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Abstract 
This paper proposes the innovative methodologies for the robust and stable design of optimal stable 
digital infinite impulse response (IIR) filters using different mutation variants of hybrid differential 
evolution (HDE). A multivariable optimization is employed as the design criterion to obtain the op-
timal stable IIR filter that satisfies the different performance requirements like minimizing the mag-
nitude approximation error and minimizing the ripple magnitude. HDE method is undertaken as a 
global search technique and exploratory search is exploited as a local search technique. The proposed 
different mutation variants of HDE method enhance the capability to explore and exploit the search 
space locally as well globally to obtain the optimal filter design parameters. The chance of starting 
with better solution is improved by comparing the opposite solution. Here HDE has been effectively 
applied for the design of higher order optimal stable band-pass, and band-stop digital IIR filters. The 
experimental results depict that proposed HDE methods are superior or at least comparable to other 
algorithms and can be efficiently applied for higher order IIR filter design. 

Keywords: Digital IIR filters, Hybrid Differential Evolution, Exploratory search, Opposition based 
learning Multi parameter optimization. 

Introduction 
A filter is a selective circuit that permits a 
certain band of frequency to pass while the 
other frequencies get attenuated. The digital 
filters can be implemented in hardware or 
through software and are capable to process 
both real-time and on-line signals. These 
days the digital filters are being used to per-
form many filtering tasks, which previously 
were performed almost exclusively by ana-
log filters and the digital filters are replac-
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ing the traditional role of analog filters in many applications such as image processing, speech syn-
thesis, secure communication, radar processing and biomedical etc. The design of digital infinite im-
pulse response (IIR) filter follows either transformation technique or optimization technique. Using 
the transformation techniques (Oppenheim et. al., 1999), Butterworth, Chebyshev and Elliptic func-
tion, have been designed. Optimization methods have been applied whereby performance for the de-
sign of digital IIR filters is measured in terms of the magnitude error, and ripple magnitudes of pass-
band and stop-band. 

Jiang and Kwan (2009) have designed the IIR filter by having stability constraint and employ an it-
erative second-order cone programming method. The simultaneous design in magnitude and group 
delay has been discussed by Cortelazzo and Lightener (1984). For designing problem of IIR filter in 
a convex form, the semi-definite programming relaxation technique (Jiang and Kwan, 2010) has 
been applied. Being a sequential design procedure, the algorithm finds a feasible solution within a set 
of relaxed constraints. However, non-linear and multimodal nature of error surface of IIR filters, 
conventional gradient-based design may easily get stuck in the local minima of error surface. The 
draw backs of gradient methods, have been conquered by various researchers by applying modern 
heuristics optimization algorithms such as genetic algorithms (Nang et.al,1994,Li and Yin, 
1996,Tang et.al, 1998, Harris and Ifeachor,1998,Uesaka and Kawamata,2000,Vanuystel et. al, 2002, 
Zhang et.al,2003), particle swarm optimization (PSO) (Sun et.al,2004,Sana et.al,2012), seeker- opti-
mization- algorithm -based evolutionary method (Dai et.al,2006), simulated annealing (SA) (Chen 
et.al,2001), sequential minimization method Qiao et.al,2014,Hailong et.al,1012), tabu search(Kalini 
and Karaboga,2005), ant colony optimization Karaboga et.al,2004), immune algorithm (Tsai and 
Horng,2006) and best approximation method of equiripple (Zhang and Wang,2014) etc for the de-
sign of digital filters. 

Evolutionary algorithms (EAs) are based on the mechanics of natural selection and genetics. Genetic 
algorithms are one example of EAs. The optimization methods based on genetic algorithms are only 
capable of searching multidimensional and multimodal spaces. These are also able to optimize com-
plex and discontinuous functions (Tang et.al,1998). The digital IIR filter can be structured such as 
cascade, parallel, or lattice. The band-pass, and band-stop filters can be independently designed. To 
design the digital IIR filters genetic algorithm has been applied by Tang et al, 1998. The genetic 
methods are normally compromised because of their very slow convergence. When the number of 
the parameters is large, these may trap in the local optima of objective function and there are numer-
ous local optima (Renders,1996). The hybrid Taguchi genetic algorithm has been applied by Tsai et 
al. (2006) for design of optimal IIR filters. With hybrid Taguchi genetic algorithm approach, the 
combination of the traditional genetic algorithms, which has a powerful global exploration capabil-
ity, is applied with the Taguchi method. Therefore, it is necessary for further developing an efficient 
heuristic algorithm so as to design the optimal digital IIR filters. Taguchi-immune algorithm (TIA) is 
based on the approach that integrates immune algorithm and Taugchi method (2006). Yu et.al. 
(2007) have proposed cooperative co-evolutionary genetic algorithm for digital IIR filter design. For 
finding the lowest filter order, the magnitude and the phase response has been considered. The struc-
ture and the coefficients of the digital IIR filter have been coded separately. For keeping the diversi-
ty, the simulated annealing has been applied for the coefficient species, but to arrive at global mini-
ma Chen et.al(2001), it may require too many function evaluations. The seeker-optimization-
algorithm based evolutionary method has been implemented for digital IIR filters by Dai et al 
(2006).  

Researchers have given various methods with which the optimization problem under different condi-
tions is tackled. Based on the type of the search space and the objective function optimization meth-
ods are classified. Due to the time-consuming computer simulation or expensive physical experi-
ments, the evaluation of candidate solutions could be computationally and/or financially expensive in 
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IIR filter design problems. Therefore, a method is of great practical interest if it is able to produce 
reasonably good solutions within a given budget on computational basis.  

The motive of this paper is to explore the performance of different mutation variants of differential 
evolution (DE) method while implementing for the design of IIR digital filters. Moreover, these 
methods are undertaken as global search techniques and an exploratory search is proposed as a local 
search technique so that these procedures randomly explore the search space globally as well locally. 
The values of the filter coefficients are optimized with DE to achieve magnitude error and ripple 
magnitude as objective functions for optimization problem. Constraints are taken care of by applying 
exterior penalty method.  

The paper is organized in six sections. The IIR filter design problem statement is described in section 
2. The solution methodology is briefed in section 3. The detail of  hybrid DE algorithm for designing 
the optimal digital IIR filters have been described in Section 4. In section 5, the performance of the 
proposed ten mutation variants of DE methods have been evaluated for band pass and band stop digi-
tal IIR filters and achieved results are compared with the design results given by Tang et al.(1998) , 
Tsai et al. (2006) , Tsai and Horng (2006), for the  BP, and BS filters. Finally, the conclusions and 
discussions are outlined in Section 6. 

IIR Filter Design Problem 
A digital filter design problem determines a set of filter coefficients which meet performance speci-
fications. These performance specifications are (a) pass band width and its corresponding gain, (b) 
width of the stop-band and attenuation, (c) band edge frequencies, and (d) tolerable peak ripple in the 
pass band and stop-band. The transfer function of IIR filter is defined below:  
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The design of digital filter design problem involves evaluation of a set of filter coefficients, pk and 
q j  which meet the performance indices. Several first- and second-order sections are cascaded to-
gether (Renders and Flasse, 1996, Tang et. al,1998) for realizing IIR filters. In the IIR filter, the coef-
ficients are optimized such that the approximation error function for magnitude is to be minimized. 
The magnitude response is specified at K equally spaced discrete frequency points in pass-band and 
stop-band. The multivariable constrained optimization problem is stated as below: 

Minimize )()( xexf =                        (2) 
Subject to the stability constraints:- 
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The stability constraints are included in the design of casual recursive filters, which are obtained by  
[1]. Here, )(xe denotes the absolute error and is defined as below: 
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Desired magnitude response, )( idH ω  of IIR filter is given as: 
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The cascaded transfer function of IIR filter is denoted by ),( xH ω , involving the filter coefficients 
like, poles and zeros. Irrespective of the filter type, the structure of cascading type digital IIR filter, is 
stated as below (Ng et.al,1994). 
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where 2)1(42 +−+= kNl  and vector [ ]TSxxxx ....21=  denotes the filter coefficients of dimension 
S×1 with S = 2N + 4M + 1. The scalar constrained optimization problem is converted into uncon-
strained multivariable optimization problem using penalty method. Augmented function is defined 
as: 

( )termPrxfxA += )()(    (11) 
where 
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r is a penalty parameter having large value. 
Bracket function for constraint given by Eq. (3) is stated below:- 
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Bracket function for constraint given by Eq. (6) is stated below:- 
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Similarly bracket functions for other constraints given by Eq. (4), Eq. (5) and Eq. (7) are undertak-
en. 

The Solution Methodology 
Various mutation variants of DE have been undertaken to design IIR digital filters. These methods 
perform global search and an exploratory search is proposed to perform local search so that global as 
well as local search is performed simultaneously. Opposition based learning is implemented to im-
prove the chance of starting with better solution by checking the opposite solution. 

Differential Evolution 
Differential Evolution is a population-based stochastic method. It is applied to minimize perfor-
mance index. Differential evolution uses a rather greedy and less stochastic approach to problem 
solving in comparison to evolutionary algorithms. DE combines simple arithmetical operators with 
the classical operators of the recombination, mutation, and selection to evolve from a randomly gen-
erated starting population to a final solution (Qin et.al,2009). Various mutation strategies are availa-
ble in literature which affects the performance of DE. 

Exploratory Move 
In the exploratory move, the current point is perturbed in positive and negative directions along each 
variable one at a time and the best point is recorded. The current point is updated to the best point at 
the end of each design variable perturbation may either be directed or random. If the point found at 
the end of all filter coefficient perturbations is different from the original point, the exploratory move 
is a success, otherwise, the exploratory move is a failure. In any case, the best point is considered to 
be the outcome of the exploratory move. The starting point obtained with the help of random initiali-
zation is explored iteratively and filter coefficient ix is initialized as follows: 
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S denotes number of variables. 
The objective function denoted by )( n

ixA is calculated as follows 
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where )...,,2,1( Si = and iΔ is random for global search and fixed for local search. The process is re-
peated till all the filter coefficients are explored and overall minimum is selected as new starting 
point for next iteration. The stepwise algorithm to explore filter coefficients is outlined below.  

Algorithm I: Exploratory move 
1. Select small change, ∆𝑖, and 𝑥𝑖𝑜 and compute 𝑓(𝑥𝑖𝑜) 
2. Initialize iteration counter, IT=0 
3. Increment the counter, IT=IT+1 
4. IF (𝐼𝐼 > 𝐼𝐼𝑚𝑚𝑚) GO TO 12 
5. Initialize filter coefficient counter j=0 
6. Increment filter coefficient counter, j=j+1 
7. Find 𝑢𝑖

𝑗using Eq. (15) 
8. Evaluate performance function, 𝐴(𝑥𝑖𝑜 + ∆𝑖𝑢𝑖

𝑗) and 𝐴(𝑥𝑖𝑜 − ∆𝑖𝑢𝑖
𝑗) 

9. Select 𝑥𝑖𝑛using Eq. (16) and 𝐴(𝑥𝑖𝑛) 
10. IF ( )Sj ≤  GO TO 6 and repeat. 
11. IF 𝐴(𝑥𝑖𝑛) < 𝐴(𝑥𝑖𝑜)  

THEN GO TO 5  
ELSE  ∆𝑖= (∆𝑖/1.618) and GOTO 3 and repeat. 

12. STOP 

Population Initialization  
Initialize a population t

ijx  ( j =1, 2, …, S; i = 1, 2, ..., L) individuals with random values generated 
according to a uniform probability distribution in the S-dimensional problem space. Initialize the 
entire solution vector population within the given upper and lower limits of the search space.

)()( minmaxmin
jjj

t
ij xxrandxx −+= (j =1, 2, …, S;  i =1, 2, …, L)                 (17) 

The vector population may violate inequality constraints. This violation is corrected by fixing them 
either at lower or at upper limit. 

Opposition-Based Learning 
Evolutionary optimization methods start with some initial solutions and try to improve them toward 
some optimal solution(s). The process of searching terminates when some predefined criteria are sat-
isfied. In the absence of prior information about the solution, it is usually started with random guess-
es. The computation time, among others, is related to the distance of these initial guesses from the 
optimal solution. It can improve the chance of starting with a better solution by simultaneously 
checking the opposite solution(Tizhoosh,2009). By doing this, the better one either guess or opposite 
guess can be chosen as an initial solution. As per the probability theory, 50% of the time, a guess is 
farther from the solution than its opposite guess (Rahnamayan et.al, 2008). Therefore, starting with 
the closer of the two guesses as judged by its objective function has the potential to accelerate con-
vergence. The same approach can be applied not only to initial solutions but also continuously to 
each solution in the current population (Rahnamayan et.al,2008). 
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where min

jx  and max
jx are lower and upper limits of filter coefficients.  

 Evaluation of the Individual Population 
The goal is to minimize the objective function. The elements of parent/offspring t

ijx may violate con-
straint. A penalty term is introduced in the objective function to penalize its objective function value. 
Objective function is changed to the following generalized form: 

( )termijiiji PrxexA += )()(   
 (j = 1, 2,..., S; i = 1, 2, , L)                                                                                           (19) 
where penalty factor is given by Eq. (12) and Eq. (13). 

IIR Filter Design using DE 
The different mutant variants of DE are classified using: DE/α/β/δ. Where α indicates the method for 
selecting the parent chromosome that will form the base of the mutated vector. β indicates the num-
ber of difference vectors used to perturb the base chromosome. δ indicates the recombination mech-
anism used to create the offspring population. The bin acronym indicates that the recombination is 
controlled by a series of independent binomial experiments. The variant implemented here is the 
DE/rand/1/bin, which involves the following steps and procedures (Das and Suganthan, 2011). The 
DE search procedure of the proposed differential evolution method has been outlined below. 

Algorithm II: Differential Evolution 
1 Input data  
2. Generate initial population and apply opposition learning strategy 
3. Arrange population in ascending order and select first L members . 
4. Set iteration counter, t = 0 
5. Increment the iteration counter, t = t + 1 
6. Apply mutation operator (variants). 

   7. Apply recombination operation to compute 1+t
ijU using Eq.(31). 

   8. Apply selection operation to compute variable 1+t
ijx using Eq.(32) 

   9. Apply exploratory move to improve the population by implementing algorithm 1. 
10. Apply random migration to compute variable 1+t

ijx using Eq.(33)). 
11. IF (t < Tmax) THEN GOTO 5 
12. STOP. 

Parameter Setup 
The user selects the key parameters that control the DE, i.e. population size (L), boundary constraints 
of optimization variables (S), mutation factor )( mf , crossover rate (CR), and the stopping criterion of 
maximum number of iterations (generations) Tmax. The set of real IIR digital filter co-efficient (X) of 
all generators is represented as the population. For a system with S filter coefficients, the population 
is represented as a vector of length, S. If there are L members in the population, the complete popula-
tion is represented as a matrix given below: 
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where t
ijX is the jth element of S set of filter coefficients giving ith individual of a population. Further, 

[ ]Tt
iS

t
i

t
i

t
i xxxX ...,,, 21= stands for the position of the ith individual of a population of real valued S-

dimensional vectors  

Mutation Operation Differential Operation  
Mutation is an operation that adds a vector differential to a population vector of individuals. There 
are several variations of differential evolution algorithm strategies that can be employed for optimi-
zation as mentioned by Sum-Im et.al.(2009). The mutation operation using the difference between 
two randomly selected individuals may cause the mutant individual to escape from the search do-
main. If an optimized variable for the mutant individual is outside the search domain, then this varia-
ble is replaced by its lower bound or its upper bound so that each individual can be restricted to the 
search domain. So, the ten mutation variations, which are defined as the following mutation strate-
gies are considered for study: 
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 (j =1, 2, …, S; i =1, 2, …, L) 
where t is the time (generation); R1, R2 and R3 are mutually different integers that are also different 
from the running index, i, randomly selected with uniform distribution from the set 
{ }Lii ...,,1,1...,,2,1 +− . )(tfm  is the mutation factor and  0)( >tfm  is a real parameter, which con-
trols the amplification of the difference between two individuals with indexes R2 and R3 so as to 
avoid search stagnation and is usually a constant value taken from the range [0.4, 1] using chaotic 
sequence.  

Recombination Operation 
Recombination is employed to generate a trial vector by replacing certain parameters of the target 
vector by the corresponding parameters of a randomly generated donor vector.  

For each vector, 1+t
iZ , an index R5(i) ∈ {1, 2, ..., S} is randomly chosen using a uniform distribution, 
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Where R4(j) is the jth evaluation of a uniform random number generation with [0, 1]. CR is the 
crossover or recombination rate in the range [0, 1]. Usually, the performance of a DE algorithm de-
pends on three variables: the population size, the mutation factor )(tfm  and the CR. 

Selection Operation 
Selection is the procedure whereby better offspring are produced. To decide whether the vector 1+t

iU  
should be a member of the population comprising the next generation, it is compared with the corre-
sponding vector t

iX . Thus, if A denotes the objective function under minimization, then
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In this case, the objective Aj of each trial vector 1+t

ijU  is compared with that of its parent target 
vector t

ijx . If the augmented objective function, Aj of the target vector t
ijx  is lower than that of the trial 

vector, the target is allowed to advance to the next generation. Otherwise, a trial vector replaces the 
target vector in the next generation. 

Migration Operator 
The population diversity and its exploration of the search space are rapidly decreased, and the clus-
tered individuals cannot reproduce newly better individuals by mutation and crossover. In order to 
increase the exploration of the search space and decrease the selection pressure for a small popula-
tion, it is randomly selected 0.2L individuals to start migration operation.  

The jth gene of the ith individual is randomly regenerated as follows (Vanuystel et.al,2002): 
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where 1+t
bjx  is the best individual. Ri and δ are uniform random number.  

Design and Comparison of IIR Filters 
The cascaded design of digital IIR filter has been implemented. The filter coefficients have been 
evaluated by applying different mutation variants of DE method. The band pass (BP) and band stop 
(BS) filters have been considered for the design. The design conditions for these filters are given be-
low in Table 1. 

Table 1: Design Conditions for  Band Pass and Band Stop Digital IIR Filters. 
Filter type Pass-band Stop-band ),( xH ω  

Band-Pass(BP) πωπ 6.04.0 ≤≤  πω 25.00 ≤≤ and πω ≤≤75.0  1 

Band-Stop(BS) πω 25.00 ≤≤ and πω ≤≤75.0  πωπ 6.04.0 ≤≤  1 
 

To design digital IIR filter, 200 equally spaced points are set within the frequency domain [ ]π,0 , 
such that the number of discrete frequency points in Eq. (8), comes out 143 for the BP and BS filters 
along with prescribed pass-band and stop-band frequency range is given in Table 1. The ripple mag-
nitudes )(1 xδ and ),(2 xδ  of pass-band and stop-band respectively are given by Lightener and Direc-
tor(1981).  
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Ripple magnitudes are defined below: 
{ } { } passband;),(min),(max)(1 ∈−= iii xHxHx

ii
ωωωd

ωω  (34) 

and 
{ } stopbandxHx ii

i
∈= ωωd

ω
;),(max)(2  (35)   

DE Parameters 
For  BP and BS filters ten different mutation variants of DE, (DE-1 to DE-10) have been applied to 
access the effect on performance of DE. For each mutation the value of M and N has been varied 
from (0,3) to (0,15) for BP filter and from ( 0,2) to (0,16) for BS Filter. The maximum number of 
iterations has been taken as 100 for all ten mutant variants of DE. The maximum migration value is 
50. The rate of opposition varies between 0 and 1 has been taken as 0.6 Exploratory move is repeated 
20 times. In all ten mutation variants of DE ,the value of α has been taken 1.618 for comparison pur-
poses. The crossover ratio CR has been taken as 0.25 and the mutation ratio, fm and 0.85. 

Band-Pass Filter 
The band pass filter is designed as per parameters given in Table 1. The algorithm was given 100 
runs for all ten mutation variants of DE. All ten DE mutant variants of band pass filter were run for 
various combinations of  M & N varying from (0,3) to (0,15).The best results obtained from each of 
the ten  mutation are given in Table 3 along with its order number. 

Table 2:Band Pass Digital IIR Filter Coefficients 

X1=-0.067237 X2=-0.423032 X3=-0.014451 X4=+0.324167 

X5=-0.000958 X6=-0.482413 X7=-0.736383 X8=+0.722581 

X9=+0.000773 X10=-0.470512 X11=+0.787398 X12=+0.691048 

X13=-0.014720 X14=-0.418502 X15=-0.008904 X16=+0.393822 

X17=-0.000765 X18=-0.564690 X19=-0.961035 X20=+0.642388 

X21=+0.000810 X22=-0.572044 X23=+0.759442 X24=+0.639964 

 
It is observed from the results given in Table 3 that out of the ten implemented mutation strategies, 
the mutation strategy number 6 (DE-6), with value of M & N as (0,6) and having order 12 gives the 
best result for BP filter. The coefficients of digital IIR filter model designed by this mutation strategy  
DE-6 for filter order 12 are given  in Table 2.  
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Table 3:Design Results For Band Pass  Filter 
Mutation Order Magnitude 

Error 
Pass-band performance 

 
Stop-band perfor-

mance 
DE-1 18 

0.94253 
02479.1)(98231.0 ≤≤ ωjeH  

(0.04247) 
010672.0)( ≤ωjeH  

(0.10672) 

DE-2 30 
1.22827 

02742.1)(96946.0 ≤≤ ωjeH  
(0.05795) 

13548.0)( ≤ωjeH  
(0.13548) 

DE-3 30 
1.08214 

03222.1)(96584.0 ≤≤ ωjeH  
(0.06638) 

10812.0)( ≤ωjeH  
(0.10812) 

DE-4 24 
0.97793 

03596.1)(96949.0 ≤≤ ωjeH  
(0.06646) 

09197.0)( ≤ωjeH  
(0.09197) 

DE-5 18 
0.98466 

02581.1)(97608.0 ≤≤ ωjeH  
(0.04973) 

10396.0)( ≤ωjeH  
(0.10396) 

DE-6 12 
0.73981 

00525.1)(99336.0 ≤≤ ωjeH  
(0.01189) 

05779.0)( ≤ωjeH  
(0.05779) 

DE-7 24 
0.91210 

02031.1)(97892.0 ≤≤ ωjeH  
(0.04138) 

07881.0)( ≤ωjeH  
(0.07881) 

DE-8 12 
0.94012 

02042.1)(98180.0 ≤≤ ωjeH  
(0.03862) 

07692.0)( ≤ωjeH  
(0.07692) 

DE-9 12 
0.90607 

01911.1)(98462.0 ≤≤ ωjeH  
(0.03449) 

07585.0)( ≤ωjeH  
(0.07585) 

DE-10 12 
0.96268 

02207.1)(98356.0 ≤≤ ωjeH  
(0.38511) 

08650.0)( ≤ωjeH  
(0.08650) 

For band pass filter, the results obtained by HGA, HTGA and TIA with filter order 6 (M and N taken 
as 0,3 respectively)  are depicted in Table 4 below. It is observed that the results obtained by DE-6 
with M & N as (0,6) are better than the results depicted by Tang et.al,(1998),Tsai et.al,(2006),Tsai 
and Horng, (2006) given in Table 4 for values of M & N as (0,3). 

Table  4: Comparison of Results with previous researchers 
Method Order Magnitude 

Error 
Pass-band performance 

 
Stop-band perfor-

mance 
HGA  6 5.2165 000.1)(8956.0 ≤≤ ωjeH

(0.1044) 
1772.0)( ≤ωjeH  

(0.1772) 
HTGA  6 1.9418 0000.1)(9760.0 ≤≤ ωjeH  (0.023

4) 
0711.0)( ≤ωjeH  

(0.0711) 
TIA  6 1.5204 0000.1)(9681.0 ≤≤ ωjeH

(0.0319) 
0679.0)( ≤ωjeH  

(0.0679) 



Singh & Dhillon 

515 

 
 

 
 
 
 
 
After 100 runs of each mutation with varying values of M and N, the best results are depicted in Ta-
ble 3. Out of  these, for the best result obtained from mutation  DE-6 with M & N values as (0,6) and 
order 12, the maximum, minimum and average value of magnitude error along with standard devia-
tion for band pass filter are given in Table 8. For the best results obtained from DE-6 with order 12, 
the magnitude versus number of iterations graph for its internal 90 runs is shown in Figure 1. The 
frequency response of DE-6 with order 12 has been shown in Figure 2 and the corresponding pole-
zero plot for DE-6 with order 12 has been shown in Figure 3. 

Band-Stop Filter 
The band stop filter is designed as per parameters given in Table 1. The algorithm was given 100 
runs for all ten mutation variants of DE . All ten DE mutant variants of band stop filter were run for 
various combinations of  M & N varying from (0,2) to (0,16).The best results obtained from each of 
the ten  mutation are given in Table 6 along with its order number. 
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Figure 3: Pole –Zero Graph of BP filter using 
DE-6  

Figure 2: Frequency response of BP filter using  
DE-6 

Figure 1: Magnitude versus Iterations for DE-6 
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Table 5:Band Stop Digital IIR Filter Coefficients 
X1=+0.112539 X2=1.474723 X3=+0.298879 X4=+0.728428 X5=-0.094984 

X6=0.374784 X7=-0.840173 X8=+0.432646 X9=+0.120982 X10=+0.632322 

X11=+0.814057 X12=+0.695650 X13=-0.099752 X14=+0.794660 X15=-0.576552 

X16=+0.476530 X17=+0.370328 X18=+0.654783 X19=0.281459 X20=+0.427146 

X21=-0.589042 X22=+0.991081 X23=-0.432155 X24=+0.641011 X25=+0.543131 

X26=+0.510072 X27=+0.674954 X28==+0.738970 X29=-0.645231 X30=+0.844760 

X31=-0.626694 X32=+0.832316 X33=+0.270063 X34=1.532218 X35=+0.624068 

X36=+0.261952 X37=-0.514874 X38=+0.596076 X39=-0.657727 X40=+0.604765 

It is observed from the results given in Table 6 that out of the eleven implemented mutation strate-
gies, the mutation strategy number 1 (DE-1), with value of M& N as (0,10) and having order 20 
gives the best result for BS filter. The coefficients of digital IIR filter model designed by this muta-
tion strategy DE-1, for filter order 20 are given  in Table 5.  

Table 6:Design Results For Band Stop Digital IIR Filter 
Mutation Order Magnitude 

Error 
Pass-band performance Stop-band performance 

 
 

DE-1 
20 

1.35652 
00512.1)(95973.0 ≤≤ ωjeH  

(0.04539) 
16701.0)( ≤ωjeH  

(0.16701) 
 

DE-2 
24 

1.43496 
01315.1)(92975.0 ≤≤ ωjeH  

(0.08339) 
09995.0)( ≤ωjeH  

(0.09995) 
 

DE-3 
16 

2.08169 
00852.1)(94218.0 ≤≤ ωjeH  

(0.06634) 
11094.0)( ≤ωjeH  

(0.11094) 
 

DE-4 
24 

1.99040 
01651.1)(92196.0 ≤≤ ωjeH  

(0.09454) 
08736.0)( ≤ωjeH  

(0.08736) 
 

DE-5 
12 

1.63453 
00704.1)(95897.0 ≤≤ ωjeH  

(0.04806) 
12500.0)( ≤ωjeH  

(0.12500) 
 

DE-6 
20 

1.89972 
01188.1)(93753.0 ≤≤ ωjeH  

(0.07434) 
10287.0)( ≤ωjeH  

(0.10287) 
 

DE-7 
32 

1.45423 
02736.1)(94976.0 ≤≤ ωjeH  

(0.07759) 
10285.0)( ≤ωjeH  

(0.10285) 
 

DE-8 
08 

1.42138 
00787.1)(93831.0 ≤≤ ωjeH  

(0.06955) 
04880.0)( ≤ωjeH  

(0.04880) 
 

DE-9 
28 

1.81525 
01451.1)(92274.0 ≤≤ ωjeH  

(0.09177) 
06757.0)( ≤ωjeH  

(0.06757) 
 

DE-10 
24 

2.84413 
00228.1)(93387.0 ≤≤ ωjeH  

(0.06895) 
14950.0)( ≤ωjeH  

(0.14950) 
For band stop filter the results obtained by HGA, HTGA and TIA with filter order 4 (M and N taken 
as 0,2 respectively)  are depicted in Table 7 below. It is observed that the results obtained by DE-1 
with M & N as (0,10) are better than the results depicted by Tang et.al,(1998),Tsai et.al,(2006),Tsai 
and Horng, (2006) given in Table 7 for values of M & N as (0,2). 
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Table 7:Comparison of Results Obtained by Previous Researcher with Filter Order as 4 

Method Order Magnitude Error Pass-band performance Stop-band performance 
 

HGA 4 6.6072 000.1)(8920.0 ≤≤ ωjeH  
(0.1080) 

1726.0)( ≤ωjeH  
(0.1726) 

HTGA 4 4.5504 0000.1)(9563.0 ≤≤ ωjeH  
(0.0437) 

1013.0)( ≤ωjeH  
(0.1013) 

TIA 4 3.4750 0000.1)(9259.0 ≤≤ ωjeH  
(0.0741) 

1278.0)( ≤ωjeH  
(0.1278) 

After 100 runs of each mutation with varying values of M and N, the best results are depicted in Ta-
ble 6. Out of these, for the best result obtained from mutation  DE-1 with M & N values as (0,10) 
and order 20, the maximum, minimum and average value of magnitude error along with standard 
deviation are given in Table 8. For the best results obtained from DE-1 with order 20, the magnitude 
versus number of iterations graph for its internal 90 runs is shown in Figure 4. The frequency re-
sponse of DE-1 with order 20 has been shown in Figure 5 and the corresponding pole-zero plot for 
DE-1 with order 20 has been shown in Figure 6. 
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Figure 4: Magnitude versus Iterations for DE-1 

 

Figure 6: Pole Zero Plot of BS filter using DE-1 Figure 5: Frequency response of BS filter using DE-1 
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The maximum, minimum and average values of magnitude error along with standard deviation  ob-
tained after 100 runs for band pass filter with mutation 6 (DE-6) and  order 12 and for band stop fil-
ter with mutation 1 (DE-1) and  order 20 have been given below in Table 8.  

Table 8: 
Maximum, Minimum, Average  values of magnitude error along with Standard Deviation 

for BP and BS Filters 
Filter Mutation Order Maximum H Minimum H Average H Std Dev 

BP DE-6 12 6.988644 0.739817 0.94444 0.615752 
BS DE-1 20 3.971386 1.356521 1.819165 0.50904 

Conclusion 
This paper proposes the different ten mutation variants of DE for the design of digital IIR filters 
whereby locally fine tuned by exploratory search method. As shown through simulation results, all 
DE methods work well with an arbitrary random initialization and it satisfies prescribed amplitude 
specifications consistently. Therefore, the proposed algorithms are useful tool for the design of IIR 
filters. On the basis of above results obtained for the design of digital IIR filter, it can be concluded 
that for  band-pass and band -stop filters, out of the proposed ten mutation variants of DE method 
DE-6 and DE-1 methods of DE, respectively are superior to the GA-based method. Further, the pro-
posed DE approach for the design of digital IIR filters allows each filter, whether it is Band Pass or 
Band Stop filter, to be independently designed. 

The proposed DE method for Band Pass and Band Stop digital IIR filters are very much feasible to 
design the digital IIR filters, particularly with the complicated constraints. Parameters tuning still is 
the potential area for further research. The unique combination of exploration search and global 
search optimization method yields a powerful option for the design of IIR filters. 
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	Abstract
	This paper proposes the innovative methodologies for the robust and stable design of optimal stable digital infinite impulse response (IIR) filters using different mutation variants of hybrid differential evolution (HDE). A multivariable optimization is employed as the design criterion to obtain the optimal stable IIR filter that satisfies the different performance requirements like minimizing the magnitude approximation error and minimizing the ripple magnitude. HDE method is undertaken as a global search technique and exploratory search is exploited as a local search technique. The proposed different mutation variants of HDE method enhance the capability to explore and exploit the search space locally as well globally to obtain the optimal filter design parameters. The chance of starting with better solution is improved by comparing the opposite solution. Here HDE has been effectively applied for the design of higher order optimal stable band-pass, and band-stop digital IIR filters. The experimental results depict that proposed HDE methods are superior or at least comparable to other algorithms and can be efficiently applied for higher order IIR filter design.
	Keywords: Digital IIR filters, Hybrid Differential Evolution, Exploratory search, Opposition based learning Multi parameter optimization.
	Introduction
	A filter is a selective circuit that permits a certain band of frequency to pass while the other frequencies get attenuated. The digital filters can be implemented in hardware or through software and are capable to process both real-time and on-line signals. These days the digital filters are being used to perform many filtering tasks, which previously were performed almost exclusively by analog filters and the digital filters are replacing the traditional role of analog filters in many applications such as image processing, speech synthesis, secure communication, radar processing and biomedical etc. The design of digital infinite impulse response (IIR) filter follows either transformation technique or optimization technique. Using the transformation techniques (Oppenheim et. al., 1999), Butterworth, Chebyshev and Elliptic function, have been designed. Optimization methods have been applied whereby performance for the design of digital IIR filters is measured in terms of the magnitude error, and ripple magnitudes of pass-band and stop-band.
	Jiang and Kwan (2009) have designed the IIR filter by having stability constraint and employ an iterative second-order cone programming method. The simultaneous design in magnitude and group delay has been discussed by Cortelazzo and Lightener (1984). For designing problem of IIR filter in a convex form, the semi-definite programming relaxation technique (Jiang and Kwan, 2010) has been applied. Being a sequential design procedure, the algorithm finds a feasible solution within a set of relaxed constraints. However, non-linear and multimodal nature of error surface of IIR filters, conventional gradient-based design may easily get stuck in the local minima of error surface. The draw backs of gradient methods, have been conquered by various researchers by applying modern heuristics optimization algorithms such as genetic algorithms (Nang et.al,1994,Li and Yin, 1996,Tang et.al, 1998, Harris and Ifeachor,1998,Uesaka and Kawamata,2000,Vanuystel et. al, 2002, Zhang et.al,2003), particle swarm optimization (PSO) (Sun et.al,2004,Sana et.al,2012), seeker- optimization- algorithm -based evolutionary method (Dai et.al,2006), simulated annealing (SA) (Chen et.al,2001), sequential minimization method Qiao et.al,2014,Hailong et.al,1012), tabu search(Kalini and Karaboga,2005), ant colony optimization Karaboga et.al,2004), immune algorithm (Tsai and Horng,2006) and best approximation method of equiripple (Zhang and Wang,2014) etc for the design of digital filters.
	Evolutionary algorithms (EAs) are based on the mechanics of natural selection and genetics. Genetic algorithms are one example of EAs. The optimization methods based on genetic algorithms are only capable of searching multidimensional and multimodal spaces. These are also able to optimize complex and discontinuous functions (Tang et.al,1998). The digital IIR filter can be structured such as cascade, parallel, or lattice. The band-pass, and band-stop filters can be independently designed. To design the digital IIR filters genetic algorithm has been applied by Tang et al, 1998. The genetic methods are normally compromised because of their very slow convergence. When the number of the parameters is large, these may trap in the local optima of objective function and there are numerous local optima (Renders,1996). The hybrid Taguchi genetic algorithm has been applied by Tsai et al. (2006) for design of optimal IIR filters. With hybrid Taguchi genetic algorithm approach, the combination of the traditional genetic algorithms, which has a powerful global exploration capability, is applied with the Taguchi method. Therefore, it is necessary for further developing an efficient heuristic algorithm so as to design the optimal digital IIR filters. Taguchi-immune algorithm (TIA) is based on the approach that integrates immune algorithm and Taugchi method (2006). Yu et.al. (2007) have proposed cooperative co-evolutionary genetic algorithm for digital IIR filter design. For finding the lowest filter order, the magnitude and the phase response has been considered. The structure and the coefficients of the digital IIR filter have been coded separately. For keeping the diversity, the simulated annealing has been applied for the coefficient species, but to arrive at global minima Chen et.al(2001), it may require too many function evaluations. The seeker-optimization-algorithm based evolutionary method has been implemented for digital IIR filters by Dai et al (2006). 
	Researchers have given various methods with which the optimization problem under different conditions is tackled. Based on the type of the search space and the objective function optimization methods are classified. Due to the time-consuming computer simulation or expensive physical experiments, the evaluation of candidate solutions could be computationally and/or financially expensive in IIR filter design problems. Therefore, a method is of great practical interest if it is able to produce reasonably good solutions within a given budget on computational basis. 
	The motive of this paper is to explore the performance of different mutation variants of differential evolution (DE) method while implementing for the design of IIR digital filters. Moreover, these methods are undertaken as global search techniques and an exploratory search is proposed as a local search technique so that these procedures randomly explore the search space globally as well locally. The values of the filter coefficients are optimized with DE to achieve magnitude error and ripple magnitude as objective functions for optimization problem. Constraints are taken care of by applying exterior penalty method. 
	The paper is organized in six sections. The IIR filter design problem statement is described in section 2. The solution methodology is briefed in section 3. The detail of  hybrid DE algorithm for designing the optimal digital IIR filters have been described in Section 4. In section 5, the performance of the proposed ten mutation variants of DE methods have been evaluated for band pass and band stop digital IIR filters and achieved results are compared with the design results given by Tang et al.(1998) , Tsai et al. (2006) , Tsai and Horng (2006), for the  BP, and BS filters. Finally, the conclusions and discussions are outlined in Section 6.
	IIR Filter Design Problem
	A digital filter design problem determines a set of filter coefficients which meet performance specifications. These performance specifications are (a) pass band width and its corresponding gain, (b) width of the stop-band and attenuation, (c) band edge frequencies, and (d) tolerable peak ripple in the pass band and stop-band. The transfer function of IIR filter is defined below: 
	                           (1)
	The design of digital filter design problem involves evaluation of a set of filter coefficients, and  which meet the performance indices. Several first- and second-order sections are cascaded together (Renders and Flasse, 1996, Tang et. al,1998) for realizing IIR filters. In the IIR filter, the coefficients are optimized such that the approximation error function for magnitude is to be minimized. The magnitude response is specified at K equally spaced discrete frequency points in pass-band and stop-band. The multivariable constrained optimization problem is stated as below:
	Minimize                        (2)
	Subject to the stability constraints:-
	                     (3)
	 (4)
	. (5)
	.               (6)
	                 (7)
	The stability constraints are included in the design of casual recursive filters, which are obtained by  [1]. Here, denotes the absolute error and is defined as below:
	.           (8)
	Desired magnitude response,  of IIR filter is given as:
	   (9)
	The cascaded transfer function of IIR filter is denoted by, involving the filter coefficients like, poles and zeros. Irrespective of the filter type, the structure of cascading type digital IIR filter, is stated as below (Ng et.al,1994).
	                                (10)
	where  and vector  denotes the filter coefficients of dimension S×1 with S = 2N + 4M + 1. The scalar constrained optimization problem is converted into unconstrained multivariable optimization problem using penalty method. Augmented function is defined as:
	   (11)
	where
	r is a penalty parameter having large value.
	Bracket function for constraint given by Eq. (3) is stated below:-
	   (12)
	Bracket function for constraint given by Eq. (6) is stated below:-
	  (13)
	Similarly bracket functions for other constraints given by Eq. (4), Eq. (5) and Eq. (7) are undertaken.
	The Solution Methodology
	Various mutation variants of DE have been undertaken to design IIR digital filters. These methods perform global search and an exploratory search is proposed to perform local search so that global as well as local search is performed simultaneously. Opposition based learning is implemented to improve the chance of starting with better solution by checking the opposite solution.
	Differential Evolution
	Differential Evolution is a population-based stochastic method. It is applied to minimize performance index. Differential evolution uses a rather greedy and less stochastic approach to problem solving in comparison to evolutionary algorithms. DE combines simple arithmetical operators with the classical operators of the recombination, mutation, and selection to evolve from a randomly generated starting population to a final solution (Qin et.al,2009). Various mutation strategies are available in literature which affects the performance of DE.
	Exploratory Move
	In the exploratory move, the current point is perturbed in positive and negative directions along each variable one at a time and the best point is recorded. The current point is updated to the best point at the end of each design variable perturbation may either be directed or random. If the point found at the end of all filter coefficient perturbations is different from the original point, the exploratory move is a success, otherwise, the exploratory move is a failure. In any case, the best point is considered to be the outcome of the exploratory move. The starting point obtained with the help of random initialization is explored iteratively and filter coefficient is initialized as follows:
	                                                                                 (14)Where:                                                                                                          (15)
	S denotes number of variables.
	The objective function denoted by is calculated as follows
	     (16)
	where and is random for global search and fixed for local search. The process is repeated till all the filter coefficients are explored and overall minimum is selected as new starting point for next iteration. The stepwise algorithm to explore filter coefficients is outlined below. 
	Algorithm I: Exploratory move
	1. Select small change, ∆𝑖, and 𝑥𝑖𝑜 and compute 𝑓(𝑥𝑖𝑜)
	2. Initialize iteration counter, IT=0
	3. Increment the counter, IT=IT+1
	4. IF (𝐼𝑃>𝐼𝑃𝑚𝑎𝑥) GO TO 12
	5. Initialize filter coefficient counter j=0
	6. Increment filter coefficient counter, j=j+1
	7. Find 𝑢𝑖𝑗using Eq. (15)
	8. Evaluate performance function, 𝐴(𝑥𝑖𝑜+∆𝑖𝑢𝑖𝑗) and 𝐴(𝑥𝑖𝑜−∆𝑖𝑢𝑖𝑗)
	9. Select 𝑥𝑖𝑛using Eq. (16) and 𝐴(𝑥𝑖𝑛)
	10. IF  GO TO 6 and repeat.
	11. IF 𝐴(𝑥𝑖𝑛)<𝐴(𝑥𝑖𝑜) 
	THEN GO TO 5 
	ELSE  ∆𝑖=∆𝑖/1.618 and GOTO 3 and repeat.
	12. STOP
	Population Initialization 
	Initialize a population  ( j =1, 2, …, S; i = 1, 2, ..., L) individuals with random values generated according to a uniform probability distribution in the S-dimensional problem space. Initialize the entire solution vector population within the given upper and lower limits of the search space.(j =1, 2, …, S;  i =1, 2, …, L)                 (17)
	The vector population may violate inequality constraints. This violation is corrected by fixing them either at lower or at upper limit.
	Opposition-Based Learning
	Evolutionary optimization methods start with some initial solutions and try to improve them toward some optimal solution(s). The process of searching terminates when some predefined criteria are satisfied. In the absence of prior information about the solution, it is usually started with random guesses. The computation time, among others, is related to the distance of these initial guesses from the optimal solution. It can improve the chance of starting with a better solution by simultaneously checking the opposite solution(Tizhoosh,2009). By doing this, the better one either guess or opposite guess can be chosen as an initial solution. As per the probability theory, 50% of the time, a guess is farther from the solution than its opposite guess (Rahnamayan et.al, 2008). Therefore, starting with the closer of the two guesses as judged by its objective function has the potential to accelerate convergence. The same approach can be applied not only to initial solutions but also continuously to each solution in the current population (Rahnamayan et.al,2008).
	(j =1, 2, …, S;  i =1, 2, …, L). (18)
	where  and are lower and upper limits of filter coefficients. 
	 Evaluation of the Individual Population
	The goal is to minimize the objective function. The elements of parent/offspring may violate constraint. A penalty term is introduced in the objective function to penalize its objective function value. Objective function is changed to the following generalized form:
	 (j = 1, 2,..., S; i = 1, 2, , L)                                                                                           (19)
	where penalty factor is given by Eq. (12) and Eq. (13).
	IIR Filter Design using DE
	The different mutant variants of DE are classified using: DE/α/β/δ. Where α indicates the method for selecting the parent chromosome that will form the base of the mutated vector. β indicates the number of difference vectors used to perturb the base chromosome. δ indicates the recombination mechanism used to create the offspring population. The bin acronym indicates that the recombination is controlled by a series of independent binomial experiments. The variant implemented here is the DE/rand/1/bin, which involves the following steps and procedures (Das and Suganthan, 2011). The DE search procedure of the proposed differential evolution method has been outlined below.
	Algorithm II: Differential Evolution
	1 Input data 
	2. Generate initial population and apply opposition learning strategy
	3. Arrange population in ascending order and select first L members .
	4. Set iteration counter, t = 0
	5. Increment the iteration counter, t = t + 1
	6. Apply mutation operator (variants).
	7. Apply recombination operation to compute using Eq.(31).
	8. Apply selection operation to compute variable using Eq.(32)
	9. Apply exploratory move to improve the population by implementing algorithm 1.
	10. Apply random migration to compute variable using Eq.(33)).
	11. IF (t < Tmax) THEN GOTO 5
	12. STOP.
	Parameter Setup
	The user selects the key parameters that control the DE, i.e. population size (L), boundary constraints of optimization variables (S), mutation factor, crossover rate (CR), and the stopping criterion of maximum number of iterations (generations) Tmax. The set of real IIR digital filter co-efficient (X) of all generators is represented as the population. For a system with S filter coefficients, the population is represented as a vector of length, S. If there are L members in the population, the complete population is represented as a matrix given below:
	  (20)
	where is the jth element of S set of filter coefficients giving ith individual of a population. Further, stands for the position of the ith individual of a population of real valued S-dimensional vectors 
	Mutation Operation Differential Operation 
	Mutation is an operation that adds a vector differential to a population vector of individuals. There are several variations of differential evolution algorithm strategies that can be employed for optimization as mentioned by Sum-Im et.al.(2009). The mutation operation using the difference between two randomly selected individuals may cause the mutant individual to escape from the search domain. If an optimized variable for the mutant individual is outside the search domain, then this variable is replaced by its lower bound or its upper bound so that each individual can be restricted to the search domain. So, the ten mutation variations, which are defined as the following mutation strategies are considered for study:
	DE-1;     (21)
	DE-2;    (22)
	DE-3;   (23)
	DE-4;  (24)
	DE-5;  (25)
	DE-6;  (26)
	DE-7;   (27)
	DE-8;   (28)
	DE-9;   (29)
	DE-10;  (30)
	 (j =1, 2, …, S; i =1, 2, …, L)
	where t is the time (generation); R1, R2 and R3 are mutually different integers that are also different from the running index, i, randomly selected with uniform distribution from the set .  is the mutation factor and   is a real parameter, which controls the amplification of the difference between two individuals with indexes R2 and R3 so as to avoid search stagnation and is usually a constant value taken from the range [0.4, 1] using chaotic sequence. 
	Recombination Operation
	Recombination is employed to generate a trial vector by replacing certain parameters of the target vector by the corresponding parameters of a randomly generated donor vector. 
	For each vector, , an index R5(i)  {1, 2, ..., S} is randomly chosen using a uniform distribution, and a trial vector,
	(j =1, 2, …, S; i=1, 2, …, L). (31)
	Where R4(j) is the jth evaluation of a uniform random number generation with [0, 1]. CR is the crossover or recombination rate in the range [0, 1]. Usually, the performance of a DE algorithm depends on three variables: the population size, the mutation factor  and the CR.
	Selection Operation
	Selection is the procedure whereby better offspring are produced. To decide whether the vector  should be a member of the population comprising the next generation, it is compared with the corresponding vector. Thus, if A denotes the objective function under minimization, then
	( i = 1, 2, …, L)                         (32)
	In this case, the objective Aj of each trial vector  is compared with that of its parent target vector. If the augmented objective function, Aj of the target vector  is lower than that of the trial vector, the target is allowed to advance to the next generation. Otherwise, a trial vector replaces the target vector in the next generation.
	Migration Operator
	The population diversity and its exploration of the search space are rapidly decreased, and the clustered individuals cannot reproduce newly better individuals by mutation and crossover. In order to increase the exploration of the search space and decrease the selection pressure for a small population, it is randomly selected 0.2L individuals to start migration operation. 
	The jth gene of the ith individual is randomly regenerated as follows (Vanuystel et.al,2002):
	  (33)
	where  is the best individual. Ri and δ are uniform random number. 
	Design and Comparison of IIR Filters
	The cascaded design of digital IIR filter has been implemented. The filter coefficients have been evaluated by applying different mutation variants of DE method. The band pass (BP) and band stop (BS) filters have been considered for the design. The design conditions for these filters are given below in Table 1.
	Table 1: Design Conditions for  Band Pass and Band Stop Digital IIR Filters.
	Stop-band
	Pass-band
	Filter type
	1
	and
	Band-Pass(BP)
	1
	and 
	Band-Stop(BS)
	To design digital IIR filter, 200 equally spaced points are set within the frequency domain, such that the number of discrete frequency points in Eq. (8), comes out 143 for the BP and BS filters along with prescribed pass-band and stop-band frequency range is given in Table 1. The ripple magnitudes and  of pass-band and stop-band respectively are given by Lightener and Director(1981). 
	Ripple magnitudes are defined below:
	 (34)
	and
	 (35)  
	DE Parameters
	For  BP and BS filters ten different mutation variants of DE, (DE-1 to DE-10) have been applied to access the effect on performance of DE. For each mutation the value of M and N has been varied from (0,3) to (0,15) for BP filter and from ( 0,2) to (0,16) for BS Filter. The maximum number of iterations has been taken as 100 for all ten mutant variants of DE. The maximum migration value is 50. The rate of opposition varies between 0 and 1 has been taken as 0.6 Exploratory move is repeated 20 times. In all ten mutation variants of DE ,the value of α has been taken 1.618 for comparison purposes. The crossover ratio CR has been taken as 0.25 and the mutation ratio, fm and 0.85.
	Band-Pass Filter
	The band pass filter is designed as per parameters given in Table 1. The algorithm was given 100 runs for all ten mutation variants of DE. All ten DE mutant variants of band pass filter were run for various combinations of  M & N varying from (0,3) to (0,15).The best results obtained from each of the ten  mutation are given in Table 3 along with its order number.
	It is observed from the results given in Table 3 that out of the ten implemented mutation strategies, the mutation strategy number 6 (DE-6), with value of M & N as (0,6) and having order 12 gives the best result for BP filter. The coefficients of digital IIR filter model designed by this mutation strategy  DE-6 for filter order 12 are given  in Table 2. 
	Table 3:Design Results For Band Pass  Filter
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Order
	Mutation
	18
	DE-1
	0.94253
	(0.10672)
	(0.04247)
	30
	DE-2
	1.22827
	(0.13548)
	(0.05795)
	30
	DE-3
	1.08214
	(0.10812)
	(0.06638)
	24
	DE-4
	0.97793
	(0.09197)
	(0.06646)
	18
	DE-5
	0.98466
	(0.10396)
	(0.04973)
	12
	DE-6
	0.73981
	(0.05779)
	(0.01189)
	24
	DE-7
	0.91210
	(0.07881)
	(0.04138)
	12
	DE-8
	0.94012
	(0.07692)
	(0.03862)
	12
	DE-9
	0.90607
	(0.07585)
	(0.03449)
	12
	DE-10
	0.96268
	(0.08650)
	(0.38511)
	For band pass filter, the results obtained by HGA, HTGA and TIA with filter order 6 (M and N taken as 0,3 respectively)  are depicted in Table 4 below. It is observed that the results obtained by DE-6 with M & N as (0,6) are better than the results depicted by Tang et.al,(1998),Tsai et.al,(2006),Tsai and Horng, (2006) given in Table 4 for values of M & N as (0,3).
	Table  4: Comparison of Results with previous researchers
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Order
	Method
	5.2165
	6
	HGA 
	(0.1772)
	(0.1044)
	1.9418
	6
	HTGA 
	 (0.0234)
	(0.0711)
	1.5204
	6
	TIA 
	(0.0679)
	(0.0319)
	/
	//
	After 100 runs of each mutation with varying values of M and N, the best results are depicted in Table 3. Out of  these, for the best result obtained from mutation  DE-6 with M & N values as (0,6) and order 12, the maximum, minimum and average value of magnitude error along with standard deviation for band pass filter are given in Table 8. For the best results obtained from DE-6 with order 12, the magnitude versus number of iterations graph for its internal 90 runs is shown in Figure 1. The frequency response of DE-6 with order 12 has been shown in Figure 2 and the corresponding pole-zero plot for DE-6 with order 12 has been shown in Figure 3.
	Band-Stop Filter
	The band stop filter is designed as per parameters given in Table 1. The algorithm was given 100 runs for all ten mutation variants of DE . All ten DE mutant variants of band stop filter were run for various combinations of  M & N varying from (0,2) to (0,16).The best results obtained from each of the ten  mutation are given in Table 6 along with its order number.
	It is observed from the results given in Table 6 that out of the eleven implemented mutation strategies, the mutation strategy number 1 (DE-1), with value of M& N as (0,10) and having order 20 gives the best result for BS filter. The coefficients of digital IIR filter model designed by this mutation strategy DE-1, for filter order 20 are given  in Table 5. 
	Table 6:Design Results For Band Stop Digital IIR Filter
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Order
	Mutation
	20
	1.35652
	DE-1
	(0.16701)
	(0.04539)
	24
	1.43496
	DE-2
	(0.09995)
	(0.08339)
	16
	2.08169
	DE-3
	(0.11094)
	(0.06634)
	24
	1.99040
	DE-4
	(0.08736)
	(0.09454)
	12
	1.63453
	DE-5
	(0.12500)
	(0.04806)
	20
	1.89972
	DE-6
	(0.10287)
	(0.07434)
	32
	1.45423
	DE-7
	(0.10285)
	(0.07759)
	08
	1.42138
	DE-8
	(0.04880)
	(0.06955)
	28
	1.81525
	DE-9
	(0.06757)
	(0.09177)
	24
	2.84413
	DE-10
	(0.14950)
	(0.06895)
	For band stop filter the results obtained by HGA, HTGA and TIA with filter order 4 (M and N taken as 0,2 respectively)  are depicted in Table 7 below. It is observed that the results obtained by DE-1 with M & N as (0,10) are better than the results depicted by Tang et.al,(1998),Tsai et.al,(2006),Tsai and Horng, (2006) given in Table 7 for values of M & N as (0,2).
	Table 7:Comparison of Results Obtained by Previous Researcher with Filter Order as 4
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Order
	Method
	6.6072
	4
	HGA
	(0.1726)
	(0.1080)
	4.5504
	4
	HTGA
	(0.1013)
	(0.0437)
	3.4750
	4
	TIA
	(0.1278)
	(0.0741)
	After 100 runs of each mutation with varying values of M and N, the best results are depicted in Table 6. Out of these, for the best result obtained from mutation  DE-1 with M & N values as (0,10) and order 20, the maximum, minimum and average value of magnitude error along with standard deviation are given in Table 8. For the best results obtained from DE-1 with order 20, the magnitude versus number of iterations graph for its internal 90 runs is shown in Figure 4. The frequency response of DE-1 with order 20 has been shown in Figure 5 and the corresponding pole-zero plot for DE-1 with order 20 has been shown in Figure 6.
	/
	//
	The maximum, minimum and average values of magnitude error along with standard deviation  obtained after 100 runs for band pass filter with mutation 6 (DE-6) and  order 12 and for band stop filter with mutation 1 (DE-1) and  order 20 have been given below in Table 8. 
	Conclusion
	This paper proposes the different ten mutation variants of DE for the design of digital IIR filters whereby locally fine tuned by exploratory search method. As shown through simulation results, all DE methods work well with an arbitrary random initialization and it satisfies prescribed amplitude specifications consistently. Therefore, the proposed algorithms are useful tool for the design of IIR filters. On the basis of above results obtained for the design of digital IIR filter, it can be concluded that for  band-pass and band -stop filters, out of the proposed ten mutation variants of DE method DE-6 and DE-1 methods of DE, respectively are superior to the GA-based method. Further, the proposed DE approach for the design of digital IIR filters allows each filter, whether it is Band Pass or Band Stop filter, to be independently designed.
	The proposed DE method for Band Pass and Band Stop digital IIR filters are very much feasible to design the digital IIR filters, particularly with the complicated constraints. Parameters tuning still is the potential area for further research. The unique combination of exploration search and global search optimization method yields a powerful option for the design of IIR filters.
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