
June 30 – July 4, 2019, Jerusalem, Israel 

Accepting Editor: Eli Cohen │ Received: December 16, 2018 │ Revised: February 9, 2019 │ Accepted: Febru-
ary 10, 2019.  
Cite as: Shamir, G., Tsybulsky, D. & Levin, L. (2019). Introducing computational thinking practices in learning 
science of  elementary school [Research-in-Progress]. Proceedings of  the Informing Science and Information Technology 
Education Conference, Jerusalem, Israel, pp. 187-205. Santa Rosa, CA: Informing Science Institute. 
https://doi.org/10.28945/4327  

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International 
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure 
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not 
permit you to use this material for commercial purposes. 

INTRODUCING COMPUTATIONAL THINKING PRACTICES 
IN LEARNING SCIENCE OF ELEMENTARY SCHOOLS 

[RESEARCH-IN-PROGRESS] 
Gilad Shamir* Tel Aviv University, Tel Aviv, Israel giladshamir@mail.tau.ac.il   

Dina Tsybulsky Technion, Haifa, Israel  dinatsy@ed.technion.ac.il  

Ilya Levin Tel Aviv University, Tel Aviv, Israel ilia1@tauex.tau.ac.il    
*Corresponding author 

ABSTRACT 
Aim/Purpose Science is becoming a computational endeavor therefore Computational Think-

ing (CT) is gradually being accepted as a required skill for the 21st century sci-
ence student. Students deserve relevant conceptual learning accessible through 
practical, constructionist approaches in cross-curricular applications therefore it 
is required for educators to define, practice and assess practical ways of  intro-
ducing CT to science education starting from elementary school. 

Background Computational Thinking is a set of  problem-solving skills evolving from the 
computer science field. This work-in-progress research assesses the CT skills, 
along with science concepts, of  students participating in a science program in 
school. The program pertains learning science by modeling and simulating real 
world phenomenon using an agent-based modeling practice. 

Methodology This is an intervention research of  a science program. It takes place as part of  
structured learning activities of  4th and 5th grade classes which are teacher-
guided and are conducted in school. Both qualitative and quantitative evalua-
tions are parts of  the mixed methods research methodology using a variety of  
evaluation technique, including pretests and posttests, surveys, artifact-based 
interviews, in class observations and project evaluations.  

Contribution CT is an emerging skill in learning science. It is requiring school systems to give 
increased attention for promoting students with the opportunity to engage in 
CT activities alongside with ways to promote a deeper understanding of  sci-
ence. Currently there is a lack of  practical ways to do so and lack of  methods to 
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assess the results therefore it is an educational challenge. This paper presents a 
response to this challenge by proposing a practical program for school science 
courses and an assessment method. 

Findings This is a research in progress which finding are based on a pilot study. The re-
searches believe that findings may indicate improved degree of  students' science 
understanding and problem-solving skills.  

Recommendations  
for Practitioners 

Formulating computer simulations by students can have great potential on 
learning science with embedded CT skills. This approach could enable learners 
to see and interact with visualized representations of  natural phenomena they 
create. Although most teachers do not learn about CT in their initial education, 
it is of  paramount importance that such programs, as the one described in this 
research, will assist teachers with the opportunity to introduce CT into science 
studies. 

Recommendation  
for Researchers  

Scientific simulation design in primary school is at its dawn. Future research 
investment and investigation should focus on assessment of  aspects of  the full 
Computational Thinking for Science taxonomy. In addition, to help teachers 
assess CT skills, new tools and criteria are required. 

Impact on Society STEM related professions are lacking the man power required therefore the full 
potential of  the economy of  developed countries is not fulfilled. Having stu-
dents acquire computational thinking skills through formal education may pre-
pare the next generation of  world class scientists and attract larger populations 
to these fields.  

Future Research The inclusion of  computational thinking as a core scientific practice in the Next 
Generation Science Standards is an important milestone, but there is still much 
work to do toward addressing the challenge of  CT-Science education to grow a 
generation of  technologically and scientifically savvy individuals. New compre-
hensive approaches are needed to cope with the complexity of  cognitive pro-
cesses related to CT.  

Keywords computational thinking, science education, agent-based modeling and simula-
tion, computational science, computational practices 

 
BACKGROUND 
The importance of  simulating models goes back to Aristotle who claimed that imitation is a means 
to know nature through representations which can be valid and acceptable. In fact, Aristotle intro-
duced the cognitive term phantasy as the necessary intermediary between the senses (particularly vi-
sion) and the intellect. Along these lines, imagination with regards to scientific learning can be de-
fined as the disciplined and informed use of  mental simulation for envisioning a system’s behaviors 
and drawing testable inferences (Landriscina, 2014).  

However, there are the difficulties that students might encounter in the process of  building, simulat-
ing and updating their own mental models. This frequently occurs when students must mentally inte-
grate multiple and dynamically changing representations of  information, while carrying out complex 
tasks, such as with scientific hypotheses. Usage of  models and simulations has facilitated science 
learning in which students were taught to use computational simulations (Lee, Martin, & Apone, 
2014). The release of  the Next Generation Science Standards (NGSS, 2013) has opened the gate to a 
new form of  interaction between students and computational simulations. This time not as mere us-
ers rather also as simulation creators (Sneider, Stephenson, Schafer, & Flick, 2014).  
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NGSS introduced a new challenge to science teachers. Out of  the eight NGSS practices one stands 
out - the practice of  “using computational thinking”.  With it comes science teacher's uncertainty of  
how to integrate it into existing classroom routines. With the growing importance of  computation in 
science, it seems appropriate that there will be a curriculum accompanied by teaching methods that 
coincide with the emergence and use of  creational technologies which are those that enable to create 
additional technologies. Practices collected under the term “Computational Thinking” have been dis-
played in a detailed CT-Science taxonomy (Weintrop et al., 2016). Nevertheless, their practical im-
plementation in terms of  educational pedagogy and science content in the classrooms is still vague.  

Beyond the inclusion of  CT as a central scientific practice, as defined by the NGSS, there are other 
important reasons to introduce CT-Science. CT includes a set of  skills that are applicable to a broad 
range of  problems and settings. While this is a strength of  the skills, it also presents challenges to 
teaching them, as they are not tied to a specific domain. By fusing CT instruction with science disci-
pline, students can explore and apply CT skills within a more established and accessible science con-
text. In this way, science can enhance CT learning. Research has also suggested that the reverse is 
true; CT and the use of  computational tools has been shown to enable deeper learning of  science 
content areas for students (National Research Council, 2011; Wilensky & Reisman, 2006).  

Another benefit of  embedding CT in STEM classrooms is that it fosters CT reaching a wider audi-
ence than would be possible if  it was taught independently. One reason for that is since all schools 
are having courses covering science discipline. In contrary, as of  2018 in Israel only 3% of  the stu-
dents learn computer science (CS) in elementary schools. This is largely due to lack of  resources, 
mostly lack of  teaching hours which are historically allocated to other subject matters. Programming 
is a common way to introduce CT skills to students but 97% are not exposed to CS therefore are not 
exposed to CT skills learning. By embedding CT in STEM curricula issues of  schools lacking the 
resources to have a course dedicated solely to CT or even to CS is addressed. Finally, embedding CT 
in STEM course can address the issues of  practicality of  implementation, especially with teachers’ 
comfort with the material. In this approach, the CT skills that are new to teachers are embedded 
within concepts that teachers already have mastery over, instead of  requiring the teachers to learn 
entirely new concepts. 

A facilitator for introducing CT-Science courses is the software development environments which 
increasingly are becoming easier to use and are created with elementary school students in mind. Re-
searchers see software development as a mean to promote CT with science studies (Sengupta, 
Kinnebrew, Basu, Biswas, & Clark, 2013). One case of  programming is simulations construction us-
ing an Agent-based modelling and simulation (ABMS) paradigm. ABMS is an approach to modelling 
systems composed of  interacting, autonomous agents. The agents have behaviors, often described by 
simple rules, and interactions with other agents, which in turn influence their behaviors. By modelling 
agents individually, the full effects of  the diversity that exists among agents in their attributes and 
behaviors can be observed as it comprises the behavior of  the system (Macal & North, 2010). By 
modelling systems from the ‘ground up’, agent-by-agent and interaction-by-interaction, self-
organization can often be observed in the models. Patterns, structures, and behaviors emerge that 
were not explicitly programmed into the models but arise through the agent interactions. The em-
phasis on modelling the heterogeneity of  agents across a population and the emergence of  self-
organization are two of  the distinguishing features of  agent-based simulation as compared to other 
simulation techniques such as discrete-event simulation and system dynamics. 

A computation-based approach using ABMS enables students to investigate the connections between 
different phenomenon levels. Using agent-based modeling tools, students model the micro-rules un-
derlying a science phenomenon and observe the result dynamics. Since this simulation design and 
implementation activity requires learners to design and make a simulation themselves, not just learn 
from an existing ready-made one, then this approach fits well within the constructionism theory 
known to be highly a motivator for students learning (Papert, 1980).   
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CT-Science can contribute to learning in an additional form as well. There is a sharp contrast be-
tween the picture of  the field of  science as studied in school settings and the picture that emerges 
from the practice of  current research. Although the two pictures are linked by similar content and 
the objects of  study are recognizably the same. With school settings, typical instruction emphasizes 
the memorization of  classification schemas and established theories (Jona el al, 2014). Even when 
students are exposed to research techniques in laboratory work, the emphasis is on following a pre-
scribed procedure rather than reasoning from the evidence gathered in the procedure. This picture 
contrasts sharply with the picture that emerges from science research literature (Keeling & Gilligan, 
2000; Marion, Renshaw, & Gibson, 2000). In this picture, the participants are active theorizers. They 
gather new evidence and devise methods to test their theories. Students form beliefs that science is a 
discipline in which observation and classification dominate and reasoning about theories is rare. Fur-
thermore, they believe that learning biology consists of  absorbing the theories of  experts and that 
constructing and testing their own theories is out of  reach. 

In recent years, several educational research projects (Lehrer & Schauble, 2000) have used computer-
modeling tools in science instruction. The approach taken herein differs from these approaches in its 
use of  agent-based modeling paradigm that enable students to model singular elements opposed to 
aggregates modeling paradigms. This technical advance in modeling paradigms enables students to 
use their knowledge of  the behavior of  individual entities in the construction of  theories about the 
behavior of  a phenomenon.  

There are a few programs aiming to teach Science with inherent CT: 

• EcoScienceWorks (ESW) (Stelar, n.d.) is a program in Maine, USA, engaging students with 
environmental simulations as part of ecology topic in the science curriculum. This project 
exposes students to simple programming challenges as a way of introducing them to the 
computational thinking that underlies the simulations. Through guided experimentation, 
ESW deepens students understanding of both ecology and computer modeling. Contrary, 
the program described in this research emphasizes a full model and simulation design and 
implementation process therefore differs from ESW and differs in the CT practices each 
foster. 

• CTSiM agent-based modeling environment uses an expert-based modeling method in which 
the simulation results are compared to an existing expert's model such as using overlays. The 
advantage of this method is that the end project can be validated. The disadvantages are that 
this hides a possible problem if the expert`s model has a flaw (Weintrop, 2016) or when 
there can be several different correct solutions (e.g., different computational models in 
CTSiM). This results in big behavioral differences between individuals, which means that an 
expert model is insufficient for capturing the learning behaviors of all learners (Dong, 2018).  
The environment described in this research emphasizes a fully uncontrolled simulation pro-
cess creation therefore differs from CTSiM. 

• "Middle school CS in science" of  the Code.org organization is yet another program for 
modeling and simulation in science learning. It consists of  instructional modules and profes-
sional development for the introduction of  computer science concepts into science class-
rooms within the context of  modeling and simulation. CS in Science is based on a crosswalk 
identifying areas of  overlap between the NGSS and Computer Science Teachers Association 
K-12 Computer Science Standards. The difference between CS in science program and the 
program described by the research is that the former focuses on CS in middle schools while 
the latter focuses on CT in elementary school. 

SCRATCH AS AN ABMS DEVELOPMENT ENVIRONMENT 
The researchers selected a programming environment for the ABMS creation student activity - It is 
Scratch of  MIT. Scratch can be described as a general-purpose, domain-independent, modeling lan-
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guage and integrated development environment (IDE). It works by providing the modeler with a 
framework to represent the basic elements, the smallest parts, of  a system and then provides a way to 
simulate the interactions between these elements. (See the Appendix for a list of  elements.)With 
scratch, students write rules for few of  these basic elements, specifying how they should behave and 
interact with one another. These individual elements are referred to as Sprites. They can also be re-
ferred to as agents or in programming language terms they are 'Classes'. Sprites can be instantiated 
having multiple instances of  a specific Sprite. Sprite instances (SI) are situated on a two-dimensional 
grid called Stage on which they can move around. Some typical commands for a SI are move in a 
given direction, change color, set a variable according to some value, clone new SI, or broadcast mes-
sage to other Sis and react on messages received from other SIs. SIs can also generate random values, 
so that they can, for example, execute a sequence of  commands with a fixed probability. 

The wide range of  commands executable by SIs makes it possible to use them to represent many 
different systems. Dynamic modeling tools, such as scratch, are used to represent changes in the 
states of  systems over time. In Scratch, time is represented as a discrete sequence of  “clock-ticks.” At 
each clock-tick, each SI and stage is called on to execute the rules that have been written for it. Stu-
dents need not write separate rules for each sprite. A power of  Scratch comes from the fact that all 
SIs can execute the very same set of  rules at each clock-tick. If  all SIs are executing the same rules, 
will their collective behavior not be repetitive and uninteresting? To see why this is not the case, it is 
important to take note of  the fact that even though two SIs might be following the same rules, their 
behavior could be markedly different. This possibility exists because the two SIs may have quite dif-
ferent internal properties and may be situated in different environments. For example, the SIs may be 
following the rule “If  you touch a consumable SI, consume it and move forward. Otherwise, turn 
around.” If  one SI is in the vicinity of  another sprite, it will consume it and move forward, the other 
SI, far from the consumable SI, will turn around. It is this diversity in internal states and in surround-
ing environments that enables the collective SI behaviors to admit a surprising degree of  variance. 
The modeling approach we describe—instantiating the individual elements of  a system and simulat-
ing their interactions—is not unique to Scratch.  

The Scratch environment was chosen for several reasons. It is the preferred programming environ-
ment by the ministry of  education in Israel for CS studies in elementary school (MOE, 2016). It is 
used in teacher's professional development therefore students use it for CS studies. Scratch Support 
encapsulates low-threshold (i.e., easy to program), wide walls (i.e., students should be able to design a 
wide range of  artifacts) and has multi lingual support (for Hebrew or Arabic speaking schools). 

COMPUTATIONAL THINKING IN SCIENCE TAXONOMY 
The frameworks used by the researchers as a basis for the study include first and foremost the Com-
putational thinking in science taxonomy (CT-Science) (Weintrop, 2016) which defines and describes 
the set of  CT practices relevant to science which students are required to learn. (See Figure 1.) 
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Figure 1. CT-Science taxonomy 

The focus of  this research is on constructionist learning of  CT by creating scientific models and 
simulations as opposed to a traditional teacher approach of  using simulations, meaning students will 
create simulations rather than use them. Therefore, the researchers chose to focus on a subset of  3 
practices described here forth: 

PREPARING PROBLEMS FOR COMPUTATIONAL SOLUTIONS – A PROBLEM 
SOLVING PRACTICE 
While some problems naturally fit to computational solutions, more often, problems must be re-
framed so that existing computational tools such as software environments can be utilized. In the 
sciences, a vast array of  computational tools can be employed for a given pursuit; the challenge is to 
map problems onto the capabilities of  the tools. Strategies for doing this include decomposing prob-
lems into subproblems, reframing new problems into known problems for which computational 
tools already exist, and abstracting which is simplifying complex problems so the mapping of  prob-
lem features onto computational solutions is more accessible. Students who have mastered this prac-
tice will be able to employ such strategies toward reframing problems into forms that can be solved. 

DESIGNING COMPUTATIONAL MODELS - A MODELING AND SIMULATIONS 
PRACTICE 
Part of  taking advantage of  computational power in the scientific disciplines is designing new models 
that can be run on a computational device. The process of  designing a model is distinct from imple-
menting it. Designing involves making technological, methodological, and conceptual decisions. 
There are many reasons that might motivate designing a computational model, including wanting to 
better understand a phenomenon under investigation, to test out a hypothesis, or to communicate an 
idea or principle to others in a dynamic, interactive way. When designing a computational model, one 
is confronted with a large set of  decisions including defining the boundaries of  the system, deciding 
what should be included and what can be ignored, and conceptualizing the behaviors and properties 
of  the elements included in the model. Throughout the design process, one must ensure that the re-
sulting model will be able to accomplish the goal that initially motivated the model design process. 
Students who have mastered this practice will be able to design a computational model, a process 



Shamir, Tsybulsky, & Levin 

193 

that includes defining the components of  the model, describing how they interact, deciding what 
data will be produced by the model, articulating assumptions being made by the proposed model, and 
understanding what conclusions can be drawn from the model. 

CONSTRUCTING COMPUTATIONAL MODELS – A MODELING AND 
SIMULATIONS PRACTICE 
Note, While the CT-Science taxonomy names the program created a `model`, the researchers of  this 
study use the term `simulation` for the constructed artifact which implements the model.  

An important practice in scientific pursuits is the ability to create new or extend existing computa-
tional simulations. This requires being able to encode the model features in a way that a computer 
can interpret. Sometimes this takes the form of  conventional programming. Being able to implement 
modeling ideas is critical for advancing ideas beyond the work done by others and complements the 
previous practice of  designing computational models. Students who have mastered this practice will 
be able to implement new simulation behaviors, either through extending an existing simulation or by 
creating a new one. 

RESEARCH GOALS & QUESTIONS 
Computational thinking (CT) for science studies was added to students` required skills as part of  
NGSS definitions (NGSS, 2013). Following that, a CT for science taxonomy was created (Weintrop 
et al., 2016). Two of  the taxonomy's categories are "Modeling and Simulation Practices" and "Com-
putational Problem-Solving Practices" which are the focus of  this research. The method of  acquiring 
those practices is another emphasis of  this research - a genre of  computational programming and 
modeling called Agent-Based Modeling and Simulation (ABMS). In the agent-based paradigm, the 
student programs the behaviors of  one or more agents which are computational actors, by using 
rules, which are then executed or simulated in steps over time to generate an evolving set of  behav-
iors.  

The researchers of  this study have created a 360 approach for an intervention of  embedding CT in 
science based on using a constructionist ABMS paradigm. It includes 1) Teacher training on ABMS 
principals within the context of  the Scratch software development environment. 2) Creation of  
learning and teaching materials for elementary school students .3) An assessment tool for validating 
the students CT practices. Accordingly, the research questions are: 

1. What are the reported outcomes of  the intervention learning program? Specifically, its effect 
on the students CT practices called "Modeling and Simulation" and "Computational Prob-
lem-Solving"?  

2. What gains in the relevant science curricular goals had the intervention learning program 
achieved? 

METHODOLOGY 
This paper describes an intervention research in elementary school settings. It is consisting of  a 
school program focusing on students' acquired computational thinking skills and science practices 
along with an assessment tool. The researchers of  this study have created a curriculum which embeds 
interdisciplinary learning of  CS, CT and science based on using a constructionist approach which 
consist of  creation of  an Agent-Based Modeling and Simulation (ABMS) by the students.  

Data was collected and analyzed from using several approaches:  

1) Comparison of  pre-course and post-course questionnaires about science. 

2) Post-course self-descriptive questionnaire. 
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3) Classroom observations. 

4) Artifact based interviews held with a selection of  interested students.  

5) An analysis of  the ABMS projects the students have created. 

Both qualitative and quantitative evaluations are essential parts of  the mixed methods research meth-
odology using a variety of  evaluation technique, including pre-tests, post-tests, artifact-based inter-
views and project evaluations. 

The programming environment used by the students is called Scratch which was created by MIT. 
Scratch allows computer programming to be understood relatively easily by everyone due to the basic 
design features and block-based programming. It allows individuals, who are beginning programming 
education, to understand and acquire programming logic and algorithm thinking skills.  

The number of  4th and 5th grade students participating in the research group is 100 while another 
control group consists of  the same number of  students. Each group entails several whole classes 
chosen randomly among schools having Scratch programming as part of  their curriculum. The ex-
perimental group learned using the intervention methodology of  interdisciplinary study of  CT and 
Science together by creating artifacts of  the ABMS genre. The control group learned Scratch and 
science as two different disciplines.  

A pilot study was carried out with eleven 5th grade students.  All students had previous experience 
with the Scratch programming environment, and all had learnt about a specific science phenomenon 
in school - Sink hole formation. Before conducting the research, the students CT level and Science 
level were compared to examine if  the groups are suitably homogeneous. 

For the teachers to be able to lead the program they were trained on ABMS principals within the 
context of  the Scratch software development environment. They were introduced to basic concepts 
in modeling complex systems through hands-on activities and participatory simulations. A scaffolded 
series of  highly-engaging design and build activities guided them through development of  a comput-
er model in a modeling and simulation environment developed by the researches.  

The science pre-test included questions about Sink hole formation which they have studied at school. 
The test was formed by their science teacher. Five questions were in the form of  statements on the 
subject matter. The students answered whether they believed them to be True or False statements. 
This type of  questions aimed to understand about the student's science knowledge. An additional 
question was an open-ended question which required students to state their opinion. This question 
was used to indicate about their ability to do a transformation of  knowledge from a specific case to a 
different case baring the same phenomena but consisting of  different characteristics. 

To test the CT levels of  students a computational thinking test was performed. It is based on the 
principles of  common testing methods of  various programming competencies (Bers 2018,). A test 
environment was created by the researches. It is based on the "Program to play" genre in which a 
student is asked to program in a pre-created game, also known as microworld, consisting of  existing 
procedures in order to advance in the game levels. The microworld has existing stages which are pro-
gramming puzzles, meaning the microworld supplies feedback to the player upon his successful or ill 
successful attempts to finish a state. It also has an ability to create additional stages by the game play-
er using his knowledge of  programming. The microworld was created in the scratch environment.  

The players goal is to program the white square to move to the light green tile without reaching the 
blue zone in the background. Several stages had an additional sub task which increased the level of  
difficulty. In those game levels, for a successful completion, the student was required to move a small 
red square to a red tile prior to reaching the light green tile (See Figure 2).  
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The "Program to play" test environment and associated instruction materials were tested for clarity 
and functionality on over 200 students in a prior year therefore it is regarded as a well-functioning 
reliable tool. 

 
Figure 2. CT-test microworld 

A single session was used for the test. It entailed 4 parts: the first being an introduction consisting of  
verbal explanation by the teacher and specially created videos used to validate the student`s under-
standing of  the microworld and test requirements. The second part was a free-play construction ses-
sion in which the student was encouraged to try out the programing environment of  the microworld 
and to get acquainted with it. The third part consisted of  a time-based requirement to advance in the 
game levels. Finally, the session had a construction challenge in which the students were asked to add, 
using higher level skills, additional stages of  their own. A simple curriculum was created to guide the 
test session with the goal of  collecting enough information to permit an assessment of  computation-
al thinking ability based on review of  non-expert raters. A scoring sheet was developed to help 
standardize scoring by different raters.  

The pilot study pre-test results indicated that there were no significant differences between the two 
groups. Moreover, since the classes follow the same CS curriculum and same Science curriculum 
their previous experience in learning these subject matters is similar. Therefore, we deemed the two 
groups to be suitably homogeneous. 

The program implementation consisted of  10 classroom hours per class, spread over 5 weeks, for 
both the experimental and control groups.  Each group consists of  5 classes of  twenty 4th grade 
students. Prior to the intervention the classes learned programming with MIT scratch environment 
for 1 semester and previously, when they were in 3rd grade, they had a full year of  CS studies. The 
entire CS studies prior to the intervention provided students with the opportunity to learn CS con-
cepts and essential programming skills. Both groups were taught by teachers who had experience 
teaching Scratch programming for at least one year. 

The conceptual framework for the design and development process approach is an iterative process 
for working in different abstractions (See Figure 4). It is accompanied by several specific learning 
principals:  
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• The use of  rich computational environment. Rich computational environments are ones in 
which the underlying abstractions and mechanisms can be inspected, manipulated and cus-
tomized. The rich computational environment is one in which the user can develop CT skills 
and transform from user to creators (Lee et al., 2014). 

• Support low-threshold and wide walls learning activities. They included Scratch template 
projects for remixing purposes, videos and digital written guide books. These have three ad-
vantages: Different groups could work on different projects, teachers are free to assist in the 
project creation and It also helped the young students to focus on the science project rather 
on basic agent functionality. Therefore, building appropriate scaffolding and feedback is vital 
to the success of  such projects. 

• Incorporate multiple checkpoint for frequent feedback. In a fast pace digital world, a student 
is used to frequent indications of  what he creates. For this, the Computational thinking basic 
tasks model (see Figure 3a) is used by the teachers in which the simulation is constructed in 
iterations (steps) each resulting in a working testable abstraction. For instance the task of  
problem decomposition is a practice that is central in scientific modeling (Nersessian 1992) 
and by doing it in iterations can facilitate processing the complex task. 

• Constructivist sequence of  learning activities. In the constructivist pedagogical approach sci-
entific understanding can be developed by building upon and refining existing intuitive 
knowledge (Dickes & Sengupta 2012). For example, the initial learning activities leverage a 
naive conceptualization of  the domains, and progressively refine them. In the ABMS crea-
tion process students begin with programming the behavior of  single agents and gradually 
increase the programs complexity by modeling the behavior and interaction of  multiple 
agents within the ecosystem. 

• Use-Modify-Create learning progression model (see Figure 5). The model facilitates scaffold-
ing the student's progression of  ABMS in science using a three-stage progression for engag-
ing in CT within computational environments. This progression, called Use-Modify-Create, 
describes a pattern of  engagement that was seen to support and deepen acquisition of  CT 
(Lee et al., 2011). It is based on the premise that scaffolding increasingly deep interactions 
will promote the acquisition and development of  CT. For example, to support the "Use" 
part of  the model, the researchers have created a Scratch simulation of  science context 
which students can use to learn its design before embarking on their own journey for simula-
tion design. 
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Figure 3a: Computational thinking tasks model in English 

 

 
Figure 3b: Computational thinking tasks model in the student native language 
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Figure 4: Progression model for integrating computational thinking with science education 

 
Figure 5: Use, Modify, Create learning progression 

At the end of  the course a science test was conducted. It consisted of  the same structure, subject 
matter and difficulty level as the science pre-test but had different questions. This contributed to the 
science aspect of  the research and enabled to compare between the student's level of  science under-
standing prior to the course and post the course.  

To learn about the students computational thinking level two approaches were used. One being a 
project analysis and the other a Post-course self-descriptive questionnaire about computational think-
ing perception. Together they allow the researchers to get a better understanding of  the student's 
capabilities in "Modeling and simulation practices" and "Computational problem-solving practices" 
which are two of  the pillars of  the CT-Science taxonomy described in an earlier chapter.  

PILOT STUDY 
A pilot study was carried out with eleven 5th grade students. All had previous experience with the 
Scratch programming environment, and all had learnt about a specific science phenomenon in 
school. The intervention consisted of  a single day, 5 hour long, in school, learning event during 
school hours. The science topic, Sink Hole Formation, was chosen by their teachers due to it being 
part of  the national science curriculum. The teachers stated that from their experience this topic is 
known to be challenging for students to grasp, especially the gradual creation of  an underground 
hole and its relation to the decreasing level of  water in the nearby sea. 
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The 1 day event was split into five sessions:  

1. Introduction of  the event and pre-test. Its purpose is to gather data about the students' 
knowledge prior to the learning event. 

2. Review the science phenomenon during which students reflected on what they have learnt. 
Teachers focused the discussion on the chemical interaction between salt and sweat water 
and the sea evaporation causing sweat water to reach the salted ground layers.  

3. Introduction of  the concept of  Agent Based Modeling Simulation (ABMS) followed by a 
short time to use and remix an existing ABMS infrastructure created by the researches. 

4. Students were separated into 3 groups according to their own choice. Each group designed 
their own ABMS on the topic of  sinkholes. After getting the teachers approval of  the design 
they were permitted to start programing by remixing the ABMS infrastructure displayed to 
them in the previous session.  

5. Closure of  the event and post-test. Its purpose is to gather data about the students` 
knowledge and perception of  science and computational thinking post the event. 

RESULTS OF THE PILOT STUDY 
This is a research-in-progress therefore the results section addresses the pilot study carried out. It 
consisted of  eleven students which developed an ABMS of  a science phenomenon. 

A comparison of  the pre and post science questionnaire showed students increased their science sub-
ject matter score. With the maximum score being a 100 the students averaged in the pre-test 62 and 
in the post-test the average score was 80. 

Several approaches were designed in this study to understand the courses effect on the students' CT-
Science skills. They were: 

1) Comparison of  pre-course and post-course questionnaires about science. 

2) Post-course self-descriptive questionnaire about computational thinking perception. 

3) Classroom observations. 

4) Artifact based interviews held with a selection of  interested students.  

5) An analysis of  the ABMS projects the students have created. 

As part of  an online questionnaire the students filled out at the end of  the course, the students were 
asked to express their views using 5 category Likert scale. These were the results: 

• When looking at the 2 top categories of  the scale, it is apparent that the students had a high 
satisfactory level of  91. Meaning, 91% of  the students marked that they `highly` or `very 
highly` agree with the statement: 'I like the ABMS development activity'.  

• Another question in the questionnaire addressed the student's perception of  the course's 
contribution to their science subject matter understanding. When looking at the 2 top cate-
gories of  the scale, it is apparent that the students had a high appreciation of  80. Meaning, 
80% of  the students marked that they `highly` or `very highly` agree with the statement: 
'Learning science with the ABMS development activity contributed to my science knowledge 
of  the subject matter'. 

• With regards to the question which attempts to understand the computational thinking con-
tribution, the students gave the 2 top categories of  the scale a score of  100. It consisted of  
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36% stating 'highly' and 64% stating 'very highly' with regards to their perception of  the af-
fect the activity had on their CT understanding. 

• A question in the questionnaire addressed the student's perception of  the course's contribu-
tion to their problem-solving skills. When looking at the 2 top categories of  the scale, it is 
apparent that the students had a high appreciation of  91. Meaning, 91% of  the students 
marked that they `highly` or `very highly` agree with the statement: 'Computer programming 
activities help students acquire problem solving skills'. 

An open-ended question aimed to assess their ability to transform their acquired knowledge of  the 
science subject matter to a different case. Results showed 64% of  the students did transform and 
supplied an adequate explanation, 18% wrote a partial explanation for their answer and 18% were not 
able to answer the question in a reasonable manner. 

The last question was for the students to mention another science topic they have learnt this year 
which can be learnt using an ABMS constructionist methodology. 54% of  them were able to do that 
while 46% either did not answer the question or named the interventions activity as the topic that 
can be learnt. This could mean that perhaps the question was not clear enough.  

During the event the groups were observed by the researchers. They were asked to engage in a design 
process of  their ABMS prior to commencing its coding. They were also asked to show the design to 
the teacher and have the teacher`s approve the design before the advancement from the design phase 
to the implementation phase. The classroom observation indicated that the process of  designing the 
ABMS was, methodology wise, difficult for the students. 2 groups have hastily and superficially done 
the design therefore, the teacher asked to add to the written description a graphical visualization of  
the ABMS screen, drawn on paper. This additional visualization phase of  the design proved useful 
because it led to a more detailed design. For instance, the location of  the agents was more detailed, 
and the number of  agent types increased. The 3rd team showed a different pattern of  behavior. They 
were too detailed on the drawing consuming too much time, so the teacher had to encourage them to 
abstract their visualization which they did. The teacher used throughout the course a computational 
thinking tasks model (See figure 3b) which was displayed on a large poster. Its purpose was to corre-
late the students required and actual actions to the basic tasks of  computational thinking showing 
them the models applicability to problem solving of  different types, meaning: programming, science 
and general problem-solving cases.  

The artifact-based interview was held with 3 students. It was brief  due to lack of  available school 
time resources. The students verbally expressed they highly liked the ABMS activity and their desire 
to have more such opportunities. They also stated very clearly their desire to show their class mates 
the simulations they have created and use it as a tool for themselves to teach others about the science 
subject matter that they created the simulation for. 
The 11 students have created 3 simulations during the activity. They were reviewed by the research-
ers. The simulation had a mandatory theme – they were to create a sink hole creation process. The 
students were instructed to use a remix approach. The basis for the remix was a simulation which the 
researchers have created for them. One group stated that it prefers to start from a new empty project 
and were given the permission to do so. After a short while they decided to comply with the sugges-
tion to do a remix instead. This was suggested by their teacher because the teacher wasn't sure she 
could guide them to a working simulation if  they start from an empty project and due to the short 
time frame allowed for this session. All 3 groups successfully finished their simulations (see figures 6-
8) and were very proud of  their project. 
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Figure 6: Students simulation #1 

 
Figure 7: Students simulation #2 
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Figure 8: Students simulation #3 

CONCLUSION  
This paper describes a work-in-progress research. It assessed a pilot study of  a Computational 
Thinking Science intervention program in which students work in groups. In which, they formulated 
an agent-based module and simulation (ABMS) of  a real life phenomenon which is part of  their sci-
ence curriculum. 

Results of  the pilot study indicated that constructing ABMS improved students CT-Skills, specifically 
problem-solving skills. Alongside with that, the program enhanced science understanding. Further-
more, the ABMS approach connected directly to student's interests, enabled extended investigations 
as well as deeper understanding.  

CT is an emerging skill in learning science. It is requiring school systems to give increased attention 
for promoting students with the opportunity to engage in CT activities alongside with ways to pro-
mote a deeper understanding of  science. Currently there is a lack of  practical ways to do so and lack 
of  methods to assess the results therefore it is an educational challenge. This paper presented a re-
sponse to this challenge by proposing a practical program for school science courses and an assess-
ment method. Further research is due to see if  this approach can consequently enable advanced top-
ics to be productively introduced into the elementary school curriculum.  

The inclusion of  computational thinking as a core scientific practice in the Next Generation Science 
Standards (NGSS) is an important milestone, but there is still much work to do toward addressing 
the challenge of  CT-Science education to grow a generation of  technologically and scientifically sav-
vy individuals. New comprehensive approaches are needed to cope with the complexity of  cognitive 
processes related to CT.  
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APPENDIX 
Table 1. Terms and abbreviations 

No. Element Description 

1 CT Computational thinking 

2 CS Computer science 

3 ABMS Agent based module and simulation 

4 SI Sprite Instance 

5 EWS Eco Science Works program 

6 CTSiM A framework for constructing simula-
tions 

7 IDE Integrated development environment 
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