

June 30 – July 4, 2019, Jerusalem, Israel

Accepted by Executive Review by Editor Eli Cohen │ Received: April 16, 2019 │ Revised: April 22, May 6,
2019 │ Accepted: May 7.
Cite as: Stoilescu, D. (2019). Views and tendencies of introducing computational thinking in Australian schools.
Proceedings of the Informing Science and Information Technology Education Conference, Jerusalem, Israel, pp. 239-245. Santa
Rosa, CA: Informing Science Institute. https://doi.org/10.28945/4348

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

VIEWS AND TENDENCIES OF INTRODUCING
COMPUTATIONAL THINKING IN AUSTRALIAN

[RESEARCH IN PROGRESS]
Dorian Stoilescu Western Sydney University,

Sydney, Australia
D.Stoilescu@westernsydney.edu.au

ABSTRACT
Aim/Purpose This paper discusses theoretical and curricular aspects of computational thinking

in curriculum and challenges noticed on introducing recent ICT perspectives in
Australian Schools.

Background It presents the way computational thinking is defined and understood in curricu-
lum documents and a set of relatively new implementations that were designed
nationally and in the New South Wales state.

Methodology This paper uses qualitative research methods such as content analysis and text
analysis methods.

Contribution This research analyzes some recent trends in introducing computational thinking
and explore the was these reforms are described in the official documents.

Findings It was noticed that although the importance of computational thinking was highly
emphasized, the documents cannot describe a consistent implementation of this
set of educational policies, as at this time implementing computational thinking
largely underperforming.

Recommendations
for Practitioners

It is recommended a more systemic way of designing policies and curriculum
content for the integration of computational thinking in Australian schools.

Future Research Future research needs to explore reasons for delaying these reforms of introduc-
ing computational thinking.

Keywords computational thinking, computer science education, ICT education, Australian
curriculum reforms

https://doi.org/10.28945/4348
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:D.Stoilescu@westernsydney.edu.au

Introducing Computational Thinking in Australia

240

INTRODUCTION
Computational thinking (CT) is a relatively new educational perspective of using computer science in
curricula. Janette Wing introduced this concept first time in a brief conference paper in 2006, as a
basic educational goal that all 21st educators should aspire. Computational thinking was defined as a
core educational reference, similar to literacy and numeracy. More exactly, she introduces this term as
an educational approach that “builds on the power and limits of computing processes, whether they
are executed by a human or by machine” (Wing, 2006, p.33). As such, is it a way to model various
projects and problems from a broad large of areas based on facilities that computer support offers:

Computational methods and models give us the courage to solve problems and design systems that
no one of us would be capable of tackling alone. Computational thinking confronts the riddle of
machine intelligence: What can humans do better than computers? and What can computers do bet-
ter than humans? Most fundamentally it addresses the question: What is computable? (p. 33)

As such, computational thinking has had an important impact on educational curriculum and poli-
cies, as being a recent perspective introduced in the national curricula of numerous countries that
need to be clearly understood and implemented (Aho, 2012; Hu, 2011). Its major question that un-
derlines the expertize of computational thinking remains the previous inquiry initially formulated by
Wing: What can be done by computers and what still cannot (Hu, 2011, Wing; 2006, 2008)? What
happens in various areas of curricula, when we move from the areas that use computers and abstract
algorithms to various software packages required in the school curricula? Do we need to change our
school curriculum? If, yes, what needs to be updated? Do we only need change pedagogical ap-
proaches in all disciplines? If yes, how can we remodel our school curriculum content in order to
effectively interact with computers? This is why computational thinking was introduced as a broader
way of understanding interactions between computer and learning activities. Computational thinking
involves understanding human interactions, patterns of problem-solving, designing systems, and im-
plementing decisions (Grover & Pea, 2013`).

As a developed country, Australia has been attempting to introduce new policies and implement
them across all areas of primary and secondary education. With this in mind, in this paper, we at-
tempt to explore ways in which computational thinking is defined and implemented in Australian
Curriculum.

The main research questions discussed here are:

1. How is computational thinking described and implemented in Australian curriculum?

2. What are the challenges in implementing computational thinking in Australia?

First, this research will study mostly the national curriculum and the way computational thinking was
understood. As Australia has the education system designed and managed at state level, the discus-
sions will focus mostly on the New South Wales (NSW) state curriculum, as being the most populous
state in Australia and the other states, although they are not discussed in this current paper, have nu-
merous similarities with NSW implementations.

BACKGROUND
Similar to computational thinking, there are already introduced in ICT education research terms such
as digital literacy, coding literacy, computational modelling, IT literacy, IT fluency (García-Peñalvo, J.,
Reimann, Tuul, Rees, & Jormanainen, 2016). While an exhaustive discussion of terms used in the
research literature is not the purpose of this paper, we will briefly discuss some differences between
previous terms connected to computational thinking. Computational thinking is often seen as be-
coming familiar with various digital technologies. However, computational thinking is more than just
learning how to access information through various digital devices and software packages, which is
the definition of digital literacy. As well, it is different from digital fluency which explores the skil-

Stoilescu

241

fulness of computational thinking is logically related to programming as people see it as a way to
connect with learning programming. However, it is not narrowly focused on creating a software that
is solving that problem.

Computational thinking attempts to change the way students learn. For instance, when solving a
problem, students using computational thinking paradigms might ask: “What is the most practical
way to solve a problem and how difficult is?” or “Is any software able to solve that problem? If not,
is the computer helping to ease the solving of the problem? How?” The learning paths are changed
in other ways as well: “Can we approximate the main stages of solving a problem with an algorithmic
path?” In other words, computational thinking attempts to rephrase the initial problem into some-
thing less difficult, through different reductionist paths by using reducing complexity, creating differ-
ent scenarios, using random data, and simulation.

Computational thinking is using various strategies to achieve its impact on learning. For instance, by
using abstraction and decomposition, some characteristics are generalized or emphasized. As such,
the content becomes less complex and easier to get digitally processed. Selecting specific criteria, the
problems are reduced to some general type or class of problems and algorithmically approached.

Computational thinking was recently connected to teaching broad skills such as literacy and numera-
cy. They are similar in the way that students need to master both in order to succeed in today's socie-
ty (Setle et al. 2012). Computational think as such needs to be delivered in a more broad path of
understanding so that technological tools and algorithms need to be deployed in STEM disciplines,
social studies, languages, and arts. As well, concepts, tools and the language used in manipulating
these are requested to be more flexible, so that when learners decompose the problems, they need to
be easy to work with by various types of learners trying to solve complex types of problems.

Computational thinking was recently introduced in many countries such as US, China, Australia, Isra-
el, and several European countries such as Netherland, Ireland, UK, and Finland. While computa-
tional thinking implementations in national curricula are still in early stages, some trends emerged.
For instance, the researchers and educators attempt to make computational thinking distinct from
programming. For many researchers (Garcia Pelvano et al. 2016; Voogt, Fisser, Good, Mishra &
Yadav, 2015) one of the major difficulties remains using computational thinking in other areas differ-
ent from the traditional computer science discipline. An interesting approach is introducing computa-
tional thinking in other areas different from STEM such as English, Latin, history, graphic arts, and
ethics (Barr & Stephenson, 2011; Seoane-Pardo, 2016; Settle et al, 2012). Another major debate is
which type of coding should be chosen. More exactly, in teaching computing, there are two different
paths. First of them is teaching traditional languages such as Python, C/C++/C#, Java, Perl, Visual
Basic, HTML, SQL. A major difficulty encountered by people promoting this oath is that these lan-
guages require a considerable level of expertise for teachers willing to try for their classrooms. As
such, teachers would need more formal classes and training in programming courses, things difficult
to support in the developing or developed countries. The second major path was the use of non-
traditional programming languages, and visual programming platforms such as Logo, Scratch, Alice,
AgentCubes, Flowgorithm, GameSalad, Kodu Games Lab, LARP, Raptor, Toon Talk, Visual Logic.
Etc. Some non-traditional programming languages such as Logo and Scratch consider learning pro-
gramming these languages as a way of playing, designing, and interacting with different objects and
actors. These programming languages put playing and user interactions in the center of learning pro-
gramming. As such, these are not related to a rigid writing of a specific syntax. Recently, new trends
in learning programming that emphasize interactions and simulations of robotics, actor-model pro-
gramming languages, programming microcontrollers, and programming Internet of Things technol-
ogies have been emerging. Some products already used in schools and universities are Arduino, Cir-
cuit Wizard, GENIE, PICAXE, Raspberry PI, Micromite, Intellecta, Bee-Bots, Lego Mindstorms,
WeDo (Lego-based) and Intel Edison.

Introducing Computational Thinking in Australia

242

METHOD
This study uses quality research methods, mainly document analysis (Bowen, 2009). “Documents that
may be used for systematic evaluation as part of a study take a variety of forms. Researchers typically
review prior literature as part of their studies and incorporate that information in their reports. How-
ever, where a list of analysed documents is provided, it often does not include previous studies. Sure-
ly, previous studies are a source of data, requiring that the researcher rely on the description and in-
terpretation of data rather than having the raw data as a basis for analysis. The analytic procedure
entails finding, selecting, appraising (making sense of), and synthesising data contained in docu-
ments” (p 27).

In the following we will summarise some main tendencies noticed in the official websites of the Aus-
tralian Curriculum and The NSW Education Standards Authority (NESA). We attempted to include
some previous studies such as previous documents about computational thinking used in Australia
and other countries such as US and UK. By using document analysis, content is structured into major
themes, categories, and case examples specifically through content analysis (Labuschagne, 2003).

ATTEMPTS OF INTRODUCING COMPUTATIONAL THINKING IN AUSTRALIAN
SCHOOLS
In New South Wales, the current state-level educational organization that establishes and monitors
teaching preparation and school standard is called the NSW Education Standards Authority (NESA).
They establish the criteria for designing and updating the state curriculum, for assessments and ex-
ams, teaching certifications and professional development, and assessments. Australian curriculum
documents document well that information processing is not the same as computing (Piccinni &
Scarantini, 2010). However, it is hard to delimitate them and create separate distinct curricular disci-
plines. For instance, Australian curriculum attempts a clear delimitation between these two curricu-
lum areas as in the last two years. In New South Wales, for example, the state curriculum has two
different computing disciplines, one related to information processing (Information Processes and
Technology or IPT) and the other related with computation (Software Design and Development or
SDD). While Information Processes and Technology in taught in many schools and remains widely
spread in various areas of curricula and in informal activities, Software Design and Development is at
the beginning stage and it is not well integrated with other curriculum areas. The NSW primary edu-
cation is from kindergarten to year 6 and its curriculum is structured in Learning stages from Early
Stage 1 for kindergarten and three stages for years 1 to 6. Technology is part of the Key Learning
Area (KLAs). Secondary education in from year 7 to year 12 and has Stages 4,5 and 6. From kinder-
garten to year 10, national curriculum has developed Digital Technologies. In primary education, ICT
technology is part of Science and Technology curriculum.

An important document about computational thinking appeared recently (New South Wales Educa-
tion Standards Authority [NESA], 2017) about introducing computational thinking in NSW curricu-
lum. Computational technologies are part of the Digital Technologies curriculum for the F to year 10
schooling. Computational thinking is defined as “the thought processes involved in formulating a
problem and expressing its solution(s) in such a way that a computer-human or machine – can effec-
tively carry out” (NESA, 2017). Digital technologies strands are structured on two main related
strands:

- knowledge and understanding – Describes information and digital systems (hardware,
network, and software)

- processes and production skills – using digital systems to create ideas and information,
and to define, design and implement digital solutions, and evaluate these solutions and
existing information systems against specified criteria.

Stoilescu

243

Informally, computational thinking is not described as a programming activity. Rather, it is described
as a mental activity in modelling and formulating a problem, that finally relates to a computational
solution. The solution can be carried out by a human or machine. This latter point is important as it
shows that humans can compute and learn computational thinking without having a computer. Also,
it emphasizes that computational thinking is not just about problem-solving, but also about problem
formulation and modeling. As well, the document emphasizes the importance of critical thinking in
modelling and establishing a hierarchy of abstractions.

An important aspect of the document is that it encourages programming without pressuring the stu-
dents to learn a specific programming language. There are many voices encouraging promoting more
coding in Australian curriculum. For instance, the Digital Careers consider that computer program-
ming is a requirement for successful future careers. The present guide in computational thinking
draws not only in technology areas but almost in every learning area where computational thinking
can be applied. As it easy to understand, usually, these multidisciplinary areas of curriculum do not
require the use of coding, but they do aim to develop algorithmic and computational thinking skills
to better enable students and teachers to reach a coding goal.

CHALLENGES OF INTRODUCING COMPUTATIONAL THINKING IN
AUSTRALIA
Nowadays, computational thinking is still stirring important debates. One of them is whether com-
putational thinking is producing new ideas. And if yes, how do we evaluate the novelty and the im-
portance of these new ideas. Another aspect is that the terms and actions of the Digital Technolo-
gies outcomes are often too prescriptive and too narrowly related to programming. As well, the terms
in use are often very abstract and difficult to follow. Often, these terms and ideas look from universi-
ty textbooks. As such, it is important to use these terms in more non-sophisticated ways, as the cur-
riculum is for a large number of teenagers.

An important discussion refers to the ethical aspect of teaching and learning produced be computa-
tional learning. Several researchers emphasize that the abstract tendency of processing knowledge in
order to make it “computable” has as an impact on the disembodiment and embodiment of the con-
tent involved in computational thinking. As well, the areas of use computational thinking are extend-
ed. While computational thinking was traditionally linked with STEM disciplines, now it is more than
that. Computational thinking touches almost all learning areas, not only the STEM disciplines. As
well, there are important language, emotional, social, cultural, and ethical aspects that computational
thinking needs to keep into consideration when educators and students attempt to use it in broad
disciplines. Another important aspect related to computational thinking links to the critical thinking.
Is computational thinking overlooking critical thinking aspects? As computational thinking simplifies
the discourse and the strategies requested to solve the problem, critical thinking aspects come as a
very delicate topic as computational thinking might overlook some of these social issues. This is why
one of the major reasons to improve is by considering critical thinking strategies for using computa-
tional thinking, as the soft aspect of problems always needs to be considered first before simplifying
and modelling with digital tools.

While computational thinking is pervasive, we need to explain what computational thinking is not. As
we mentioned already, computational thinking is not coding. Yet, many people still automatically as-
sociate them and at times it is requested unreasonable level of knowledge in coding. In addition,
there are requirements to use more computational thinking approaches across more areas of the cur-
riculum. Another area to improve is referenced to technological design as computational design often
has the purpose of obtaining a technological artifact. As well, references to thinking skills need to be
emphasized. More emphasis on Learning based Project pedagogy needs to be pursued. More empha-
sis on developing problem-solving skills and modelling. Alternative ideas and solutions for digital
approaches need to be designed.

Introducing Computational Thinking in Australia

244

Another concept developed is CS + X which means “computing science plus whatever it is that you
are passionate about or engaged with” (Australian National Curriculum 1, 2017). IT systems are be-
coming more commonplace and all-pervasive, and the development of the Internet of Things and
machine-to-machine communication standards will further our reliance on them.

Critical pedagogy is important in discussing the output of computational thinking. It was noticed that
sensitive teaching is an important request so that the problems of computational thinking are not
becoming irrelevant or unethical. As well, issues of safe use of technology need to be widely dis-
cussed. In addition, ethics and social equity are broadly targeted as the use of technology needs to be
accessible for people with various backgrounds. Another aspect was the teaching and learning of
computational thinking for various minorities such as aboriginals or people with disabilities.

Introduction of literacy around coding and ICT remains a difficult task as there are few educators
involved in computational thinking that connect them with broad areas of curricula. As a result, due
to the reduced number of educators involved in computational thinking makes it implemented in few
disciplines. concepts and language used in technologies. As such, the amount of work involved in
computational thinking is very different and still in an incipient stage in Australian schools.

CONCLUSION AND DISCUSSIONS
Implementing computational thinking is an exciting opportunity for every country. As such, although
Australia is considered an advanced knowledge economy, computational thinking remains still known
by few educators. As such, implementations of computation thinking are still at the incipient stage
and are considered relatively a challenging task. While it was noticed that the main dimensions for
computational thinking, such as a flexible way to encourage modelling and interactions between hu-
man and computer devices, was clearly understood, in order to be well integrated into the national
and state curriculum, more efforts are required to disseminate the recent policies and interpretations
on computational thinking and persistent efforts to implement them across all curricula.

REFERENCES
Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835.

Australian National Curriculum 1 (2017) http://educationstandards.nsw.edu.au/wps/portal/nesa/k-
10/learning-areas/technologies/coding-across-the-curriculum

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the
role of the computer science education community? ACM Inroads, 2(1), 48–54.

Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-
40.

García-Peñalvo, F. J., Reimann, D., Tuul, M., Rees, A., & Jormanainen, I. (2016). An overview of the most rele-
vant literature on coding and computational thinking with emphasis on the relevant issues for teachers.
Belgium: TACCLE3 Consortium. doi:10.5281/zenodo.165123..

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Hu, C. (2011, June). Computational thinking: what it might mean and what we might do about it. In Proceed-
ings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education (pp. 223-227).
ACM.

Labuschagne, A. (2003). Qualitative research: Airy fairy or fundamental? The Qualitative Report, 8(1), Article 7.
Retrieved 17 April 2019, from https://nsuworks.nova.edu/tqr/vol8/iss1/7/

Piccinini, G., & Scarantino, A. (2010). Computation vs. information processing: why their difference matters to
cognitive science. Studies in History and Philosophy of Science, 41(3), 237-246. 0-264.

http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/coding-across-the-curriculum
http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/coding-across-the-curriculum

Stoilescu

245

New South Wales Education Standards Authority [NESA] (2017). Digital Technologies and ICT Resources
http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/coding-across-
the-curriculum

Seoane-Pardo, A. M. (2016, November). Computational thinking beyond STEM: an introduction to moral ma-
chines and programming decision making in ethics classroom. In Proceedings of the Fourth International
Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 37-44). ACM.

Setle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B. (2012, July). Infus-
ing computational thinking into the middle-and high-school curriculum. In Proceedings of the 17th ACM
annual conference on Innovation and technology in computer science education (pp. 22-27). ACM.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. In Philosophical Transactions of the
Royal Society of London A: mathematical, physical and engineering sciences, 366(1881), 3717-3725.Roussev, B.
(2003b). Teaching introduction to programming as part of the IS component of the business curriculum.

BIOGRAPHY
Dorian Stoilescu is lecturer in ICT and mathematics education at the
School of Education, Western Sydney University. Some of his research
topics are: ICT curriculum and policies, integrating ICT in mathematics
curriculum and policies, integrating ICT in mathematics education, equity
in ICT and mathematics education.

http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/coding-across-the-curriculum
http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/coding-across-the-curriculum

	Views and Tendencies of Introducing Computational Thinking in Australian [Research in Progress]
	Abstract
	Introduction
	Background
	Method
	Attempts of Introducing Computational Thinking in Australian Schools
	Challenges of Introducing Computational Thinking in Australia

	Conclusion and Discussions
	References
	Biography

