.py file error
at line 43 with the model.to(device) code. The following is the set of code that was executed at line
41-43 in the other demo by Xue et al. (2019):

model = PSD(dimensions=args.dimensions, size=args.size)

model.load_state_dict(torch.load(args.resume, map_location='cpu'))

 model.to(device)

An Exploration of a Virtual Connection for Researchers and Educators

16

Figure 8. GPU was set to 1 device, yet there was a traceback error

There is no if condition within this code block on lines 41-43. The location of the load via torch
points directly to a CPU and not a GPU. Furthermore, this line of code is exactly where the code
failed for the GPU loading. Therefore, the researcher wanted to experiment with a -1 GPU switch,
setting the device to a CPU as it appeared the code would run with this switch. With the switch set as
-1 as pipenv run python demo.py --GPU -1 set as a CPU, the code executed perfectly, and the output
was given as in Figure 9, a 100% successful execution.

The researcher’s knowledge extends within this exploration; an assumption was made that the code
for the demo.py shapes project was tailored to a CPU and not a GPU. As the instance used was a po-
tent AWS Tesla T4, the GPU is by default recognized as a CPU, meaning that the GPU is the primary
device run. That, by default, could be the -1 flag invoking that GPU. One way to test this would be to
run a GPU monitor while the data is invoked to check that the GPU is fired.

Figure 9 shows the 100% complete demonstration progress bar for running the demo.py file. The
various arguments parsed can be seen. The toy shapes dataset was loaded, and the output is seen in
Figures 9 and 10.

Figure 10 shows the working HTML file with the sourced images and the output. To date, the re-
searcher has two other artifact constructs that are used. The previous analysis included annotating
the existing code base for the shapes demonstration by Xue et al. (2019). The second is the study of
the mappings between PyTorch and Java as a mapping table.

Quindazzi & Sambasivam

17

Figure 9. Code attached to the CPU implementation of shapes demo.py (Xue et al., 2019)

An Exploration of a Virtual Connection for Researchers and Educators

18

Figure 10. The shapes demonstration webpage output

Data were collected to get the demonstration programming code up and running. The shapes dataset
used a different operating system version than the other exercise demonstration data set (Wu, 2020;
Xue et al., 2019). The researcher wanted to replicate the exact version of the Ubuntu operating sys-
tem to ensure the shapes demonstration would attempt to mirror the original implementation and
hold the least risk of failure. By mirroring the implementation, the chances of success increased. An
extensive number of libraries were required to be linked and imported via the Ubuntu system. There
were many dependencies involved in implementing the work by Xue et al. (2019).

The shapes demonstration programming code was developed in PyTorch 3.17. A successful demon-
stration was invoked with the detailed steps. A code analysis was also performed, and a mapping ta-
ble was provided between PyTorch and Java. The shapes dataset was examined line by line. To follow,
to the best of the enterprise information systems researcher’s knowledge, the dataset appeared to
have been executed correctly. The output was generated along with the relevant directories. The pro-
cesses used in the findings are included in Recommendations for Practitioners.

DISCUSSION
This design science study followed an iterative research cycle following the 12 main steps to conduct-
ing design science research (Dresch et al., 2014). The initial steps involve identifying the problem,

Quindazzi & Sambasivam

19

systematic literature review, and identification of the artifacts. The design science approach enables a
continuous feedback loop between a number of the research stages. The research involved a first
pass look into the existing environments for artificial intelligence, such as Amazon Web Services.

The researcher overcame several hurdles through a series of steps. The configuration of the shapes
dataset demonstration by Xue et al. (2019) was documented via a series of figures and commentary.
The research showed a step-by-step strategy for implementing source code and executing that code
within a legacy operating system via an Amazon Web Services image. A second pass was invoked of
the design science paradigm. The source code was analyzed, and a mapping table was implemented,
drawing from the PyTorch libraries and the existing Java libraries.

The proposed design science study explores the strategies enterprise information systems specialists
need to integrate novel algorithms into an imaging application. The study problem was what strate-
gies do enterprise information systems specialists need to integrate novel algorithms into an imaging
application that were not identified (Rueden et al., 2017; Schneider et al., 2012). The conceptual
framework details the audience and the research question problem and method. The conceptual
framework encompassed the problem: a lack of novel algorithms within image processing software.
The audiences were biologists and zoologists, and the method was the technological enhancements
to an image application. The question within the conceptual framework was, “What are the strategies
enterprise information systems specialists need to integrate novel algorithms into an imaging applica-
tion?”

PRACTICAL IMPLICATIONS OF FINDINGS
The study findings were that executing an artificial intelligence CCNN does take a substantial amount
of time. Also, a significant amount of knowledge is required to understand how that operating sys-
tem would integrate with the dependency libraries. Often libraries were out of date and, once the de-
pendency was downloaded, a more recent version would be retrieved from GitHub rather than the
version needed. Appropriate, but the version would be out of sync for the project. The other issue
was that the Ubuntu version used for the demonstration was mentioned within the source code.
However, that version was out of date. How would the researcher implement such a demonstration
with no working knowledge, having never performed such a study before?

The Amazon Web instance proved to be a considerable choice. The researcher could select from
many different environments. The choice of the Tesla T4 instance was the preferred option due to
its use of the NVIDIA GPU Tensor Core. The AWS instance took approximately four days to in-
voke, and an application form had to be submitted and approved by the provider. Once granted, the
researcher waited another day for further provisioning and then was able to move forward and start
the instance and action development.

Furthermore, once the AWS instance type had been selected, the linkages to the libraries were a sig-
nificant issue. The time-consuming nature of getting all the libraries to run together with an out-of-
date operating system was challenging. At times, there were few solutions to problems, and there
were many solutions at other times. It was challenging to find the most appropriate solution that
would best fit the situation.

Surprisingly, the practical forums online proved to offer several solutions. Meaningful solutions that
had been tried and tested and that, in some cases, had also worked. Some of the data collection
books purchased for the study were not used.

This study offers a roadmap – a set of processes as highlights and a guide to anyone wishing to set
up the demonstration for the shapes dataset by Xue et al. (2019). The research offers the steps fol-
lowed for setting up to re-create the environment. Furthermore, it offers the foundation and a fast
track for future researchers who are novices to the field and to advance, building on the work of Xue
et al. (2019).

An Exploration of a Virtual Connection for Researchers and Educators

20

RECOMMENDATIONS FOR PRACTITIONERS
The study problem addressed the strategies enterprise information system specialists needed to inte-
grate novel algorithms into an imaging application that had not been identified (Rueden et al., 2017;
Schneider et al., 2012). The study did indeed explore the aspects an enterprise information specialist
would need to implement the work by Xue et al. (2019). The design science findings from the sys-
temic literature review were that many software applications were available for image analysis, and the
field that contributed the most significant amount of knowledge within image analysis was that of
the healthcare sector. From analyzing the various software applications within Java for image analysis,
a choice was made to focus on the ImageJ2 software implementation.

The ImageJ2 application offers the practitioner an extensive wealth of flexibility. The study findings
imply that the practitioner has been provided with guidelines that can be implemented should issues
arise. It is possible to implement the demonstration code from an advanced neural network algorithm
by implementing an image about the Ubuntu version 18.04.5 release via an Amazon Web Services
instance.

The academic knowledge presented resources regarding image analysis and pattern recognition.
There were many avenues and approaches to analyzing an image. Some of the most significant focal
points were the medical field and wildlife and biology – image analysis regarding the butterfly pat-
terns and other implementations. The study initially investigated the history of butterfly evolution
and identification and focused on research such as the Nymphalid Groundplan (Nijhout, 2001). A
determination was made to use the Java open-source programming language for future programming
work. The language of choice was also chosen as the enterprise information systems specialist was
experienced in this language. It also was widely used within the field of image analysis.

An investigation into the literature incorporated the various state-of-the-art algorithms such as
CCNNs and RNNs. The review also considered Content Image Based Recognition (CIBR) systems
and the functionality offered by those systems. According to Litjens et al. (2017), there was a lack of
pooling layers within the convolutional networking realm within CIBR systems. ImageJ and ImageJ2
were some of the most widely known open-source Java software applications. The study explored the
various plugins available for the software.

The study also investigated the work of frameworks within Java that would offer a deep learning in-
frastructure functionality, such as that of DeepLearning4j (Murthy et al., 2020). Future research can
also use this investigation and build upon the existing DeepClass4Bio API that can map to various
bio-tools such as ImagePy and Icy as a bridge to PyTorch. ImageJ plugins used TensorFlow as their
foundation for neural networks. Furthermore, various image analysis systems for butterflies were also
investigated.

The healthcare sector DICOM standard allowed for consistency of images with a standard imple-
mented by the NIH, and standardized metadata was implemented with compliant DICOM devices.
There was a lack of consistency between other software imaging applications due to standardization.
The standardization implemented in the health care industry could offer many avenues for the for-
ward progression of butterfly image recognition. ImageJ2 was identified as an area that required fur-
ther development. Suggestions were given for algorithmic development within ImageJ2; it was deter-
mined that often existing software was out of date with those novel algorithms (Schindelin et al.,
2015).

The work of Wu (2020) and Xue et al. (2019) offered the potentiality of a layman using a state-of-
the-art novel algorithm, the cross-convolutional neural network, to predict image motion. This study
implies that the information contained can act as a guide for implementation to the novice user
within the realm of deep learning in artificial intelligence. It aims to understand that it is possible to
invoke complex algorithms from within the home office laboratory through the various servers avail-
able via the internet.

Quindazzi & Sambasivam

21

To a novice practitioner and academic, the inferences reached within this study were to demonstrate
to those with a home office laboratory that an intense study such as this can be replicated. The issues
were worked through one by one as provided in the guidelines in chapter 4 of Quindazzi (2021). It is
possible to implement complex artificial intelligence applications as an enterprise information sys-
tems specialist with little knowledge of neural network systems as per the results section of chapter
4. Recommendation 1 details the highlights of the processes used in the research study.

RECOMMENDATION 1

Highlights of the Processes Used
1) The researcher used the internet to search for those keywords when occurrences happened

with linkage and dependency library errors. The work by Byake (2019) with the pipenv com-
mand not found. The discovered web page gave a solution, and the study was able to move
forward.

2) When the researcher found gaps in their knowledge, such as the Amazon Web Service in-
stances, the researcher went to the website and read the user guide of the services.

3) Torch7 assumptions were drawn between the old code and the new. PyTorch was based on
the inactive Torch7 libraries and was extensively documented. Parallels were drawn between
the old and new languages available.

4) A detailed design science paradigm was used iteratively for the steps involved (Dresch et al.,
2014).

5) Previous experience from the researcher’s background was implemented with the mapping
table from PyTorch to Java. A previous project in the industry that the researcher had imple-
mented was an API bridge between two languages, and the ideas were taken from this and
implemented in this project.

6) Fact-finding and understanding of a new language were implemented with a line-by-line
analysis of the source code from the shapes dataset. A dissection of the details for the core
implementations in PyTorch. Comments were annotated to the right of the source code and
included in Appendices B and C in the study by Quindazzi (2021).

7) An analysis of the two demonstration forms of software, the exercise data set and the
shapes data set, was invoked when issues arose with the GPU. A comparison of what source
code worked on one demonstration to what did not work on the other demonstration was
compared, and an inferred conclusion was drawn.

CONCLUSION
This design science exploratory study aimed to explore the strategies enterprise information systems
specialists needed to integrate novel algorithms into an imaging application. The study problem ad-
dressed the strategies enterprise information system specialists needed to integrate novel algorithms
into an imaging application that had not been identified. The study used an AWS instance to run the
demonstration code by Xue et al. (2019). The research determined a roadmap for implementing the
CCNN for motion prediction.

The findings consisted of approaches 1 through to 7 detailed in the study by Quindazzi (2021). The
steps advised on the strategies taken when the researcher encountered an issue. The steps ranged
from dependency issues with libraries and linkages to the approach and design science paradigm that
the study took. Other findings were gaps in the researcher’s knowledge, such as a lack of understand-
ing of Amazon Web Services and adopting a practitioner, tried and tested experiential approach to
resolving gaps from one language to another, PyTorch to Java.

The findings were documented via figures showing the issues with linkages and libraries. The study
results indicated that it was possible to recreate the environment for an advanced neural network sys-
tem with little knowledge of artificial intelligence systems. The study was explored from an enterprise

An Exploration of a Virtual Connection for Researchers and Educators

22

information system architect’s perspective. The results also showed that academic research could
meet practice. The practice forums were used to obtain solutions to run the demonstration code and
work through issues.

The key takeaways were that the hardware was very accessible to date. Should advanced research
need to occur without such a sophisticated lab, the hardware was no longer a limiting factor. With the
advent of the cloud AWS, Lambda, and many other server images, the opportunities to have such ro-
bust systems as pay to play are right at the researcher's fingertips. Many exciting discoveries are just
on the horizon, with more and more areas of research broadening.

This study implies that programmers can use this study and work through it from start to finish to
get the demonstration program up online, to invoke the ImageJ software with the plugin features for
the Hello World software as also demonstrated. The hope is that the existing exploration will further
the field of scientific research to contribute to the body of knowledge. The main objective is that the
fellow researcher is brought up to speed quickly with this document, will further research in artificial
intelligence for enterprise information systems specialists, and contribute further to the body of
knowledge.

FUTURE RESEARCH
Based on the findings of the implementation of the work by Xue et al. (2019), the following recom-
mendations are made for future research.

FUTURE RESEARCH RECOMMENDATION 1
In this study, the works by Xue et al. (2019) and Wu (2020) were analyzed. A future researcher could
use this study as a basis to get the previous work up and running, and this can be used as a basis to
build upon the research further.

FUTURE RESEARCH RECOMMENDATION 2
The other novel algorithms could be implemented using new concepts for processing images in this
study.

FUTURE RESEARCH RECOMMENDATION 3
In this study, further mappings from PyTorch to Java could be implemented (Quindazzi, 2021).
These mappings could be developed in Java and run within the Java system, moving away from
PyTorch.

FUTURE RESEARCH RECOMMENDATION 4
In this study, a future researcher could implement ImageJ2 and add it with different flavors of
CCNN algorithms and different algorithms within Java for image processing.

FUTURE RESEARCH RECOMMENDATION 5
This study presented concepts with butterflies and the nymphalid groudplan (Nijhout, 2001). This
discussion could provide further image prediction work based on butterfly wing patterns.

Future research should focus on implementing the mappings table (Quindazzi, 2021). A future de-
sign could be pursued from the analysis and implementation of a Java neural network algorithm as a
basic implementation. As suggested, Java can chain elements to begin replicating the algorithm by
Xue et al. (2019). The cross-convolutional element should have further analysis to ensure the full rep-
lication within Java.

Quindazzi & Sambasivam

23

The future study should focus on ImageJ and the core code within the software; the preliminary
steps were provided in the work by Quindazzi (2021). The researcher could build upon this study us-
ing the libraries such as the Hello World trial code in Eclipse and deciphering where a CCNN Java
algorithm would best reside. The algorithm could then be implemented and trial run within the code;
this would allow for the leverage of the heavy lifting of the program code to predict image motion.
There seemed to be few approaches regarding predicting motion frames of a future image. Such pre-
dictions could be a giant leap for the health care world regarding microscopic and x-ray images.

REFERENCES
Almryad, A. S., & Kutucu, H. (2020). Automatic identification for field butterflies by convolutional neural net-

works. Engineering Science and Technology, an International Journal, 23(1), 189-195.
https://doi.org/10.1016/j.jestch.2020.01.006

Amidi, A., & Amidi, S. (2021). Convolutional neural networks cheat sheet. https://stanford.edu/~shervine/teach-
ing/cs-230/cheatsheet-convolutional-neural-networks#filter

Amir. (2019, January 18). Loading Torch7 trained models (.t7) in PyTorch. https://stackoverflow.com/ques-
tions/41861354/loading-torch7-trained-models-t7-in-pytorch

Antoniadis, A., Filippakis, N., Krishnan, P., Ramesh, R., Allen, N., & Smaragdakis, Y. (2020). Static analysis of
Java enterprise applications: Frameworks and caches, the elephants in the room. Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, 794-807.
https://doi.org/10.1145/3385412.3386026

Arena, E. T., Rueden, C. T., Hiner, M. C., Wang, S., Yuan, M., & Eliceiri, K. W. (2016). Quantitating the cell:
Turning images into numbers with ImageJ. Wiley Interdisciplinary Reviews: Developmental Biology, 6(2), e260.
https://doi.org/10.1002/wdev.260

Arul. (2021, April 19). Loading Torch7 trained models (.t7) in PyTorch. https://stackoverflow.com/ques-
tions/41861354/loading-torch7-trained-models-t7-in-pytorch

Audet, S. (2021, April 15). How can I increase the dimensions of tensor in Java? https://stackoverflow.com/ques-
tions/63877136/how-can-i-increase-the-dimensions-of-tensor-in-java

AWS. (2021). AWS Deep Learning Base AMI (Ubuntu 18.04). https://aws.amazon.com/market-
place/pp/B07Y3VDBNS

Barbastathis, G. (2020). On the use of deep learning for computational imaging. Optical Trapping and Optical Mi-
cromanipulation XVII. https://doi.org/10.1117/12.2571322

Beldade, P., & Brakefield, P. M. (2002). The genetics and evo-devo of butterfly wing patterns. Nature Reviews
Genetics, 3(6), 442-452. https://doi.org/10.1038/nrg818

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Verlag.

Burger, W., & Burge, M. J. (2016). Digital image processing: An algorithmic introduction using Java. Springer.
https://doi.org/10.1007/978-1-4471-6684-9

Byake. (2019, May 3). How to properly install Pipenv on WSL Ubuntu 18.04? https://superuser.com/ques-
tions/1432768/how-to-properly-install-pipenv-on-wsl-ubuntu-18-04

Clcarwin. (2017, November 13). Convert torch to pytorch. https://github.com/clcarwin/convert_torch_to_pytorch

Dresch, A., Lacerda, D. P., & Antunes, J. A. V., Jr. (2014). Design science research: A method for science and technology
advancement. Springer. https://doi.org/10.1007/978-3-319-07374-3

Du, J. (2018). Understanding of object detection based on CNN family and YOLO. Journal of Physics: Conference
Series, 1004, 012029. https://doi.org/10.1088/1742-6596/1004/1/012029

The Eclipse Foundation. (2021). IDE. [Computer software]. https://www.eclipse.org/ide/

Franklin, D. (2021, March 5). No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'. https://fo-
rums.developer.nvidia.com/t/no-cuda-runtime-is-found-using-cuda-home-usr-local-cuda/170143

https://doi.org/10.1016/j.jestch.2020.01.006
https://stanford.edu/%7Eshervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#filter
https://stanford.edu/%7Eshervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#filter
https://stackoverflow.com/questions/41861354/loading-torch7-trained-models-t7-in-pytorch
https://stackoverflow.com/questions/41861354/loading-torch7-trained-models-t7-in-pytorch
https://doi.org/10.1145/3385412.3386026
https://doi.org/10.1002/wdev.260
https://stackoverflow.com/questions/41861354/loading-torch7-trained-models-t7-in-pytorch
https://stackoverflow.com/questions/41861354/loading-torch7-trained-models-t7-in-pytorch
https://stackoverflow.com/questions/63877136/how-can-i-increase-the-dimensions-of-tensor-in-java
https://stackoverflow.com/questions/63877136/how-can-i-increase-the-dimensions-of-tensor-in-java
https://aws.amazon.com/marketplace/pp/B07Y3VDBNS
https://aws.amazon.com/marketplace/pp/B07Y3VDBNS
https://doi.org/10.1117/12.2571322
https://doi.org/10.1038/nrg818
https://doi.org/10.1007/978-1-4471-6684-9
https://superuser.com/questions/1432768/how-to-properly-install-pipenv-on-wsl-ubuntu-18-04
https://superuser.com/questions/1432768/how-to-properly-install-pipenv-on-wsl-ubuntu-18-04
https://github.com/clcarwin/convert_torch_to_pytorch
https://doi.org/10.1007/978-3-319-07374-3
https://doi.org/10.1088/1742-6596/1004/1/012029
https://www.eclipse.org/ide/
https://forums.developer.nvidia.com/t/no-cuda-runtime-is-found-using-cuda-home-usr-local-cuda/170143
https://forums.developer.nvidia.com/t/no-cuda-runtime-is-found-using-cuda-home-usr-local-cuda/170143

An Exploration of a Virtual Connection for Researchers and Educators

24

Futahashi, R., Shirataki, H., Narita, T., Mita, K., & Fujiwara, H. (2012). Comprehensive microarray-based analy-
sis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus.
BMC Biology, 10(1), 46. https://doi.org/10.1186/1741-7007-10-46

Gilbert, M. (2018). Artificial intelligence for autonomous networks. CRC Press.
https://doi.org/10.1201/9781351130165

Gomez-Perez, S. L., Haus, J. M., Sheean, P., Patel, B., Mar, W., Chaudhry, V., McKeever, L., & Braunschweig, C.
(2016). Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed
tomography image. Journal of Parenteral and Enteral Nutrition, 40(3), 308-318.
https://doi.org/10.1177/0148607115604149

Holton, J. A., & Walsh, I. (2016). Classic grounded theory: Applications with qualitative and quantitative data. SAGE
Publications. https://doi.org/10.4135/9781071802762

Iacob. (2021, January 21). What does “unsqueeze” do in Pytorch? https://stackoverflow.com/ques-
tions/57237352/what-does-unsqueeze-do-in-pytorch

Inés, A., Domínguez, C., Heras, J., Mata, E., & Pascual, V. (2019). DeepClas4Bio: Connecting bioimaging tools
with deep learning frameworks for image classification. Computers in Biology and Medicine, 108, 49-56.
https://doi.org/10.1016/j.compbiomed.2019.03.026

Kainz, P., Mayrhofer-Reinhartshuber, M., & Ahammer, H. (2015). IQM: An extensible and portable open
source application for image and signal analysis in Java. PLOS ONE, 10(1), e0116329.
https://doi.org/10.1371/journal.pone.0116329

Kankaanpää, P., Paavolainen, L., Tiitta, S., Karjalainen, M., Päivärinne, J., Nieminen, J., Marjomäki, V., Heino, J.,
& White, D. J. (2012). BioImageXD: An open, general-purpose and high-throughput image-processing
platform. Nature Methods, 9(7), 683-689. https://doi.org/10.1038/nmeth.2047

Karim, M. R. (2018). Java deep learning projects: Implement ten real-world deep learning applications using Deeplearning4j and
open source APIs. Packt Publishing.

Karim, M. R., Beyan, O., Zappa, A., Costa, I. G., Rebholz-Schuhmann, D., Cochez, M., & Decker, S. (2020).
Deep learning-based clustering approaches for bioinformatics. Briefings in Bioinformatics, 22(1), 393-415.
https://doi.org/10.1093/bib/bbz170

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. https://doi.org/10.1007/978-1-4614-6849-3

Lin, Z., Jia, J., Gao, W., & Huang, F. (2019). Increasingly specialized perception network for fine-grained visual
categorization of butterfly specimens. IEEE Access, 7, 123367-123392. https://doi.org/10.1109/AC-
CESS.2019.2938537

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., Van der Laak, J. A., Van
Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image
Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005

Liu, C. (2009). Beyond pixels: exploring new representations and applications for motion analysis (Doctoral dissertation,
Massachusetts Institute of Technology).

Mallet, J. (2001). Mimicry: An interface between psychology and evolution. Proceedings of the National Academy of
Sciences, 98(16), 8928-8930. https://doi.org/10.1073/pnas.171326298

Matlab. (n.d.). MathWorks - Makers of MATLAB and Simulink - MATLAB & Simulink. https://www.math-
works.com/products/matlab.html?s_tid=hp_ff_p_matlab

Murthy, C. B., Hashmi, M. F., Bokde, N. D., & Geem, Z. W. (2020). Investigations of object detection in im-
ages/Videos using various deep learning techniques and embedded platforms – A comprehensive review.
Applied Sciences, 10(9), 3280. https://doi.org/10.3390/app10093280

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík, P., & Hluchý, L. (2019).
Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. The Ar-
tificial Intelligence Review, 52(1), 77-124. https://doi.org/10.1007/s10462-018-09679-z

Nijhout, H. F. (1980). Pattern formation on lepidopteran wings: Determination of an eyespot. Developmental Bi-
ology, 80(2), 267-274. https://doi.org/10.1016/0012-1606(80)90403-0

https://doi.org/10.1186/1741-7007-10-46
https://doi.org/10.1201/9781351130165
https://doi.org/10.1177/0148607115604149
https://doi.org/10.4135/9781071802762
https://stackoverflow.com/questions/57237352/what-does-unsqueeze-do-in-pytorch
https://stackoverflow.com/questions/57237352/what-does-unsqueeze-do-in-pytorch
https://doi.org/10.1016/j.compbiomed.2019.03.026
https://doi.org/10.1371/journal.pone.0116329
https://doi.org/10.1038/nmeth.2047
https://doi.org/10.1093/bib/bbz170
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1109/ACCESS.2019.2938537
https://doi.org/10.1109/ACCESS.2019.2938537
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1073/pnas.171326298
https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab
https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab
https://doi.org/10.3390/app10093280
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1016/0012-1606(80)90403-0

Quindazzi & Sambasivam

25

Nijhout, H. F. (2001). Elements of butterfly wing patterns. Journal of Experimental Zoology, 291(3), 213-225.
https://doi.org/10.1002/jez.1099

Oei, R. W., Hou, G., Liu, F., Zhong, J., Zhang, J., An, Z., Xu, L., & Yang, Y. (2019). Convolutional neural net-
work for cell classification using microscope images of intracellular actin networks. PLOS ONE, 14(3),
e0213626. https://doi.org/10.1371/journal.pone.0213626

Pavithra, L., & Sharmila, T. S. (2019). Optimized feature integration and minimized search space in content-
based image retrieval. Procedia Computer Science, 165, 691-700. https://doi.org/10.1016/j.procs.2020.01.065

Popek, M. P., & Iskander, D. R. (2020). A new approach to the phase-based video motion magnification for
measuring Microdisplacements. IEEE Transactions on Instrumentation and Measurement, 69(2), 354-361.
https://doi.org/10.1109/TIM.2019.2904074

Quindazzi, E. (2021). Exploring strategies, enterprise information systems specialists need to integrate novel algorithms into an
imaging application [Doctoral dissertation, Colorado Technical University]. https://www.emma-
quindazzi.com/doctoral/Exploring_Strategies_Enterpris.pdf

Roland, J. K. (2015). A study of slanted-edge MTF stability and repeatability. Image Quality and System Performance
XII. https://doi.org/10.1117/12.2077755

Rueden, C. T., & Schindelin, J. (n.d.). ImageJ tutorials repository for the commands, simple branch [Computer software].
https://imagej.net/develop/plugins

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017).
ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1).
https://doi.org/10.1186/s12859-017-1934-z

Sage, D., & Unser, M. (2003). Teaching image-processing programming in Java. IEEE Signal Processing Magazine,
20(6), 43-52. https://doi.org/10.1109/msp.2003.1253553

Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform
for biomedical image analysis. Molecular Reproduction and Development, 82(7-8), 518-529.
https://doi.org/10.1002/mrd.22489

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Na-
ture Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089

Suleymanova, I., Balassa, T., Tripathi, S., Molnar, C., Saarma, M., Sidorova, Y., & Horvath, P. (2018). A deep
convolutional neural network approach for astrocyte detection. Scientific Reports, 8(1), 1-7.
https://doi.org/10.1038/s41598-018-31284-x

Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer Science & Business Media.

Tan, E. J., Wilts, B. D., Tan, B. T., & Monteiro, A. (2020). What’s in a band? The function of the color and
banding pattern of the banded swallowtail. Ecology and Evolution, 10(4), 2021-2029.
https://doi.org/10.1002/ece3.6034

Wang, X., Zhao, Y., & Pourpanah, F. (2020). Recent advances in deep learning. International Journal of Machine
Learning and Cybernetics, 11(4), 747-750. https://doi.org/10.1007/s13042-020-01096-5

Wieringa, R. J. (2014). Design science methodology for information systems and software engineering. Springer.
https://doi.org/10.1007/978-3-662-43839-8

Wolfgang, M., Weißensteiner, M., Clarke, P., Hsiao, W., & Khinast, J. G. (2020). Deep convolutional neural net-
works: Outperforming established algorithms in the evaluation of industrial optical coherence tomography
(OCT) images of pharmaceutical coatings. International Journal of Pharmaceutics: X, 2, 100058.
https://doi.org/10.1016/j.ijpx.2020.100058

Wu, J. (2020). Learning to see the physical world (Doctoral dissertation, Massachusetts Institute of Technology).

Xue, T., Wu, J., Bouman, K. L., & Freeman, W. T. (2019). Visual dynamics: Stochastic future generation via lay-
ered cross convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(9), 2236-
2250. https://arxiv.org/pdf/1807.09245v3.pdf

https://doi.org/10.1002/jez.1099
https://doi.org/10.1371/journal.pone.0213626
https://doi.org/10.1016/j.procs.2020.01.065
https://doi.org/10.1109/TIM.2019.2904074
https://www.emmaquindazzi.com/doctoral/Exploring_Strategies_Enterpris.pdf
https://www.emmaquindazzi.com/doctoral/Exploring_Strategies_Enterpris.pdf
https://doi.org/10.1117/12.2077755
https://imagej.net/develop/plugins
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1109/msp.2003.1253553
https://doi.org/10.1002/mrd.22489
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/s41598-018-31284-x
https://doi.org/10.1002/ece3.6034
https://doi.org/10.1007/s13042-020-01096-5
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1016/j.ijpx.2020.100058
https://arxiv.org/pdf/1807.09245v3.pdf

An Exploration of a Virtual Connection for Researchers and Educators

26

Zahidi, Y., Younoussi, Y. E., & Al-Amrani, Y. (2021). A powerful comparison of deep learning frameworks for
Arabic sentiment analysis. International Journal of Electrical and Computer Engineering, 11(1), 745-752.
https://doi.org/10.11591/ijece.v11i1.pp745-752

Zhang, W., Yang, G., Lin, Y., Ji, C., & Gupta, M. M. (2018, June). On definition of deep learning. 2018 World
Automation Congress (WAC), Stevenson, Washington. https://doi.org/10.23919/WAC.2018.8430387

Zhang, Y., Chen, X., Guo, D., Song, M., Teng, Y., & Wang, X. (2019). PCCN: Parallel cross convolutional neu-
ral network for abnormal network traffic flows detection in multi-class imbalanced network traffic flows.
IEEE Access, 7, 119904-119916. https://doi.org/10.1109/ACCESS.2019.2933165

APPENDIX
The Initialization Component Analysis of demo.py Analysis,

adapted from Xue et al. (2019).
import argparse

import os

import matplotlib.pyplot as plt

import numpy as np

import torch from torch.utils.data

import DataLoader from tqdm

import tqdm from model

import PSD from data

import MotionDataset from utils

import mkdir, flow2im, imwrite

import dominate from dominate.tags

import *

def main(args):

 # set device (cpu / gpu)

 if args.gpu == '-1': //take the command line args import no gpu but a cpu

 device = torch.device('cpu')

 else: //else take the argument on the command line and put into a cuda array

 device = torch.device('cuda:{}'.format(args.gpu)) //call and load it as a torch device

 data, loaders = {}, {} //set up the data and loaders array

 data['demo'] = MotionDataset(

 data_path = args.data_path,

 split = 'demo',

 size = args.size,

 scale = args.scale

) //call the MotionDataset class, load in the path in for the demo into the data[‘demo’] location

 loaders['demo'] = DataLoader(

https://doi.org/10.11591/ijece.v11i1.pp745-752
https://doi.org/10.23919/WAC.2018.8430387
https://doi.org/10.1109/ACCESS.2019.2933165

Quindazzi & Sambasivam

27

 dataset = data['demo'],

 batch_size = args.batch,

 shuffle = True,

 num_workers = args.workers

) //call the dataloader class

 print('==> dataset loaded') //print to the screen = => dataset loaded

 print('[size] = {0}'.format(len(data['demo']))) //print the length of data[‘demo’]

 model = PSD(dimensions=args.dimensions, size=args.size) //call the PSD class model.py holds
this class – details are in the code to follow

 model.load_state_dict(torch.load(args.resume, map_location='cpu')) //a stat_dict python dic-
tionary object where the layers mapped to its parameter tensor such as a convolutional layer

 model.to(device)

 structure = torch.sigmoid(model.structural_descriptor.structure).data.cpu().numpy()//the sig-
moid function takes the structure as a tensor input. Structure is the new returned tensor with sig-
moid. Cpu copies the tensor to the cpu but if it is already on the cpu nothing will change. The
numpy function call creates a numpy type array taken from the tensor. The tensor and numpy ar-
ray share memory.

 visualization_path = args.visualization_path

 mkdir(visualization_path, clean=True) //make a directory of virtualization path set clean to
true

 figure_path = os.path.join(visualization_path, 'figures') //join the virtualization path to the
word figures

 mkdir(figure_path, clean=True) //make a directory figure_path

 with torch.no_grad():

 means, log_vars = [], []

 for batch in tqdm(loaders['demo'], desc = 'demo'):

 batch = {k: v.to(device) for k, v in batch.items()}

 batch_size = batch['image_inputs'].size(0)

 total_size = len(data['demo'])

 outputs= model.forward(

 image_inputs=batch['image_inputs'],

 flow_inputs=batch['flow_inputs'],

 returns = ['mean', 'log_var']

) //calls model.forward inputs image, flow_inputs and log_var. Calculate output tensors
from input tensors

 means.extend(outputs['mean'].data.cpu().numpy())//may append the array parameter to
the end of the target array

 log_vars.extend(outputs['log_var'].data.cpu().numpy())

An Exploration of a Virtual Connection for Researchers and Educators

28

 means = np.asarray(means)

 log_vars = np.asarray(log_vars)

 x, ym, yv = [], [], []//set the arrays

 for k in range(means.shape[1]):

 x.extend([k, k])

 ym.extend([np.min(means[:, k]), np.max(means[:, k])]) //extend from min to max

 yv.extend([np.min(log_vars[:, k]), np.max(log_vars[:, k])])

 plt.switch_backend('agg') //all matplotlib pyplot functions -> the output for the html page
for the demo

 plt.figure()

 plt.bar(x, ym, .5, color = 'b')

 plt.xlabel('dimension')

 plt.ylabel('mean')

 plt.savefig(os.path.join(figure_path, 'means.png'), bbox_inches = 'tight')

 plt.figure()

 plt.bar(x, yv, .5, color = 'b')

 plt.xlabel('dimension')

 plt.ylabel('log(var)')

 plt.savefig(os.path.join(figure_path, 'vars.png'), bbox_inches = 'tight')

 batch = iter(loaders['demo']).next()

 batch = {k: v[:args.visualization_num].to(device) for k, v in batch.items()}

 batch_size = batch['image_inputs'].size(0)

 outputs = outputs= model.forward(

 image_inputs=batch['image_inputs'],

 flow_inputs=batch['flow_inputs']

)

 samples = []

 for k in range(4):

 indices = np.random.choice(len(data['demo']), batch_size)

 sample = model.forward(

 image_inputs=batch['image_inputs'],

 mean = torch.tensor(means[indices], device=device), //feed torch tensor

 log_var = torch.tensor(log_vars[indices], device=device),

)

 samples.append(sample['image_outputs'].cpu().numpy())

Quindazzi & Sambasivam

29

 vis_image_inputs = batch['image_inputs'].cpu().numpy()

 vis_image_targets = batch['image_targets'].cpu().numpy()

 vis_image_outputs = outputs['image_outputs'].cpu().numpy()

 vis_motions = outputs['motion_outputs'].cpu().numpy()

 for i in range(args.visualization_num):

 imwrite(os.path.join(figure_path, '{}_image_input.png'.format(i)), vis_image_inputs[i])

 imwrite(os.path.join(figure_path, '{}_image_target.png'.format(i)), vis_image_targets[i])

 imwrite(os.path.join(figure_path, '{}_image_output.png'.format(i)), np.clip(vis_image_out-
puts[i], 0, 1))

 for dim in args.dimensions:

 imwrite(os.path.join(figure_path, '{}_motion_{}.png'.format(i, dim)), flow2im(vis_mo-
tions[i, :, dim, ...]))

 for k in range(4):

 imwrite(os.path.join(figure_path, '{}_sample_{}.gif'.format(i, k)), [vis_image_inputs[i],
np.clip(samples[k][i], 0, 1)])

 with dominate.document(title='PSD') as web: //use dominate to setup the html page, headers,
images etc

 h1('PSD Demo Results')

 h3('Statistics')

 img(src=os.path.join('figures', 'means.png'))

 img(src=os.path.join('figures', 'vars.png'))

 h3('Structure')

 with table(border=1, style='table-layout: fixed;'): //setup a table with content

 with tr():

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p('')

 for y in args.dimensions:

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p('dimension-{}'.format(y))

 for x in args.dimensions:

 with tr():

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p('dimension-{}'.format(x))

 for y in args.dimensions:

 value = structure[x][y]

 bgcolor = 'Orange' if value > 0.5 else 'LightGray'

An Exploration of a Virtual Connection for Researchers and Educators

30

 with td(style='word-wrap: break-word;', halign='center', align='center',
bgcolor=bgcolor):

 p('%.5f' % value)

 h3('Visualizations')

 cols = ['image_input', 'image_target', 'image_output']

 with table(border=1, style='table-layout: fixed;'):

 with tr():

 for col in cols:

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p(col)

 for dim in args.dimensions:

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p('motion-{}'.format(dim))

 for k in range(4):

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 p('sample-{}'.format(k))

 for id in range(args.visualization_num):

 with tr():

 for col in cols:

 with td(style='word-wrap: break-word;', halign='center', align='top'):

 img(style='width:128px', src=os.path.join('figures', '{}_{}.png'.format(id, col)))

 for dim in args.dimensions:

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 img(style='width:128px', src=os.path.join('figures', '{}_motion_{}.png'.for-
mat(id, dim)))

 for k in range(4):

 with td(style='word-wrap: break-word;', halign='center', align='center',):

 img(style='width:128px', src=os.path.join('figures', '{}_sample_{}.gif'.format(id,
k)))

 with open(os.path.join(visualization_path, 'index.html'), 'w') as fp:

 fp.write(web.render())

if __name__=='__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--resume', default = 'models/snapshot.pth')

 parser.add_argument('--gpu', default = '0') //gpu defaults to zero

Quindazzi & Sambasivam

31

 parser.add_argument('--data_path', default = 'data/shape3-demo')

 parser.add_argument('--size', default = 128, type = float)

 parser.add_argument('--scale', default = 100, type = float)

 parser.add_argument('--workers', default = 4, type = int)

 parser.add_argument('--batch', default = 32, type = int)

 parser.add_argument('--visualization_num', default = 8, type = int)

 parser.add_argument('--visualization_path', default = 'demo')

 parser.add_argument('--dimensions', default = '18,9,0')

 args = parser.parse_args()

 if args.dimensions is not None:

 args.dimensions = [int(x) for x in args.dimensions.split(',')]

 print('==> arguments parsed')

 for key in vars(args):

 print('[{0}] = {1}'.format(key, getattr(args, key)))

 main(args)

AUTHORS
Dr. Emma Quindazzi works as a lead technical consultant at Infosys and
works on complex Java development client projects for some of the
world’s leading enterprises. Emma has taught at Johns Hopkins Center
for Talented Youth for several years. She has over 20 years of experience
in software development within varying sectors such as banking, telecom-
munications, and Big Four accounting. Emma attained her Doctor of
Computer Science from Colorado Technical University; U.S.A. Emma
studied for her MSc Software Engineering at the University of the West
of England in Bristol, England. Her first degree was a BSc (Hons) in
Computing and Informatics at the University of Plymouth in Devon,

England. Computer science is her passion.

Dr. Samuel Sambasivam is Chair and Professor of Computer Science
Data Analytics at Woodbury University, Burbank, CA. He is Chair Emeri-
tus and Professor Emeritus of Computer Science at Azusa Pacific Uni-
versity. He served as a Distinguished Visiting Professor of Computer Sci-
ence at the United States Air Force Academy in Colorado Springs, Colo-
rado for two years. In addition, he has concurrently served 13 years of
progressive doctoral teaching roles at Colorado Technical University
(CTU) including chair of doctoral programs, lead computer science doc-
toral faculty instructing core/concentration computer science courses,
and as dissertation chair/committee member. His research interests in-
clude Cybersecurity, Big Data Analytics, Optimization Methods, Expert

Systems, Client/Server Applications, Database Systems, and Genetic Algorithms. He has conducted

An Exploration of a Virtual Connection for Researchers and Educators

32

extensive research, written for publications, and delivered presentations in Computer Science, data
structures, and Mathematics. Dr. Samuel Sambasivam earned his Ph.D. in Mathematics/Computer
Science from Moscow State University, a Master of Science in Computer Science with Honors from
Western Michigan University, Pre-PhD in Mathematics/Computer Science from Indian Institute of
Technology (IIT) Delhi, a Master of Science Education in Mathematics with Honors from Mysore
University (NCERT-Delhi), and a Bachelor of Science in Mathematics/Physics/Chemistry with
Honors from the University Madras (Chennai). He is a voting senior member of the ACM.

	An Exploration of a Virtual Connection for Researchers and Educators by Exploring Strategies Enterprise Information Systems Specialists Need to Integrate Novel Neural Network Algorithms Into an Imaging Application – A Design Science Study
	Abstract
	Introduction
	Problem Statement
	Purpose
	Significance of the Study
	Literature Review
	The History of Butterfly Evolution and Identification
	The Benefits of the Java Programming Language
	Artificial Intelligence, Deep Learning, and the Role of Mullerian Mimicry
	Convolutional Neural Networks (CNN) for Image Recognition Software

	Research Method and Design
	Participants
	Instruments
	Procedures
	Design
	Data analysis

	Research Question
	Data Collection
	Data Analysis

	Findings
	Discussion
	Practical Implications of Findings
	Recommendations for Practitioners
	RECOMMENDATION 1
	Highlights of the Processes Used

	Conclusion
	Future Research
	Future Research Recommendation 1
	Future Research Recommendation 2
	Future Research Recommendation 3
	Future Research Recommendation 4
	Future Research Recommendation 5

	References
	Appendix
	Authors

