

Online July 6-7, 2022

Accepted by executive review by Editor Eli Cohen │ Received: April 23, 2022 │ Revised: June 5, 2022 │
Accepted: June 6. 2022.
Cite as: Mason, R. T., & Masters, W. (2022). Student learning using MongoDB Sharding on a cluster of Ubuntu
Raspberry Pi 4B servers. In M. Jones (Ed.), Proceedings of InSITE 2022: Informing Science and Information Technology
Education Conference, Article 21. Informing Science Institute. https://doi.org/10.28945/4989

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

STUDENT LEARNING USING MONGODB SHARDING
ON A CLUSTER OF UBUNTU RASPBERRY PI 4B SERVERS

Robert T. Mason* Regis University, Denver, CO, USA rmason@regis.edu

William Masters Regis University, Denver, CO, USA wmasters@regis.edu

*Corresponding Author

ABSTRACT
Aim/Purpose When Data Science students use a Cloud environment such as AWS or Az-

ure, they are not able to have direct hands-on experience with the underlying
hardware components. When students create virtual machines in the Cloud,
they specify memory size, CPUs, disk space, etc. However, they cannot reach
out and touch the underlying hardware directly since it resides in the Cloud.

Background The ability to purchase commodity servers (e.g., $3,000 per Dell server) to
create a cluster of multiple machines is cost prohibitive for most faculty and
students because it can cost upwards of $30,000 for 10 machines. This cost
does not include the other hardware components that are required for the
cluster, such as cooling equipment, cables, rack, etc.

Methodology The research methodology leveraged for this research was to build a proto-
type to evaluate the costs of using inexpensive hardware and software
($1628.82) in comparison to a more expensive cluster of commodity servers
($30,000).

Contribution There is very little research literature about using this approach of using
Raspberry Pi servers as an inexpensive replacement for commodity servers.

Findings This paper demonstrates that Raspberry Pi 4b servers (with 8 gig of RAM)
can be leveraged to build a cluster of low cost servers to run both Linux Ub-
untu 20 and MongoDB Sharding (distributed processing).

Recommendations
for Practitioners

Practitioners will appreciate this paper because it is a tutorial that describes
assembling the cluster components and then installing MongoDB Sharding
(distributed processing) on a cluster of 9 Rpi 4b servers

https://doi.org/10.28945/4989
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:rmason@regis.edu
mailto:wmasters@regis.edu

Student Learning Using MongoDB Sharding

2

Recommendations
for Researchers

Researchers will appreciate this paper because it provides a new inexpensive
alternative to using a Cloud environment or an expensive cluster of com-
modity servers to research distributed processing.

Impact on Society Students and faculty now have an inexpensive option of creating a personal-
ized cluster of servers to experiment with distributed processing.

Future Research Future Research can include testing this cluster with other distributed pro-
cessing tools, such as the Hadoop ecosystem or NoSQL Databases (e.g. such
as Cassandra)

Keywords Raspberry Pi 4b, distributed processing, MongoDB Sharding, Linux Ubuntu

INTRODUCTION
When Data Engineering students use a Cloud environment such as AWS or Azure, they are not able
to have direct hands-on experience with the underlying hardware components. Until recently, the
purchase of commodity servers ($3000 per server) to create a cluster of multiple machines was cost
prohibitive for most students. As of May 2019, the Raspberry Pi Foundation (2021) has sold over 40
million Raspberry Pi computers to people around the world. A Raspberry Pi is a small single board
computer that was developed in association with Broadcom (2021). Broadcom is a company that has
been an innovator of technology for 50 years and has an impressive technical heritage with
AT&T/Bell Labs, Lucent, and Hewlett-Packard. The Raspberry Pi Foundation has engaged millions
of students for STEM education. Raspberry Pi(s) are an inexpensive way to give students a hands-on
experience with both hardware and software. Student engagement has been shown to be higher when
using Raspberry Pi(s) in comparison to the use of virtual machines for lab work (Hills et al., 2019).
An inexpensive way for students to learn about distributed computing is to build a small cluster (e.g.,
network of servers) using Raspberry Pi(s) (Doucet & Zhang, 2017).

Distributed computing concepts are important for students to grasp since they are utilized across ac-
ademic research, Cloud computing, and the technology industry. Distributed computing is the main
driver for the Big Data movement that began in the 1990s and the supporting distributed data stor-
age products, such as MongoDB, Hadoop, and other NoSQL databases. The goal of the research
was to test the feasibility of running MongoDB databases with sharding (e.g., the of storing data
across multiple servers based on a key; MongoDB, 2021) on a small cluster of nine Ubuntu Rasp-
berry Pi servers. Sharding involves breaking data into smaller and easily managed pieces that can be
distributed across many server machines which can significantly lower the cost of retrieving the data
(GeeksforGeeks, 2022).

At the minimum, MongoDB 4.2 requires six servers: three configuration servers, two shard data
servers, and a query router server. For this test configuration, five shard data servers were allocated in
addition to the four other required servers. Adding additional shards to a cluster is an easy and
straight forward process using the addShard() command. Theoretically, this cluster could have sup-
ported thousands of more shard servers based on the MongoDB “Limits and 42 Thresholds” (Mon-
goDB, 2022) documentation; however, after reviewing various MongoDB Software Developer Blogs,
the realistic limit is probably in the neighborhood of hundreds of additional shard servers. Either
way, many more data shards could have been added to the cluster.

RESEARCH METHODOLOGY
The research methodology leveraged for this research was to build a prototype to evaluate the costs
of using inexpensive hardware and software ($1628.82) in comparison to a more expensive cluster of
commodity servers ($30,000). This prototype approach was similar to the work by Shafter and Rixner
(2007) at Rice University who built a Gigabit Ethernet Network to accurately evaluate new ideas in

Mason & Masters

3

network server architecture and to use it for education and experimental research. The main research
goal was to assess if sophisticated software (Linux Ubuntu 20 and a NoSQL MongoDB 4.2 data-
base) could be run on lower cost Rpi hardware. If feasible, this would allow faculty and students the
opportunity to construct their own personal inexpensive hardware and software platform for the
testing of distributed computing. If successful, this platform could then be leveraged to test other
distributed processing applications such as Hadoop or the Cassandra NoSQL database.

BACKGROUND
In 2019, the Raspberry Pi Foundation released the Raspberry Pi (Rpi) 4B board that included many
significant upgrades to the components. The Rpi 4B is a 64-bit fully functional server with a quad-
core Broadcom BCM2711 chip that is capable of running the latest development version of the Ub-
untu (20) Linux Operating System (OS). The Rpi with 8Gb of RAM costs $99 on Amazon (2021)
excluding the power adapter. “The Pi 4B is a *serious* NAS (Network Attached Storage) contender.
Sustained write speeds of over 68 MB/s were obtained, and over 105 MB/s for reading, including
saturation of the Gigabit network. Yes, the Pi 4B can push even a 1000 MB/s network to 100%”
(Unix Etc., 2019). The Rpi 4B release also offered the capacity of running MongoDB 4.2 on top of
Ubuntu Linux OS. MongoDB 4.2 is the version of the NoSQL Database that supports MongoDB
sharding (Distributed Processing). Sharding allows for the deployment of very large data sets with
very high throughput. Shard servers scale linearly because data is managed by each server inde-
pendently, and therefore they can provide faster performance with large data sets. As mentioned
above, the goal of the research was to test the feasibility of running MongoDB databases that would
use sharding on a small cluster of nine Ubuntu Rpi 4B servers.

DATA ENGINEERING PRACTICUM
The Anderson College of Business and Computing (ACBC), located in Denver, CO, is a part of
Regis University (RU) that has been providing Jesuit education since 1877. The Master of Science
(MS) in Data Science program offers graduate students a Specialization in Data Engineering (DE).
Data Engineering is an area of Data Science that focuses on building the infrastructure to support
complicated analytics used by Data Scientists. The DE practicum provides an opportunity for stu-
dents to get hands-on experience with technology to build a data infrastructure. Students in the DE
specialization learn about Big Data Architecture and gain experience using MongoDB. In the Spring
of 2021, three of the DE practicum students decided to use Rpi servers for their research projects.
These student projects generated an idea with the DE faculty to test MongoDB sharding on small
cluster of Rpi 4B servers.

CLUSTER CONFIGURATION
Figure 1 shows the physical architecture of the cluster build out. This closely resembles a logical ar-
chitecture of the Mongodb Query Router, Config server, and Shard server components. Putting each
software component on a physical device allows students to experiment with fault tolerance, data re-
dundancy, and networking in a very hands-on and visual way. Multiple shard servers allow Data Engi-
neering students to experiment with the concept of horizontal scaling to understand better the
tradeoffs involved. Mongodb deployments are sensitive to the amount of CPU capacity available on
each server, network I/O, I/O to disk, and the selection of an appropriate shard key. Since
read/writes go through the query router to ensure data integrity, once the platform is up and run-
ning, students can experiment with performance scaling.

Student Learning Using MongoDB Sharding

4

Figure 1: Rpi Model 4B Cluster Architecture

Ubuntu 20 OS was installed on nine Rpi 4B servers. The microSD cards hold the Ubuntu Linux OS
and are used for booting the servers and storing data. A Cloudlet Cluster Case (similar to a rack for
commodity servers in a large data center) with 4 cooling fans was used to hold 8 of the Rpi 4Bs. An
inexpensive unmanaged switch was then connected to the Rpi 4Bs with 1 ft ethernet cables. An addi-
tional Rpi 4B was paired (using a kit) with a 2 Terabyte solid-state drive (SSD) to provide additional
storage for the cluster. Since each Rpi 4B only has the storage available on microSD card of 32 gb, an
additional 8 flash drives (128 gb in size) were plugged into each of the USB ports on the Rpi 4Bs.
Using one USB port left three unused USB ports on each of the Rpi 4Bs. Shown in Table 1 is a list
of the hardware components for the cluster and the overall cost of the cluster was $1628.82.

Table 1: Hardware Components

Quantity Hardware Components
9 Rpi 4B with 8 gb RAM - 64-bit with quad-core Broadcom BCM2711 SoC - (9 x $99 =

$891)
9 Rpi Power Adapters - (9 x $8 = $72)
1 Cloudlet Case with 8 slots and 4 cooling fans (to hold the Rpi 4Bs) – ($59.99)
1 Solid State Drive (SSD) - 2 Terabyte in size - ($194.99)
1 SSD Kit for Rpi, includes one cooling fan and case – ($77.99)
1 Unmanaged Switch with 8 ports (note: one of the 4B servers used WiFi) – ($21.99)
8 Ethernet Cables - 1 ft length (to plug the Rpi 4Bs into the switch) – ($17.01)
1 Ethernet Cable 3 ft. length (to plug the switch into the Comcast router) – ($1.04)
9 Rpi 32 gb microSD cards formatted with Ubuntu 20 – ($8.99 x 9 = $80.91)
8 Flash Drives with 128 gb of storage – (8 x $18.99 = 151.92)
2 Power Plugs – (surge protector cords to plug in the power adapters) – (2 x 29.99)

Mason & Masters

5

MongoDB 4.2 server security procedures were followed as suggested by the documentation (Smith,
2020). This involved changing the root password and the default pi user ID/password on the Rpi
4Bs. Also, an alternate port number for connecting to the servers was established. Secure Shell (SSH)
was used to connect with and manage the Rpi 4Bs across the cluster. Prior to using the data shards
for distributed processing, three types of servers had to be setup: Config Servers (CS), one Query
Router (Mongos) and Data Shards (Linode, 2021). The CS stores metadata about the shards and the
configuration settings for the cluster. At least one CS is required to test sharding, however as shown
in Figure 1, three CSs were allocated for this project (shown on the right side of Figure 1). One CS is
designated as the primary and the other two servers are secondary backup servers. If the primary CS
fails, the secondary servers can take over control of the sharding process.

Another Rpi 4B server was designated as the Query Router (QR) that acts as an interface between a
client application and the cluster shards. Client application queries need to be sent to the appropriate
shard where the data will be stored based upon the primary key of the document. This task is accom-
plished by the QR (Mongos) in conjunction with the CS. For a production environment, multiple
QRs can be established, however for this test, only one Rpi 4B server was allocated as a QR. Finally,
as shown in Figure 1, five of the Rpi 4Bs were allocated as data shard servers (DSS). The DSS are
fundamentally database servers that hold a portion of the data. MongoDB documents can be distrib-
uted to the DSS by either a range function or a hash value. For this research, the primary key of the
collection was hashed (using a hash algorithm) to distribute the data across the five DSS. Each of the
three server types required different mongoDB configuration files. Although the documentation
from Linode (2021) was fairly accurate, some of the parameters did not work or were out-of-date for
this configuration. Therefore, it required the researcher to experiment with the parameters within the
MongoDB configuration files on each Rpi 4B to make the sharding function properly. Each of the
revised MongoDB configuration files are shown below with a brief explanation of the parameters.

All of the Rpi 4Bs had a host file named hosts located in /etc directory. The hosts file enables the
network to be aware of the other servers within the cluster. Although the cluster resided on a private
network, for the sake of added security, the last two or three values from the IP address listed below
have been altered from integers to question marks (?) for the sake of this publication. Also, the Rpi
4b server names have been changed to protect the identity of the cluster servers. The beta1 IP ad-
dress and name is different on each of the servers. This sample hosts file was copied from the beta1
server. The IP addresses were automatically assigned by the Comcast router when the switch was
connected to the router. The unique name for each server was assigned when each Rpi was config-
ured by the researcher.

Table 2: Hosts File

IP Address Server Name
127.0.0.1 Localhost
127.0.1.1 beta1
10.0.0.?? beta6
10.0.0.?? beta7
10.0.0.? beta8
10.0.0.??? betadisk1 (2 Terabyte Drive)
10.0.0.?? beta2
10.0.0.??? beta3
10.0.0.??? beta4
10.0.0.??? Beta5

Student Learning Using MongoDB Sharding

6

CONFIG SERVER CONFIGURATION
Below is an example of the MongoDB configuration file for a Config Server (CS). Most of the pa-
rameters are standard, however there are new entries for replication and sharding. The name of the
replication set is myrs (my replication set) and cluster role is defined as configsvr. This last parame-
ter is how MongoDB knows that this node is a CS versus some other type of server. Note: Some of
the integers below have been changed to question marks (?) to protect the cluster. The security key
file is omitted from all of the configuration files because it was not used to test the cluster.

Where and how to store data.
storage:
 dbPath: /data/db
 journal:
 enabled: true
engine:
mmapv1:
wiredTiger:

Where to write logging data.
systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongod.log

network interfaces
net:
 port: 270??
 bindIp: 0.0.0.0,<10.0.0.??> #IP of this machine

How the process runs
processManagement:
 timeZoneInfo: /usr/share/zoneinfo

#operationProfiling:

replication:
 replSetName: <myrs>

sharding:
 clusterRole: configsvr

After the installation of the CS parameters is successful, the server can be tested by restarting mon-
god on the CS and then issuing a status command (shown below).

sudo systemctl status mongod
[sudo] password:

mongod.service - MongoDB Database Server
 Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset>
 Active: active (running) since Fri 2021-12-03 21:21:52 MST; 2 days ago
 Docs: https://docs.mongodb.org/manual
 Main PID: 16407 (mongod)
 Memory: 272.9M

Mason & Masters

7

 CGroup: /system.slice/mongod.service
 └─16407 /usr/bin/mongod --config /etc/mongod.conf
Dec 03 21:21:52 beta1 systemd[1]: Started MongoDB Database Server.

Start the mongo client (mongo) on the CS. If the prompt shows as SECONDARY, then SSH to an-
other CS and repeat the process. On the primary CS, start the client and then run the rs.intiate com-
mand to see that the three CS(s) are running.

rs.initiate({ _id: "<myrs>", configsvr: true, members: [{ _id: 0, host: "10.0.0.??:270??" }, { _id: 1,
host: "10.0.0.??:270??" }, { _id: 2, host: "10.0.0.???:270??" }] })

Then, check that the CSs are operational by starting the mongo client (mongo) on a (CS). It will
show the following prompt -<myrs>:PRIMARY>. If the prompt shows <myrs>: SECONDARY,
then SSH to another CS and repeat the same process until you find the primary CS. The results from
the rs.status() are not shown since they are verbose.

<myrs>:PRIMARY> rs.status()

QUERY ROUTER CONFIGURATION
Below is an example of the configuration file (mongos.conf) for the Query Router (QR) server that
is located in the /etc directory. The QR had to be setup to use mongos (not the Mongo client appli-
cation that is already installed on the QR). Additional information is available on MongoDB website
(MongoDB, 2021a) regarding Mongos and how it functions as a query router. Note: Mongos is usu-
ally started remotely from another machine in the cluster, such as one of the data shard servers. A
new service configuration file is required for the mongos installation. Notice the sharding entry at the
bottom of the file. The myrs indicates the config server name and the three IP addresses are for the
three CSs.

where to write logging data.
systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongos.log

network interfaces
net:
 port: 270??
 bindIp: 0.0.0.0

sharding:
 configDB: <myrs>/10.0.0.??:270??,10.0.0.??:270??,10.0.0.???:270??

Below is an example of the service file that is also required on the Query Router server.

--
----- mongos service file -/lib/systemd/system/mongos.service file
--
[Unit]
Description=Mongo-Cluster-Router
After=network.target

Student Learning Using MongoDB Sharding

8

[Service]
User=mongodb
Group=mongodb
ExecStart=/usr/bin/mongos --config /etc/mongos.conf shown above
file size
LimitFSIZE=infinity
cpu time
LimitCPU=infinity
virtual memory size
LimitAS=infinity
open files
LimitNOFILE=64000
processes/threads
LimitNPROC=64000
locked memory
LimitMEMLOCK=infinity
total threads (user+kernel)
TasksMax=infinity
TasksAccounting=false
Recommended limits for mongod as specified in
https://docs.mongodb.com/manual/reference/ulimit/#recommended-ulimit-settings
[Install]
WantedBy=multi-user.target

When the installation of mongos on the Query Router is successful, it can be tested by starting mon-
gos (from a remote server in the cluster) and then issuing a status command on the QR (shown be-
low).

sudo systemctl status mongos
[sudo] password:

mongos.service - Mongo-Cluster-Router
 Loaded: loaded (/lib/systemd/system/mongos.service; enabled; vendor preset>
 Active: active (running) since Fri 2021-12-03 20:55:21 MST; 2 days ago
 Main PID: 3076 (mongos)
 Memory: 38.1M
 CGroup: /system.slice/mongos.service
 └─3076 /usr/bin/mongos --config /etc/mongos.conf

Dec 03 20:55:21 betadisk1 systemd[1]: Started Mongo-Cluster-Router.
lines 1-9/9 (END)

SHARD SERVER CONFIGURATION
Lastly, the configuration file for the shard data servers is shown below. Most of the parameters are
standard; however, note that the replication set is not included in this file, although the Linode (2021)
documentation recommended it. The addition of the replication set name in this file resulted in a
failure for sharding in the cluster. The cluster role is simply set to shardsvr.

 # Where and how to store data.
storage:
 dbPath: /data/db

Mason & Masters

9

 journal:
 enabled: true
engine:
mmapv1:
wiredTiger:

where to write logging data.
systemLog:
 destination: file
 logAppend: true
 path: /var/log/mongodb/mongod.log

network interfaces
net:
 port: 270??
 bindIp: 0.0.0.0

how the process runs
processManagement:
 timeZoneInfo: /usr/share/zoneinfo

notice that name of the replication set name is not included intentionally
sharding:
 clusterRole: shardsvr

After the shard servers are configured and restarted, their server status can be verified with a status
check of the database server - mongod (as shown below).

sudo systemctl status mongod
[sudo] password:

 mongod.service - MongoDB Database Server
 Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset>
 Active: active (running) since Sat 2021-11-27 16:01:10 MST; 1 weeks 1 days>
 Docs: https://docs.mongodb.org/manual
 Main PID: 1202 (mongod)
 Memory: 233.7M
 CGroup: /system.slice/mongod.service
 └─1202 /usr/bin/mongod --config /etc/mongod.conf

Nov 27 16:01:10 delta6 systemd[1]: Started MongoDB Database Server.

At this point the three types of servers have been configured and are operational.

REMAINING STEPS TO ENABLE THE TESTING
There are a few remaining steps to finish the setup for testing. Create a database (shardDB) and then
create a collection (cryptoHistory) using mongos. The cryptocurrency data for testing the sharding
was sourced from Kaggle (2021), which is a popular data source for Data Science projects. A collec-
tion in MongoDB is similar to a table in a relational database (e.g., Oracle, MySQL, MS SQL Server).
The use command shown below will create the database if it does not already exist.

Student Learning Using MongoDB Sharding

10

mongos> use shardDB --create a database called shardDB using mongos

Add the five shards using mongos
mongos> sh.addShard("shard000?:270??")

mongos> db.createCollection("cryptoHistory")
{
 "ok" : 1,
 "operationTime" : Timestamp(1638649074, 8),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1638649074, 8),
 "signature" : { "hash" :
BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0) } } }

mongos> show collections
cryptoHistory

mongos> db.cryptoHistory.ensureIndex({ _id : "hashed" }) -- create hashed Index on _id

Enabled on the shardDB database.
mongos> sh.enableSharding("shardDB") -- enable sharding
{
 "ok" : 1,
 "operationTime" : Timestamp(1638739986, 3),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1638739986, 3),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0) } } }

Test data
Mongos was used to insert 1500 cryptocurrency documents that were downloaded from the Kaggle
website and tweaked. Samples of two insert statements are shown below. Note: The MongoImport
load utility was tested, however it did not work with sharding and the QR (mongos). Therefore, more
research is needed for MongoImport in terms of loading data into shards.

--------- sample of 2 crypto Bitcoin documents insert statements downloaded from Kaggle CSV

db.cryptoHistory.insert({ _id: 20001, Date: "2010-07-18", Price: 0.1, Open:0, High: 0.1, Low: 0.1,
Volume:80, Change : 0})

db.cryptoHistory.insert({ _id: 20002, Date: "2010-07-19", Price: 0.1, Open:0.1, High: 0.1, Low: 0.1,
Volume:570, Change : 0})

RESULTS AND ANALYSIS
Using the getShardDistribution() command shown below, the results indicate that the 1500 docu-
ments (rows) were distributed across the five partitions based upon the hashed primary key - key _id.

Mason & Masters

11

This configuration could accommodate many more shard servers and much more data as mentioned
above.

mongos> db.cryptoHistory.getShardDistribution()

Shard shard0000 at 10.0.0.???:270??
 data : 16KiB docs : 271 chunks : 2
 estimated data per chunk : 8KiB
 estimated docs per chunk : 135
…

Totals
 data : 94KiB docs : 1500 chunks : 10
 Shard shard0000 contains 17.74% data, 18.06% docs in cluster, avg obj size on shard : 63B
 Shard shard0001 contains 21.26% data, 21.33% docs in cluster, avg obj size on shard : 64B
 Shard shard0004 contains 19.95% data, 20.86% docs in cluster, avg obj size on shard : 61B
 Shard shard0003 contains 20.23% data, 19.13% docs in cluster, avg obj size on shard : 68B
 Shard shard0002 contains 20.79% data, 20.6% docs in cluster, avg obj size on shard : 64B

The goal of the research was to test the feasibility of running MongoDB databases with sharding on
a small cluster of nine Ubuntu Rpi servers. Once configured, the cluster performed as expected load-
ing 1500 documents to the five MongoDB DSS within a few seconds. The totals (above) provide evi-
dence that the data was distributed evenly across the five shard servers based on a hashed key.
Shard0000 had the smallest amount of data with 17.74% and shard0001 had the largest amount of
data with 21.26%. All of the shard servers received roughly 20% of the data. Future research could
include testing with large amounts of data and also testing distributed processing using a Cassandra
NoSQL database.

CONCLUSION
In conclusion, this research study demonstrated that a small cluster of nine inexpensive Rpi servers
could be used by students to learn about distributed processing. This research is significant to the ac-
ademic community because students often run into limited financial constraints when attempting to
build projects. The use of the Ubuntu Linux OS and MongoDB, which are both open-source prod-
ucts, helped to reduce the overall expenses for this project. As mentioned by Hills et al. (2019), stu-
dents are often more enthusiastic when they are able to conduct hands-on experimentation with
hardware and software. It is hoped that future work in this area will inspire students to experiment
with NoSQL databases by working on performance scaling, deployment automation, Edge pro-
cessing and observability.

REFERENCES
Amazon. (2021). raspberry pi 4 8gb. Retrieved February 4, 2022, from https://www.amazon.com/raspberry-pi-4-

8gb/s?k=raspberry+pi+4+8gb

Broadcom. (2021). Company history. https://www.broadcom.com/company/about-us/company-history

Doucet, K. & Zhang, J. (2017). Learning cluster computing by creating a Raspberry Pi cluster. ACM SE '17:
Proceedings of the SouthEast Conference, April 13-15, 2017, Kennesaw, GA, USA. (pp. 191–194).
https://doi.org/10.1145/3077286.3077324

GeeksforGeeks. (2022). What is sharding? https://www.geeksforgeeks.org/what-is-sharding/

Hills, M, Gamrat, C. & Brown, C. (2019). Classroom engagement activities with the Raspberry Pi. In SIGITE
'19: Proceedings of the 20th Annual SIG Conference on Information Technology Education September 2019.
https://doi.org/10.1145/3349266.3351358

https://www.amazon.com/raspberry-pi-4-8gb/s?k=raspberry+pi+4+8gb
https://www.amazon.com/raspberry-pi-4-8gb/s?k=raspberry+pi+4+8gb
https://www.broadcom.com/company/about-us/company-history
https://doi.org/10.1145/3077286.3077324
https://www.geeksforgeeks.org/what-is-sharding/
https://doi.org/10.1145/3349266.3351358

Student Learning Using MongoDB Sharding

12

Kaggle. (2021). Datasets. https://www.kaggle.com/datasets

Linode. (2021). How to build database clusters with MongoDB. https://www.linode.com/docs/guides/build-data-
base-clusters-with-mongodb

MongoDB (2021a). Mongos. https://docs.mongodb.com/v4.2/core/sharded-cluster-428 query-router/

MongoDB (2021b). Sharding. https://docs.mongodb.com/manual/sharding/

MongoDB. (2022). MongoDB Limits and Thresholds. https://docs.mongodb.com/v4.2/reference/limits/

Raspberry Pi Foundation. (2021). About us. https://www.raspberrypi.org/about/

Shafer, J., & Rixner, S. (2007). RiceNIC: A reconfigurable network interface for experimental research and edu-
cation. Experimental Computer Science Conference (ExpCS, June 2007), San Diego, CA, ACM 978-1-59593-751-
3 https://doi.org/10.1145/1281700.1281721

Smith, M. (2020). Install & configure MongoDB on the Raspberry Pi. https://www.mongodb.com/developer/how-
to/mongodb-on-raspberry-pi/

Unix etc. (2019). Raspberry Pi 4 Real World Tests. http://unixetc.co.uk/2019/07/07/raspberry-pi-4-real-world-
tests/

AUTHORS
Robert T. Mason. I joined Regis University as a ranked full-time faculty
member in January 2011. I am a professor in the Anderson College of
Business and Computing. I am now the program director for the MS in
Information Systems (MSIS). Prior to accepting this position with RU as
a faculty member, I was employed by various Fortune 500 companies for
25 years as a Data Architect, DBA, Manager and Software Engineer.

William Masters. I am an experienced team lead, architect, and devel-
oper who excels in the rapid creation of products and services using engi-
neering best practices such as Agile, LEAN, DevOps.

https://www.kaggle.com/datasets
https://www.linode.com/docs/guides/build-database-clusters-with-mongodb
https://www.linode.com/docs/guides/build-database-clusters-with-mongodb
https://docs.mongodb.com/v4.2/core/sharded-cluster-428%20query-router/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/v4.2/reference/limits/
https://www.raspberrypi.org/about/
https://doi.org/10.1145/1281700.1281721
https://www.mongodb.com/developer/how-to/mongodb-on-raspberry-pi/
https://www.mongodb.com/developer/how-to/mongodb-on-raspberry-pi/
http://unixetc.co.uk/2019/07/07/raspberry-pi-4-real-world-tests/
http://unixetc.co.uk/2019/07/07/raspberry-pi-4-real-world-tests/

	Student Learning Using MongoDB Sharding on a Cluster of Ubuntu Raspberry Pi 4B Servers
	Abstract
	Introduction
	Research Methodology
	Background
	Data Engineering Practicum
	Cluster Configuration
	Config Server Configuration
	Query Router Configuration
	Shard Server Configuration
	Remaining Steps to Enable the Testing
	Test data

	Results and Analysis
	Conclusion
	References
	Authors

