

June 30 – July 4, 2019, Jerusalem, Israel

Accepting Editor: Eli Cohen │ Received: December 31, 2018 │ Revised: February 15, 2019 │
Accepted: February 17, 2019.
Cite as: Goldstein, M., & Stulman, A. (2019). Did You Also Fall Asleep During a Principles of Programming
Languages Lecture? How Did a Re-design of a PPL Course Succeed to Keep the Students Tuned-in? Proceedings
of the Informing Science and Information Technology Education Conference, Jerusalem, Israel, pp 111-117. Santa Rosa, CA:
Informing Science Institute. https://doi.org/10.28945/4329

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

DID YOU ALSO FALL ASLEEP DURING A PRINCIPLES OF
PROGRAMMING LANGUAGES LECTURE?

HOW DID A RE-DESIGN OF A PPL COURSE SUCCEED TO
KEEP THE STUDENTS TUNED-IN? [DISCUSSION PAPER]

Moshe Goldstein* Jerusalem College of Technology,
Jerusalem, Israel

goldmosh@jct.ac.il

Ariel Stulman Jerusalem College of Technology,
Jerusalem, Israel

stulman@jct.ac.il

*Corresponding author

ABSTRACT
Aim/Purpose In this paper we wish to present a new direction for the instruction of a

Principles of Programming Languages (PPL) course.

Background Teaching PPL using the standard curriculum found that the students do not
understand the overall concepts, getting lost in the abundance of minute de-
tails. We needed a way to emphasize the higher level constructs important to
this body of knowledge.

Methodology This is a course description paper, describing how we instruct a PPL course
at our college.

Contribution To share with the CS education community the approach we developed to
effectively teach the very important PPL course.

Findings Using the integrative approach presented, we believe that

• relative to the previous, and commonplace, PPL teaching approach,
this is a very effective and successful way for conveying this im-
portant subject matter, and

• our new teaching approach gave the students a professional maturity
that they lacked before they took the course.

https://doi.org/10.28945/4329
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Principles of Programming Languages Lecture

112

Recommendations
for Practitioners

Do not be scared to experiment with new ways of teaching. Do not think
that you must teach the way the books tell it. If it doesn’t feel right, it probably
isn’t.

Future Research All our insights about the use of the presented teaching approach are non-
empirical. Future research should thoroughly analyze the results from teach-
ing/learning theories points of view using standard CSE techniques.

Keywords principles of programming languages, CSE

INTRODUCTION AND MOTIVATION
This paper is based on our experience of how the syllabus of our principles of programming lan-
guages course evolved into one of the capstone courses in our B.Sc. curriculum. In the course pre-
sented, students not only learn principles of programming languages, but they also build them into a
running two-layer compiler. This experience, albeit difficult to achieve, brings the students to their
peak experience in the bachelor’s degree. The paper describes the authors’ efforts on creating a
course which joins into one stream all the previous courses, gives students a common understanding
of how the different, separate topics taught in such a course work together while providing them
with a taste of a real life experience. The current course encompasses the principles of programming
languages starting from the general concepts, through compilers, toward final working application.

A course on the Principles of Programming Languages (PPL) usually includes theoretical concepts
of programming, such as the description of programming constructs (conditional, iteration, etc.) in a
number of different programming languages, contrasting different approaches to each of these, etc.
In many universities (MIT, Rice, Stonybrook, IU, CMU, ANU, BGU, etc.), the PPL course is also
used as an opportunity to introduce students to functional (Lisp, Scheme, Haskell or ML) and/or
logic (Prolog) programming paradigms. With most students learning to program in imperative (C)
and object oriented (C++, Java, C#) based languages, these alternative paradigms broaden their
knowledge. Now that Python (“Python programming language,” n.d.) is being used as an introducto-
ry language (MIT, HebrewU, TAU, etc.), functional programming can even be taught without switch-
ing languages. In our college, students have a sophomore course for learning functional and logic
programming, making it impossible to use this approach in our PPL course; this induced us to devi-
ate from the standard courses found in those universities.

Until ten years ago there was no PPL course in our college. When such a course was proposed and
taught for the first time by the first author, the curriculum was similar to that in use in other universi-
ties, and inspired by the two popular textbooks on the subject: Ravi Sethi’s book (1989) and Sabesta’s
book (2012). For several years the course was completely theoretical, similar to a seminar course.
Based on the theoretical concepts taught in the lectures, the students were required to write a critique
about some language they did not know, and present their findings and assessment at the end of the
semester. In such a course, there was no final exam.

During the 2008 academic year, the first author was on sabbatical and the course was taught by the
second author. Coming from a computer security background, he was quite appalled when assigned
to teach the PPL course. Not knowing what to expect, he mimicked what has been done in preceding
years. This included the same theoretical concepts as in the past. The homework consisted of an-
swering thought questions, e.g., “what might be the benefit of a call-by-name calling convention”, and reading
classical language design debates (e.g., Dijskstra’s [1968] seminal work “GOTO statement considered
harmful”) and the discussion that followed (Dijkstra, 1987; Knuth, 1974; Moore, Musciano, Liebhaber,
Lott, & Starr, 1987, and others).

Without having empirically supported evidence, our feeling was that the students were disgusted with
the course. They could not understand why they needed to know this material - what difference does
it make to their body of knowledge if loop invariants are really invariant (Pascal) or not (C/C++)?

Goldstein & Stulman

113

Needless to say, with the students being bored without a clue as to why they are taking such a course,
we felt dejected as well. It was a struggle to keep their attention, and with campus WIFI and laptops
readily available, the students were only physically present. When exam time came around, it became
apparent that although they could regurgitate what has been said, they still didn’t understand basic
concepts such as type systems, scopes, or memory management.

We realized that if we will not completely re-design the course, we shouldn’t be looking forward for
the next time. In order to revitalize it and make it more appealing and challenging for the students
(and also for us!), we should cause the students to feel that this course is worth their time and effort.

In this paper, we describe the course that we set out to build. We describe our choice of topics, lab
work, student participation and self-help. We explain how we deviated our course from the standard
courses found in many universities, and the outcome of our efforts. The re-designed course went on
to become the capstone of the B.Sc. curriculum (3rd year). It is our intention to share with the CS
education community the approach we developed to effectively teach this important course of the
curriculum of the B.Sc. in Computer Science.

COURSE METHODOLOGY
Our course has the following objectives:

1. Teach the core programming language concepts (see the Topics section, below), and
2. Have the students engage in a large self-taught and challenging semester-long experience:

• They have to learn by themselves to program in a programming language complete-
ly unknown for them.

• They have to learn by themselves how to get, install, and run a development envi-
ronment for that language.

• They were introduced to the principles of the two-layer architecture used in most
programming language compilers today (see the Labs section, below). Based on
those principles, they have to implement the compiler of a relatively simple object-
based programming language by using the language they were assigned to use in the
course.

• They have to prepare a twenty-minute presentation about the language they were as-
signed.

• They have to learn how to write entries for the Wikipedia site of the course (see the
Wiki section, below), helping future students.

In order to accomplish these tasks, we split the lectures (three academic hours per week with a total
of 13 weeks) into two alternating parts. The first (totaling 8 weeks) deals with the theoretical topics
of programming languages (see the Topics section, below), and the second (totaling 5 weeks) deals
with what they need to understand in order to solve the lab assignments. These parts intertwined
during the semester, with part 2 being taught every week before an assignment was handed out
(weeks 2, 5, 7, 9, 11).

COURSE TOPICS
When discussing which topics were to be included in the course curriculum, we made a number of
key criteria that should heed the way:

• we will not dwell on syntax,
• we will choose two or three (contrasting) languages to demonstrate a point,
• we don’t have to extensively discuss functional or logic programming due to the fact that the

students already had a dedicated course; yet, we will bring out key points to contrast them
with imperative and object-oriented language paradigms.

Principles of Programming Languages Lecture

114

TOPICS
Based on the above criteria and the limited lecture time that is available (see the Course Methodol-
og y section, above), we chose the following topics to discuss:

• Introduction to language principles - syntax, BNF, semantics, language evaluation criteria
(readability, writability, reliability, cost, portability, etc.).

• Type systems - the purpose of type systems, static vs. dynamic type systems (including duck-
typing), weak vs. strong type systems, how specific types are implemented in some languages
(based on Ben-Ari, 2006) and, pointers – their associated problems (i.e., memory leaks, dan-
gling pointers, etc.) and solutions (e.g., locks & keys, unique_ptr, shared_ptr, etc.).

• Scopes - their purpose and meaning, dynamic vs. static binding, memory reclaiming methods
(reference counting, garbage collection using mark & sweep, Cheney (1970), generational
mark & sweep, etc. (Wilson, 1992).

• Sub-programs - procedural abstraction, parameter passing and binding, the semantic model
for parameter passing (in, out and, in-out), the way of implementing these models (pass-by-
value, pass-by-result, pass-by-value/result, pass-by-reference, pass-by-name) and demonstrat-
ing these options with specific languages, function calling conventions, the run-time calling
stack, and recursion.

• Object oriented - data abstraction, abstract data types, encapsulation, information hiding,
sub-typing, polymorphism, multiple vs. single inheritance (and problems and solutions for
diamond inheritance), how polymorphism is efficiently achieved using vPtr and vTables.

• Functional Programming (FP) - review of the basic principles of FP: data immutability, pure
functions, the substitution model order of evaluation, lambda expressions, closures, lazy
evaluation.

• Concurrent Programming – basic introduction to language constructs in Message Passing
(MPI) programming and Shared-Memory (openMP) programming.

LABS
It is the lab part of the course that is used to convey the two-layer architecture prevalent in many
programming languages, while actually programming a full rudimentary compiler (two layers) that
implements arithmetic and Boolean expressions, function calling and returning using a run-time
stack, a specific calling convention, and high-level language paradigms. The lab assignments were the
series of "mini" programming projects found at the end of each of the chapters 7-11 of (Nisan &
Schocken, 2005). For this purpose, we taught those chapters as part of the lectures of the course (see
the Course Methodolog y section, above).

Hand-in procedures
The students are presented with a specific "mini" project once every two weeks, and they must hand
in their working solution before the next one is presented. During the lab sessions, the instructor
proceeds to explain specific hard-points that they might encounter, and how they are expected to
overcome them. Needless to say, the actual solutions or algorithms are not disclosed.

Each pair of students is randomly assigned a programming language that is not part of the degree
curriculum (specifically excluding C/CPP, Java, Lisp, Prolog, C#, VB.NET, Python, etc.), which they
had to self-learn. They are then required to hand-in their assignments in that specific language. The
purpose of this requirement is three-fold:

• to teach them what is a compiler from language A to target language B. That it is just a pro-
gram that can be implemented in any third language,

Goldstein & Stulman

115

• to have them self-learn a programming language. This is part due to the departmental initia-
tive of self-study in junior level courses, and part so as to boost self-appreciation of their
capabilities, and

• to avoid code plagiarism by students. It is hard to copy other’s work when written in a differ-
ent programming language.

Due to the fact that all programs generate functionally similar output for a given input, it is quite
simple to test and see if their compilers work as specified. Also, the excellent testing tools provided
by the Nissan and Schoken’s (2005) book’s website make those running tests very easy and accurate.

In addition to all the above, we developed a very effective method for testing and grading lab assign-
ments:

• all students’ pairs must submit their solutions according to a strict deadline schedule;
• we do not test all the submitted works, but a representative part of them, randomly chosen –

on average, every pair showed and ran their submission for two randomly chosen labs;
• at the end of the semester, during the 20-minute presentation of their programming lan-

guage, they are also required to show and run one of the submissions that they did not
demonstrate to their lab instructor during the semester;

• if that specific submission has any compilation or running errors, they receive 0 points for it.

This lab assignment’s grading and testing method ensures that the students must work during the
semester on those "mini" programming projects; if not, they endanger their total course grade.

Wiki
In order to assist with learning quirks of specific programming languages, the students are also re-
quired to develop a wiki1  that includes - for each programming language -

• where to find good reading material, sample programs, tutorials, etc.
• which IDEs should be used (if one exists) and which to avoid.
• what compilers or interpreters are available, where they can be found and, how to get them

up and running (installation, proprietary IDEs, plug-in into existing IDEs such as Visual
Studios, Eclipse, NetBeans, etc.).

• specific, language-oriented commands that would save them many search hours when solv-
ing specific assignments (e.g. how to list the contents of a folder from within the program).
These helpers are intended to allow students to spend the majority of their time program-
ming the problem set and not reading many blogs and knowledge centers for a specific lan-
guage-oriented task (usually a function of some obscure syntax).

This Wiki was developed, over time, by the students, for the students. That is, as part of the course
obligations, each student has to augment the wiki with things that he found difficult and how he
solved it. They have to write the problem, the solution and its’ source, so future students can easily
solve the same problem and look up the source for further reading. This implies that some wiki en-
tries are more elaborate than others, depending on the entries from previous years. It is a student’s
job to help the next student save time he already spent searching for a given answer.

CONCLUSIONS
There are many ways for teaching a PPL course. As already mentioned, classical textbooks (Sebesta,
2012; Sethi, 1989) chose to contrast language constructs and the many options that a language de-
signer has. Although this strategy is encompassing and covers many of the design decisions made, it

1 Written in Hebrew; can be found at wiki.moodle.jct.ac.il

Principles of Programming Languages Lecture

116

is extremely difficult to read and even more difficult to instruct. It did not capture our student’s at-
tention and failed to convey some of the more important principles we wanted to pass-on.

A course on PPL is supposed to give students the opportunity of learning programming concepts
with a higher level of abstraction than in courses in which specific languages are taught. In order to
achieve this goal, we completely re-designed the way we used to teach this course. Using the integra-
tive approach presented here, we believe that,

• relative to the previous, and commonplace, teaching approach, this is a very effective and
successful way for conveying this important subject.

• our new teaching approach gave the students a professional maturity that they lacked before
they took the course.

All our insights about the use of the teaching approach presented here should be thoroughly ana-
lyzed from teaching/learning theories points of view, and the results of that analysis be published
elsewhere in the future.

We hope that all what we presented in this paper will encourage other CS educators all over the world
to try our approach, and we will be happy to receive feedback about their teaching experiences.

ACKNOWLEDGEMENTS
We would like to thank the chair of our CS department, Dr. Moti Reif, for allowing us to try our new
teaching approach for the PPL course. We would also like to thank also all our colleagues and lab
instructors who made possible the actual implementation of what we presented here. Last, but not
least, we appreciate very much all the comments and suggestions given to us by the anonymous re-
viewers.

REFERENCES
Ben-Ari, M. (2006). Understanding programming languages (2nd ed.). John Wiley & Sons, Inc.

Cheney, C. J. (1970). A nonrecursive list compacting algorithm. Communications of the ACM, 13(11), 677–678.
https://doi.org/10.1145/362790.362798

Dijkstra, E. W. (1968). Letters to the editor: Go to statement considered harmful. Communications of the ACM,
11(3), 147–148. https://doi.org/10.1145/362929.362947

Dijkstra, E. W. (1987). On a somewhat disappointing correspondence. Retrieved from
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1009.PDF

Knuth, D. E. (1974). Structured programming with go to statements. ACM Computer Surveys, 6(4), 261–301.
https://doi.org/10.1145/356635.356640

Moore, D., Musciano, C., Liebhaber, M. J., Lott, S. F., & Starr, L. (1987). GOTO Considered Harmful Consid-
ered Harmfu Considered Harmful. Communications of the ACM, 30(5), 351–355.
https://doi.org/10.1145/22899.315729

Nisan, N., & Schocken, S. (2005). The elements of computing systems: building a modern computer from first principles. The
MIT Press.

Python programming language. (n.d.). Retrieved from http://www.pyhton.org/

Sebesta, R. W. (2012). Concepts of programming languages (10th ed.). Pearson.

Sethi, R. (1989). Programming languages: Concepts and constructs. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co.

Wilson, P. R. (1992). Uniprocessor garbage collection techniques. In Proceedings of the International Workshop on
Memory Management (pp. 1–42). London, UK, UK: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=645648.664824

https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/22899.315729
http://www.pyhton.org/
http://dl.acm.org/citation.cfm?id=645648.664824

Goldstein & Stulman

117

BIOGRAPHIES
Moshe Goldstein received his BSc in Computer Science (CS) from the
Universidad de la Republica, Montevideo, Uruguay. He received his MSc
in CS from Ben-Gurion University of the Negev, Beersheva, Israel, in
1982. In 2010 he received a PhD in Computational Chemistry from the
Hebrew University of Jerusalem, Jerusalem, Israel (HUJI). As of 1995 he
holds a position at the CS Department of the Jerusalem College of Tech-
nology (JCT), where, since 2010 he has been a Lecturer and Researcher.
Since 2012 he also has been holding a position at the Computer Pro-
gramming Instruction Unit of HUJI. His research interests are in the field
of Protein Structure Prediction (evolutionary) algorithms. He also is one

of the founding members of JCT’s Flexible Computation Lab (flexcomp.jct.ac.il) where he makes
research and development in the field of Parallel Programming methodologies and tools (in software
and hardware), based on the idea of Flexible Computation. Dr. Goldstein is a member of IEEE and
ACM (Professional).

Ariel Stulman received his bachelor's degree in Technology and Applied
Sciences from the Jerusalem College of Technology, Jerusalem, Israel, in
1998. He then went on to get his masters from Bar-Ilan University,
Ramat-Gan, Israel, in 2002. In 2005 he achieved a Ph.D. from the Univer-
sity of Reims Chanpagne-Ardenne, Reims, France. As of 2006 he holds a
position at computer department of the Jerusalem College of Technolo-
gy. His research interests are in the field of network and communications
security and technologies, mobile ad-hoc security, and IoT security. He
also researches topics in software testing, formal methods and real-time
systems.

Dr. Stulman is a member of IEEE and ACM (Senior), and is the founding director of the cyber re-
search group at JCT.

	Did You Also Fall Asleep During a Principles of Programming Languages Lecture? How Did a Re-design of a PPL Course Succeed to Keep the Students Tuned-in? [Discussion Paper]
	Abstract
	Introduction and Motivation
	Course Methodology
	Course Topics
	Topics
	Labs
	Hand-in procedures
	Wiki

	Conclusions
	Acknowledgements
	References
	Biographies

