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Abstract 
Algorithm performance coverage in textbooks emphasizes patterns of growth in execution times, 
relative to the size of the problem. Variability in execution times for a given problem size is usu-
ally ignored. In this research study, our primary focus is on the empirical distribution of execution 
times for a given algorithm and problem size. We examine CPU times for Java implementations 
of five sorting algorithms for arrays: selection sort, insertion sort, shell sort, merge sort, and 
quicksort. We measure variation in running times for these algorithms and describe how the sort-
time distributions change as the problem size increases. Using our research methodology, we 
compare the relative stability of performance for the different sorting algorithms. 

Keywords: algorithm, sorting, performance, distribution, variation, Java. 

Introduction 
 Courses in data structures and algorithms are the meat and potatoes of Computer Science pro-
grams. Data Structures textbooks (Kaufman & Wolfgang, 2010; Lafore, 2003; Main & Savich, 
2010) emphasize how to implement algorithms to support complex data structures such as stacks, 
queues, search trees, and graphs. Different algorithms are required when arrays vs. linked lists are 
used to represent data structures. An introduction to order-of-growth concepts relates problem 

size to execution time for various algo-
rithms. 

In Analysis of Algorithms textbooks 
(Cormen, et al., 2009; Kleinberg & Tar-
dos, 2006; Aho, Ullman & Hopcroft, 
1983), explanations of algorithm per-
formance place greater emphasis on 
mathematical reasoning. This is also 
true of the early Algorithms books by 
Aho (1974) and Knuth (1998).  
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A formal examination of algorithm efficiency based on resources required (primarily CPU time) 
looks at best-case, worst-case, and average-case situations. Much of the discussion centers on 
worst-case analysis because the mathematical arguments are simpler, and the results have more 
pedagogical and practical relevance. Order-of-growth is simplified by ignoring constants and 
lower order terms, so average-case results are often proportional to the worst-case. The study of 
variation is mostly restricted to comparisons of best-case and worst-case results with average-
case. 

Sedgewick & Wayne (2011) present a mathematical analysis of algorithms, and then briefly relate 
their mathematical models to empirical results. They give several algorithms for finding three 
numbers that sum to zero (from a large input file). They ran each algorithm once for each input 
file, assuming that the only source of variation would be the actual data. In some of our tests, we 
experienced situations where repeated execution of the same algorithm on the same (non-
randomized) data resulted in different execution times, indicating the existence of other sources 
of variation. 

Algorithm analysis in some textbooks briefly mentions that running times can vary for different 
inputs, but the books include little discussion of the distribution of execution times for repeated 
tests. Variation includes not only dispersion (how spread out the scores are from a central value), 
but also skewness (how unbalanced the scores are at each end of the distribution).  

It is difficult to find individual research efforts on sorting algorithms that focus on variation. An 
interesting study by Musselman (2007) examined robustness as a measure of algorithm perfor-
mance. An earlier study (Helman, Bader & JaJa, 1998) performed an experiment on a randomized 
parallel sorting algorithm. 

Variation can be more important than averages or even generalized worst-case analysis when 
consistency and dependability of execution time is a requirement. This is common in systems 
having strict time constraints on operations, such as manufacturing systems, real-time control sys-
tems, and embedded systems. 

Sources of Variation 
There are many system features which can affect algorithm performance. In this research, we use 
CPU time as our primary measure of performance. A layered list of sources of variation is out-
lined below. 

1. Computer hardware components: (a) CPU clock speed, pipelines, number of cores, internal 
 caches,  and (b) memory architecture, amount of RAM, external caches. 

2. Operating system features: (a) process scheduling algorithms, multi-tasking, parallel process
 ing, and (b)  memory allocation algorithms, virtual memory. 

3. For Java programs: (a) JIT compiler optimizations, (b) run-time options and behavior, and (c) 
 memory management, including automatic garbage collection (Goetz, 2004; Boyer, 2008; 
 Wicht, 2011). 

4. Application program: (a) choice of algorithm, and how it is implemented, (b) size of problem, 
 (c)  amount of memory required by the algorithm, and (d) data type, data source, and data 
 structure. 

Research Plan 
The primary objective of this research is to examine how algorithm execution time distributions 
depend on problem size, randomness of data, and other factors. We limit our attention to sorting 
algorithms for arrays, including selection sort, insertion sort, shell sort, merge sort and quicksort.  
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For a range of array sizes, we ran a Java program that repeatedly filled an array with random in-
tegers, sorted the data using one of the sorting algorithms, and measured the elapsed time. The 
program then output summary statistics to describe the distribution of sort-times. 

To isolate algorithm performance variation from the hardware, operating system, and Java layers, 
we ran all final results on a single computer. This computer had an Intel Core2 Duo CPU, Win-
dows 7 operating system, and Version 7 of the Java compiler and run-time. 

In our research environment, we assumed that algorithm execution times would depend almost 
entirely on: 

1. the sorting algorithm 

2. the size and data type of the array 

3. the randomness of the generated data 

However, this assumption was not supported by our tests. Unexpected sources of variation in ex-
ecution times were encountered throughout our research study. These surprising patterns required 
procedures for generating and analyzing performance data that are relatively immune to outlier 
effects. 

In the next section, we carefully examine a typical sort-time distribution that guided our research 
process. Our results and conclusions are summarized in later sections of the paper. 

Simulation Methodology 
For a given hardware/software environment, sorting algorithm, and array size, our methodology 
assumes that the distribution of execution times is a mixture of two components: 

1. normal variation due to randomness of the data. 

2. other sources of variation that may result in outliers.  

Our methodology attempts to extract the normal variation component from the combined distribu-
tion. This requires being able to detect possible outliers and remove them from the sample. 

Our sort-time samples often contain a relatively large number of outliers. Therefore, we do not 
perform statistical tests to detect individual outliers. Instead, we use two general approaches for 
removing outliers: 

1. Set limits on the perceived "normal" data, and trim off values outside these limits. In  particu-
lar, we  examine trimmed means and trimmed standard deviations. One important research deci-
sion was selecting trimming limits that give consistent results for the type of data we were col-
lecting. 

2. Use non-parametric statistics that are less susceptible to outliers, since no underlying  distri-
bution is assumed. Examples of such statistics are the median, the interquartile range (IQR), and 
various centile ranges. 

Our performance analysis methodology was developed first for the selection sort algorithm. 
Samples of execution times for selection sort were obtained for a range of array sizes.   

Our Java data generation program, written initially for selection sort, performs the following 
steps: 

1. Input the array size N and number of algorithm repetitions R. 

2. Perform a "warm-up" period involving several repetitions of the sorting algorithm. In each 
 warm-up repetition: 
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 a. Fill the data array with random integers. 

 b. Sort the array, but ignore the execution time. This prevents early outliers from appearing  
  in our statistical summary. These outliers are due mainly to JIT compiler optimizations  
  and initial loading of run-time classes. After some experimentation, we found that a   
  warm-up period of 50 repetitions was a conservative design choice for our study.  

3. Run an additional R repetitions. In these repetitions: 

 a. Fill the data array with random integers. 

 b. Sort the array, and place the execution time (measured using the Java nanoTime function) 
  in a SortTime array. These values will include outliers that result from Java's automatic  
  garbage collection. 

3. Calculate various statistical summaries of the R execution times in the SortTime array. Dur
 ing our  early analyses, this section of our Java simulation program was enhanced as addi
 tional statistics were included. 

Preliminary Analysis 
While data were collected for the selection sort algorithm, we evaluated how well different statis-
tics summarized essential features of the sort-time distributions. When we obtained consistent 
results for selection sort, we adapted the methodology to the remaining sorting algorithms.  

The following selection sort execution time distribution demonstrates features that influenced our 
research methodology. In this case, the array size is 100, and the number of repetitions is 1000. 
The total number of repetitions was 1050, but the first 50 "warm-up" values were discarded. A 
frequency distribution of the retained 1000 sort-times for our Java benchmark program is shown 
in Table 1. 

Several interesting and suggestive features appear in the distribution. 

1. The sample of sort-times contains many repeat values. Only 16 distinct values appear in the 
 1000 repetitions of the sorting algorithm. 

2. Most of the high frequency sort-times appear in "pairs", differing by 1 nanosecond. This is 
 probably due to rounding within the Java nanoTime function, which returns an integer. 

3. If we consider pairs differing by 1 as a single value, 969 (975 - 6) of the 1000 values in the 
 distribution appear in 3 middle-range sort-times. 

4. Considering pairs differing by 1 as a single value, the difference between consecutive pairs is 
 between 466 and 467 (approximately 466.5). We can interpret this difference as the  
      resolution of the clock increment for the nanoTime method.  

Oracle's Java documentation (2014) states that the nanoTime method "returns the current value of 
the most precise available system timer, in nanoseconds." Apparently, the recorded sort-times on 
our test computer are accurate to about 466.5 nanoseconds. Note that 30 clock increments elapse 
for the smallest sort-time 13995. In tests on other computers, we observed similar results, but the 
size of the clock increment was hardware dependent. 

5. The mean of the sort-times (17664) is well above the median (14928), which suggests strong 
 positive skewness. 

6. The standard deviation of 80458 is greatly inflated by outliers. 

7. The largest value (2558275) is clearly an outlier. Based on relative frequency, all values 
 above 15861could be considered as outliers. 
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Table 1: Selection Sort CPU Time Distribution (ns) 
Array size N = 100,  Repetitions R = 1000 

SortTime  CumFreq Increment 

13995 6 6 --- 

14461 107 113 466 

14462 102 215 1 

14927 33 248 465 

14928 542 790 1 

15394 108 898 466 

15395 77 975 1 

15861 16 991 466 

27989 2 993 12128 

32655 1 994 4666 

33587 1 995 932 

36387 1 996 2800 

37787 1 997 1400 

56913 1 998 19126 

60644 1 999 3731 

2558275 1 1000 2497631 

 

In repeated testing, we found that sort-times for the first few executions of an algorithm almost 
always take longer than most later executions. The first five sort-times generated during the 
warm-up period in the above example were 111027, 114292, 110094, 15861, and 15395. The 
sort-times then continue within a lower range, although larger values appear occasionally. Be-
cause of this irregular initial runtime behavior, our testing methodology always skips the first 50 
sort-time values. Later outlier values (such as 2558275) are removed during statistical analysis by 
"trimming" the data. 

Distribution Characteristics 
The most important questions arising from our preliminary analysis are: "What characteristics of 
the sort-time distributions describe the nature of performance variation?" and "What statistics 
accurately summarize variation without being distorted by outliers?" 

Three characteristics of our distributions are of particular interest. 

1. central tendency: Where is the "center" of the distribution? Outliers can distort the mean but 
 not the median. 

2. dispersion: How widely spread are the values from the central value? For "normal" variation, 
 dispersion should not be inflated by outliers. 
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3. skewness: How "unbalanced" is the distribution on both sides of the central value? Skewness 
 can be exaggerated by outliers. 

Sort-time Central Tendency 
In this section, we analyze the central tendency of execution time distributions for the five sorting 
algorithms: selection sort, insertion sort, shell sort, merge sort, and quick sort. For each algorithm, 
we examine ten array sizes: 100, 200, 300, ..., 1000. We also examine the effect of outliers on 
central tendency. We include a brief discussion of skewness here because our measures of skew-
ness compare the mean to the median. 

Median 
For each sorting algorithm and array size, we want to estimate the center of the distribution of 
normal sort-times, which does not include outliers. Our main statistics for measuring. central ten-
dency are the median and the trimmed mean. 

The median is the measure of central tendency least affected by outliers. The usual formula for 
the median is to average the two middle scores when the sample size is even. To simplify our 
code, we calculated the median as the lower of the two middle values for even sample sizes. This 
change had minimal effect on the results, since the sample sizes during our data collection were 
very large (and the samples contained many duplicate values). 

In Table 2, we present the median for each sorting algorithm and array size. The medians are 
from samples of R = 10000 sort-times generated by our Java program. As we mentioned earlier, 
to avoid initial outliers, we ran the algorithm 50 times during a "warm-up" period before record-
ing the R execution times. 

The sort-times are in nanoseconds, but the times are not accurate to the nearest nanosecond. Be-
cause each distribution has many duplicate values, the median appears multiple times in each 
sample. As a result, each median can be restated as the number of "ticks" for the Java nanoTime 
clock by dividing the time value by 466.5. For example, 138083 / 466.5 = 296.0 (rounded). 

Table 2: Sort-time Distribution - Median 
Size Select Insert Shell Merge Quick 

100 14928  6064   6064   9797   6997  

200 50381  20992   13995   21926   14928  

300 104029  45250   22859   34987   23791  

400 177735  78371   32655   49449   32655  

500 268702  120823   42918   62511   41984  

600 378796  172604   53648   79771   51315  

700 507084  233715   64377   93300   60645  

800 655430  303690   75572   108227   70441  

900 821037  382995   86768   121756   80237  

1000 1003903  470696   97498   138083   90034  
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If the size variable is N, then each column can be correlated with N2 and NlogN to estimate the 
order-of-growth of the algorithm. For selection sort and insertion sort, the correlation with N2 is 
0.99988 and 0.99998, respectively. This matches the known order-of-growth for these algorithms. 

Selection sort and insertion sort have the same order-of-growth, but not the same execution speed. 
Order-of-growth ignores constants. Our data indicate that insertion sort takes less than half the 
time as selection sort. This fact is ignored by the usual order-of-growth models. 

Over our limited range of array sizes, the remaining three algorithms correlate higher than 0.999 
with NlogN. This is consistent with the order-of-growth for merge sort and quick sort. The 
growth rate for shell sort depends on the initial gap sequence used in the algorithm. 

From the data in Table 2, shell sort and quick sort are approximately the same speed until the ar-
ray size reaches 500. Beyond that point, quick sort becomes slightly faster. Both quick sort and 
shell sort are noticeably faster than merge sort for all array sizes. 

Outliers and Skewness 
The measure of central tendency provided by the median in our data is limited in precision by the 
size of the nanoTime clock increment. Means have a smaller standard error than medians, but the 
accuracy of the mean for estimating the center of the "normal" values is substantially diminished 
by outliers. 

To see the effect of outliers on sample means, we present a special statistical summary in Table 3. 
In this table, we show the largest execution time for each sorting algorithm (across its 10 array 
size distributions).  

Table 3: Sort-time Distribution - Outlier Effects 

 Select Insert Shell Merge Quick 

Size 400 800 800 100 800 

Max 6645264 3801492 4897762 4932750 2207002 

Mean 179409 305492 77009 11201 71630 

Median 177735 303690 75572 9797 70441 

SkewDiff 1674 1802 1437 1404 1189 

SkewPct 0.94 0.59 1.90 14.33 1.69 
 

The largest outlier for selection sort is 6645264 for array size 400. The mean of this distribution is 
179409, and its median is 177735. The skewness difference (mean minus median) provides a sim-
ple measure of skewness. Here the value is 1674. The contribution to the mean from this largest 
single outlier is 665 (outlier divided by sample size). Without the outlier, the mean would be 
178744, and the skewness difference would be reduced to 1009. 

The skewness percent (100 * skewness difference divided by median) states the amount of skew-
ness as a percentage of the median. The skewness difference of 1674 represents 0.94% of the me-
dian value of 17735. With the outlier removed, the skewness percent drops to 0.57%. 

Almost all sample distributions have multiple outliers. If the outliers are removed, we expect the 
mean to be closer to the median. The skewness difference would be near 0, and the associated 
skewness percent would be 0.0%. 
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For the original (untrimmed) sample data across sorting algorithm and array size, the largest 
skewness difference was 6822. This was for merge sort with array size 1000. The largest skew-
ness percent was a hefty 18.01% for merge sort with array size 300. 

To remove outliers, we initially trimmed each sample by removing the top and bottom 1% of the 
sort-times. In doing so, the largest skewness difference dropped to 1953, again for merge sort 
with array size 1000. The largest skewness percent decreased significantly to 1.81% for merge 
sort with array size 100. 

When we removed the top and bottom 5% of each sample, the largest skewness difference was 
549 for selection sort on arrays of size 900. Skewness difference for the other sorting algorithms 
was always under 250. All but two of the differences were below the resolution of the nanoTime 
clock. The largest skewness percent was 1.38% for merge sort with array size 100. With 5% 
trimming, skewness was essentially eliminated for all sort algorithms and array sizes.  

Note that the median remains unchanged for all trimmed samples because we removed the same 
number of values from both ends of the sort-time distribution. 

Trimmed Mean 
In our methodology, we trimmed enough values from each distribution so that the trimmed mean 
approached the median, thus reducing skewness. For most of our sample distributions, removing 
the top and bottom 1% was sufficient to remove the effect of outliers. Merge sort was an excep-
tion. The 5% trimmed (top and bottom) means are presented in Table 4.  

Table 4: Sort-time Distribution - 95/05Trimmed Mean 

Size Select Insert Shell Merge Quick 

100 14760  5978   5955   9932   6869  

200 50199  20983   14161   22076   14993  

300 104119  45112   23061   34957   23635  

400 177519  78312   32764   49545   32624  

500 268548  121001   43104   62719   41831  

600 378619  172852   53798   79828   51186  

700 507313  233798   64423   93390   60723  

800 655875  303735   75363   108118   70298  

900 821586  383141   86614   121676   80032  

1000 1004434  470823   97731   138228   89890  
 

These 5% trimmed means are nearly identical to the corresponding medians shown in Table 2. 
Correlations between trimmed and untrimmed means is above 0.999 for each algorithm. Trim-
ming has a much greater effect on measures of dispersion. 

Sort-time Dispersion 
The execution time statistics in the tables result from random sampling of an algorithm. With 
means, the statistics are relatively stable, even in the presence of a moderate number of outliers. 
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The same claim cannot be made for measures of dispersion. Statistics that measure dispersion  
can be greatly distorted when even a few outliers appear in the sample.  

The most common measure of dispersion for a distribution is the standard deviation. However, 
the standard deviation is very sensitive to outliers. To illustrate how volatile standard deviations 
can be when outliers are present, in Figure 1 we display standard deviations calculated from full 
samples of 10000 sort-times.     

In Figure 1, it is impossible to detect an explainable pattern relating the standard deviation to ar-
ray size for any of the algorithms. However, with judicious trimming of outliers from the sam-
ples, simple patterns do appear, at the cost of losing some "normal" variation. 
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Figure 1: Sort-time Distribution - Standard Deviation 

Trimmed Standard Deviation 
If we trim the top and bottom 1% of each distribution, the basic standard deviation patterns for 
the sorting algorithms are shown in Figure 2. 
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Figure 2: Sort-time Distribution -  99/01 Trimmed Standard Deviation 
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For each algorithm, the trimmed standard deviation increases steadily with the sample size. 
Merge sort has a break in the pattern when the array size reaches 900. At this point, the standard 
deviation increases sharply. One possible reason for this abrupt change is that merge sort requires 
extra memory. Java's runtime garbage collection eventually has to do much more work, which 
increases the number of outliers. 

When we trim the top and bottom 5% of each distribution, a stable pattern for standard deviations 
emerges for all sort algorithms and array sizes. The values of the 95/05 trimmed standard devia-
tions are listed in Table 5. The choice of 5% limits is consistent with the previous trimming of 
means. In practice, 5% trimming might not always be sufficient to stabilize trends in the standard 
deviation. 

Table 5: Sort-time Distribution - 95/05 Trimmed Standard Deviation 

Size Select Insert Shell Merge Quick 

100 267  317   248   333   282  

200 426  749   259   400   318  

300 619  1,349   338   419   409  

400 799  2,010   404   520   493  

500 943  2,862   436   491   551  

600 1174  3,720   585   663   621  

700 1684  4,597   627   667   720  

800 2329  5,748   702   733   765  

900 2623  6,886   773   899   842  

1000 3328  7,767   850   1,080   947  

 

For the trimmed standard deviations in Table 5, the pattern in each column shows an increase in 
dispersion as the array size increases. The greatest rate of increase in dispersion is for insertion 
sort. The smallest rates of increase are for shell sort and quicksort. 

The relative magnitude of the standard deviations can be partially explained by the nature of the 
sorting algorithms. In selection sort, the number of comparison operations is fairly constant, re-
gardless of the values in the array. The insertion sort algorithm can terminate early when the ini-
tial data is partially sorted. Thus, selection sort has less variation than insertion sort. The other 
algorithms have smaller variation because their implementations are faster and leave less time to 
vary. 

Coefficient of Variation 
Another way to compare dispersion among similar distributions is by measuring relative varia-
tion. To do this, we divide the standard deviation by the corresponding mean. The statistic is 
called the coefficient of variation. To make the statistic easier to interpret, we multiply it by 100, 
so that it expresses the standard deviation as a percentage of the mean. 

The coefficient of variation for our sorting algorithms and array sizes are displayed in Figure 3. 
Means and standard deviations have been trimmed top and bottom at 5% levels. 



McMaster, Sambasivam, Rague, & Wolthuis 

279 

 

-

1.00

2.00

3.00

4.00

5.00

6.00

100 200 300 400 500 600 700 800 900 1000

Array Size

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n

Select Insert Shell Merge Quick
 

Figure 3: Sort-time Distribution -  95/05 Coefficient of Variation 
 

Selection sort has the smallest values for the coefficient of variation. The selection sort mean exe-
cution times are more than twice as large as the times for insertion sort, and selection sort has 
smaller standard deviations. The combined result is less relative variation for selection sort than 
insertion sort. 

The other three algorithms have relatively small standard deviations and means, so their ratios fall 
in between the high and low values of insertion sort and selection sort. One property revealed by 
Figure 3 is that, for all five algorithms, the coefficient of variation decreases as the array size in-
creases. It is tempting to conjecture that the ratios approach a lower bound for large arrays. 

Interquartile Range 
Another measure of dispersion is the range statistic, which is the difference between the highest 
and lowest scores in the sample. The range statistic is even more susceptible to outliers than is the 
standard deviation. 

Nevertheless, a trimmed range can provide a useful measure of dispersion. We trimmed the top 
and bottom 25% from each distribution and calculated the interquartile range (IQR). This range 
for the middle 50% of the sort-times is not affected by outliers. In Table 6, we list the IQR statis-
tics in nanoseconds for each algorithm and array size combination in our design. 

For small array sizes, the values of IQR are almost identical for all sort algorithms. This is pri-
marily due to the coarseness of the nanoTime clock and the large number of repeat values in the 
sort-time distributions. Insertion sort shows the largest IQR growth over the range of array sizes, 
followed by selection sort. The growth patterns for IQR are roughly similar to the patterns for 
trimmed standard deviations. 

We calculated other range statistics by trimming the top and bottom 10% (and 5%) of the sam-
ples, giving the ranges for the middle 80% (and 90%) of the sort-times. The purpose of these al-
ternative range statistics was to describe dispersion for a larger percentage of each sample. How-
ever, the volatility of the range statistic made the pattern of dispersion versus array size approach 
the irregular variation of untrimmed standard deviations. 
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Table 6: Sort-time Distribution - Interquartile Range 

Size Select Insert Shell Merge Quick 

100  466   467   467   467   1  

200  467   933   466   467   466  

300  933   2332   467   933   467  

400  1399   3265   467   932   933  

500  1400   4665   468   932   933  

600  1866   6065   933   933   933  

700  1867   7465   933   933   934  

800  2333   9331   1399   933   1399  

900  2799   11662   1399   933   1399  

1000  2799   13062   1399   1399   1400  

 

Unexplained Variation 
The most puzzling aspect of our performance measurement was the frequent appearance of large 
positive outliers. Outliers can have multiple causes. In our study we have a "prime suspect"--the 
Java runtime environment. This software performs various actions to improve performance of 
running programs. The feature most relevant, after a "warm-up" period, seems to be Java's auto-
matic garbage collection. At various points during the execution of a program, the Java runtime 
chooses to free memory that was previously allocated but is currently unreferenced. Each meas-
ured execution time might include an unknown amount of memory reclamation time in addition 
to algorithm processing time. 

The simple solution for running benchmark programs with Java would be to turn off automatic 
garbage collection. That is not a Java runtime option. Our alternative solution is to remove outli-
ers from the sort-time data. Sort-time statistics are affected most when garbage collection takes a 
very long time. We treat all suspiciously large execution times as outliers, regardless of cause.  

Conclusions 
The primary purpose of this study was to analyze variation in the performance of sorting algo-
rithms written in Java. We were interested in the distribution of execution times when an algo-
rithm is run multiple times for a given problem size. 

Our experiment was performed for five sorting algorithms: selection sort, insertion sort, shell sort, 
merge sort, and quicksort. For each algorithm, a range of array sizes were examined. Some of the 
reported results include: 

1. Execution time distributions were discrete, with relatively few distinct values. This was pri
 marily due  to the limited resolution of the Java nanoTime method. 

2. Distributions were positively skewed and included a few large outliers. Samples had to be 
 trimmed before calculating statistics. Trimming the top and bottom 5% of each sample 
 eliminated skewness for all sorting algorithms and array sizes. 
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3. For all sorting algorithms, the mean sort-time increased as the array size increased. The dif
 ferent observed rates of increase were consistent with known order-of-growth models. 

4. For each algorithm, the trimmed standard deviation of sort-times increased with array size. 
 The algorithms differed in the amount of variation and the pattern of growth. The patterns can 
 be interpreted in terms of the internal structure of each algorithm. 

5. For each algorithm, the standard deviation grew at a slower rate than the mean. This was 
 demonstrated by a decreasing coefficient of variation as the array size increased. 

Several conclusions can be drawn from our results. First, sort-time variation is an important fac-
tor in systems with real-time constraints. Second, sort-time variation is less important for large 
arrays because the amount of variation is small relative to the mean. Third, beware of outliers, 
especially when using the Java runtime environment to run benchmarks. Including a suitable 
warm-up period and employing effective trimming strategies on sample execution times can less-
en the influence of outliers. 

Future Research 
Good research generates more questions than it answers. This is true for this study. Our planned 
future research activities include:  

1. Examine sort-time variation for larger array sizes to see if distribution patterns persist. 

2. Use our research approach on algorithms written in other programming languages, especially 
 with fully-compiled programs. An obvious next language is C++. However, C++ provides 
 different timer functions in alternative operating  environments. 

3. Examine the variation in execution times when the data is non-random or constant. In particu-
 lar,  measure the variation when best-case and worst-case examples are run repeatedly. 

4. Study the effect of rounding errors introduced by the coarseness of Java's nanoTime method. 
 This research would examine how Oracle utilizes "the most precise available system timer" in 
 different hardware and software environments. 
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	Abstract
	Algorithm performance coverage in textbooks emphasizes patterns of growth in execution times, relative to the size of the problem. Variability in execution times for a given problem size is usually ignored. In this research study, our primary focus is on the empirical distribution of execution times for a given algorithm and problem size. We examine CPU times for Java implementations of five sorting algorithms for arrays: selection sort, insertion sort, shell sort, merge sort, and quicksort. We measure variation in running times for these algorithms and describe how the sort-time distributions change as the problem size increases. Using our research methodology, we compare the relative stability of performance for the different sorting algorithms.
	Keywords: algorithm, sorting, performance, distribution, variation, Java.
	Introduction
	Sources of Variation
	Research Plan

	 Courses in data structures and algorithms are the meat and potatoes of Computer Science programs. Data Structures textbooks (Kaufman & Wolfgang, 2010; Lafore, 2003; Main & Savich, 2010) emphasize how to implement algorithms to support complex data structures such as stacks, queues, search trees, and graphs. Different algorithms are required when arrays vs. linked lists are used to represent data structures. An introduction to order-of-growth concepts relates problem size to execution time for various algorithms.
	In Analysis of Algorithms textbooks (Cormen, et al., 2009; Kleinberg & Tardos, 2006; Aho, Ullman & Hopcroft, 1983), explanations of algorithm performance place greater emphasis on mathematical reasoning. This is also true of the early Algorithms books by Aho (1974) and Knuth (1998). 
	Freq
	A formal examination of algorithm efficiency based on resources required (primarily CPU time) looks at best-case, worst-case, and average-case situations. Much of the discussion centers on worst-case analysis because the mathematical arguments are simpler, and the results have more pedagogical and practical relevance. Order-of-growth is simplified by ignoring constants and lower order terms, so average-case results are often proportional to the worst-case. The study of variation is mostly restricted to comparisons of best-case and worst-case results with average-case.
	Sedgewick & Wayne (2011) present a mathematical analysis of algorithms, and then briefly relate their mathematical models to empirical results. They give several algorithms for finding three numbers that sum to zero (from a large input file). They ran each algorithm once for each input file, assuming that the only source of variation would be the actual data. In some of our tests, we experienced situations where repeated execution of the same algorithm on the same (non-randomized) data resulted in different execution times, indicating the existence of other sources of variation.
	Algorithm analysis in some textbooks briefly mentions that running times can vary for different inputs, but the books include little discussion of the distribution of execution times for repeated tests. Variation includes not only dispersion (how spread out the scores are from a central value), but also skewness (how unbalanced the scores are at each end of the distribution). 
	It is difficult to find individual research efforts on sorting algorithms that focus on variation. An interesting study by Musselman (2007) examined robustness as a measure of algorithm performance. An earlier study (Helman, Bader & JaJa, 1998) performed an experiment on a randomized parallel sorting algorithm.
	Variation can be more important than averages or even generalized worst-case analysis when consistency and dependability of execution time is a requirement. This is common in systems having strict time constraints on operations, such as manufacturing systems, real-time control systems, and embedded systems.
	There are many system features which can affect algorithm performance. In this research, we use CPU time as our primary measure of performance. A layered list of sources of variation is outlined below.
	1. Computer hardware components: (a) CPU clock speed, pipelines, number of cores, internal  caches,  and (b) memory architecture, amount of RAM, external caches.
	2. Operating system features: (a) process scheduling algorithms, multi-tasking, parallel process ing, and (b)  memory allocation algorithms, virtual memory.
	3. For Java programs: (a) JIT compiler optimizations, (b) run-time options and behavior, and (c)  memory management, including automatic garbage collection (Goetz, 2004; Boyer, 2008;  Wicht, 2011).
	4. Application program: (a) choice of algorithm, and how it is implemented, (b) size of problem,  (c)  amount of memory required by the algorithm, and (d) data type, data source, and data  structure.
	The primary objective of this research is to examine how algorithm execution time distributions depend on problem size, randomness of data, and other factors. We limit our attention to sorting algorithms for arrays, including selection sort, insertion sort, shell sort, merge sort and quicksort. 
	For a range of array sizes, we ran a Java program that repeatedly filled an array with random integers, sorted the data using one of the sorting algorithms, and measured the elapsed time. The program then output summary statistics to describe the distribution of sort-times.
	To isolate algorithm performance variation from the hardware, operating system, and Java layers, we ran all final results on a single computer. This computer had an Intel Core2 Duo CPU, Windows 7 operating system, and Version 7 of the Java compiler and run-time.
	In our research environment, we assumed that algorithm execution times would depend almost entirely on:
	1. the sorting algorithm
	2. the size and data type of the array
	3. the randomness of the generated data
	However, this assumption was not supported by our tests. Unexpected sources of variation in execution times were encountered throughout our research study. These surprising patterns required procedures for generating and analyzing performance data that are relatively immune to outlier effects.
	In the next section, we carefully examine a typical sort-time distribution that guided our research process. Our results and conclusions are summarized in later sections of the paper.
	Simulation Methodology
	Distribution Characteristics
	Median
	Outliers and Skewness
	Trimmed Mean

	For a given hardware/software environment, sorting algorithm, and array size, our methodology assumes that the distribution of execution times is a mixture of two components:
	1. normal variation due to randomness of the data.
	2. other sources of variation that may result in outliers. 
	Our methodology attempts to extract the normal variation component from the combined distribution. This requires being able to detect possible outliers and remove them from the sample.
	Our sort-time samples often contain a relatively large number of outliers. Therefore, we do not perform statistical tests to detect individual outliers. Instead, we use two general approaches for removing outliers:
	1. Set limits on the perceived "normal" data, and trim off values outside these limits. In  particular, we  examine trimmed means and trimmed standard deviations. One important research decision was selecting trimming limits that give consistent results for the type of data we were collecting.
	2. Use non-parametric statistics that are less susceptible to outliers, since no underlying  distribution is assumed. Examples of such statistics are the median, the interquartile range (IQR), and various centile ranges.
	Our performance analysis methodology was developed first for the selection sort algorithm. Samples of execution times for selection sort were obtained for a range of array sizes.  
	Our Java data generation program, written initially for selection sort, performs the following steps:
	1. Input the array size N and number of algorithm repetitions R.
	2. Perform a "warm-up" period involving several repetitions of the sorting algorithm. In each  warm-up repetition:
	a. Fill the data array with random integers.
	b. Sort the array, but ignore the execution time. This prevents early outliers from appearing    in our statistical summary. These outliers are due mainly to JIT compiler optimizations    and initial loading of run-time classes. After some experimentation, we found that a     warm-up period of 50 repetitions was a conservative design choice for our study. 
	3. Run an additional R repetitions. In these repetitions:
	a. Fill the data array with random integers.
	b. Sort the array, and place the execution time (measured using the Java nanoTime function)   in a SortTime array. These values will include outliers that result from Java's automatic    garbage collection.
	3. Calculate various statistical summaries of the R execution times in the SortTime array. Dur ing our  early analyses, this section of our Java simulation program was enhanced as addi tional statistics were included.
	Preliminary Analysis
	While data were collected for the selection sort algorithm, we evaluated how well different statistics summarized essential features of the sort-time distributions. When we obtained consistent results for selection sort, we adapted the methodology to the remaining sorting algorithms. 
	The following selection sort execution time distribution demonstrates features that influenced our research methodology. In this case, the array size is 100, and the number of repetitions is 1000. The total number of repetitions was 1050, but the first 50 "warm-up" values were discarded. A frequency distribution of the retained 1000 sort-times for our Java benchmark program is shown in Table 1.
	Several interesting and suggestive features appear in the distribution.
	1. The sample of sort-times contains many repeat values. Only 16 distinct values appear in the  1000 repetitions of the sorting algorithm.
	2. Most of the high frequency sort-times appear in "pairs", differing by 1 nanosecond. This is  probably due to rounding within the Java nanoTime function, which returns an integer.
	3. If we consider pairs differing by 1 as a single value, 969 (975 - 6) of the 1000 values in the  distribution appear in 3 middle-range sort-times.
	4. Considering pairs differing by 1 as a single value, the difference between consecutive pairs is  between 466 and 467 (approximately 466.5). We can interpret this difference as the       resolution of the clock increment for the nanoTime method. 
	Oracle's Java documentation (2014) states that the nanoTime method "returns the current value of the most precise available system timer, in nanoseconds." Apparently, the recorded sort-times on our test computer are accurate to about 466.5 nanoseconds. Note that 30 clock increments elapse for the smallest sort-time 13995. In tests on other computers, we observed similar results, but the size of the clock increment was hardware dependent.
	5. The mean of the sort-times (17664) is well above the median (14928), which suggests strong  positive skewness.
	6. The standard deviation of 80458 is greatly inflated by outliers.
	7. The largest value (2558275) is clearly an outlier. Based on relative frequency, all values  above 15861could be considered as outliers.
	Table 1: Selection Sort CPU Time Distribution (ns)Array size N = 100,  Repetitions R = 1000
	Increment
	CumFreq
	SortTime
	---
	6
	6
	13995
	466
	113
	107
	14461
	1
	215
	102
	14462
	465
	248
	33
	14927
	1
	790
	542
	14928
	466
	898
	108
	15394
	1
	975
	77
	15395
	466
	991
	16
	15861
	12128
	993
	2
	27989
	4666
	994
	1
	32655
	932
	995
	1
	33587
	2800
	996
	1
	36387
	1400
	997
	1
	37787
	19126
	998
	1
	56913
	3731
	999
	1
	60644
	2497631
	1000
	1
	2558275
	In repeated testing, we found that sort-times for the first few executions of an algorithm almost always take longer than most later executions. The first five sort-times generated during the warm-up period in the above example were 111027, 114292, 110094, 15861, and 15395. The sort-times then continue within a lower range, although larger values appear occasionally. Because of this irregular initial runtime behavior, our testing methodology always skips the first 50 sort-time values. Later outlier values (such as 2558275) are removed during statistical analysis by "trimming" the data.
	The most important questions arising from our preliminary analysis are: "What characteristics of the sort-time distributions describe the nature of performance variation?" and "What statistics accurately summarize variation without being distorted by outliers?"
	Three characteristics of our distributions are of particular interest.
	1. central tendency: Where is the "center" of the distribution? Outliers can distort the mean but  not the median.
	2. dispersion: How widely spread are the values from the central value? For "normal" variation,  dispersion should not be inflated by outliers.
	3. skewness: How "unbalanced" is the distribution on both sides of the central value? Skewness  can be exaggerated by outliers.
	Sort-time Central Tendency
	In this section, we analyze the central tendency of execution time distributions for the five sorting algorithms: selection sort, insertion sort, shell sort, merge sort, and quick sort. For each algorithm, we examine ten array sizes: 100, 200, 300, ..., 1000. We also examine the effect of outliers on central tendency. We include a brief discussion of skewness here because our measures of skewness compare the mean to the median.
	For each sorting algorithm and array size, we want to estimate the center of the distribution of normal sort-times, which does not include outliers. Our main statistics for measuring. central tendency are the median and the trimmed mean.
	The median is the measure of central tendency least affected by outliers. The usual formula for the median is to average the two middle scores when the sample size is even. To simplify our code, we calculated the median as the lower of the two middle values for even sample sizes. This change had minimal effect on the results, since the sample sizes during our data collection were very large (and the samples contained many duplicate values).
	In Table 2, we present the median for each sorting algorithm and array size. The medians are from samples of R = 10000 sort-times generated by our Java program. As we mentioned earlier, to avoid initial outliers, we ran the algorithm 50 times during a "warm-up" period before recording the R execution times.
	The sort-times are in nanoseconds, but the times are not accurate to the nearest nanosecond. Because each distribution has many duplicate values, the median appears multiple times in each sample. As a result, each median can be restated as the number of "ticks" for the Java nanoTime clock by dividing the time value by 466.5. For example, 138083 / 466.5 = 296.0 (rounded).
	Table 2: Sort-time Distribution - Median
	Quick
	Merge
	Shell
	Insert
	Select
	Size
	 6997 
	 9797 
	 6064 
	 6064 
	14928
	100
	 14928 
	 21926 
	 13995 
	 20992 
	50381
	200
	 23791 
	 34987 
	 22859 
	 45250 
	104029
	300
	 32655 
	 49449 
	 32655 
	 78371 
	177735
	400
	 41984 
	 62511 
	 42918 
	 120823 
	268702
	500
	 51315 
	 79771 
	 53648 
	 172604 
	378796
	600
	 60645 
	 93300 
	 64377 
	 233715 
	507084
	700
	 70441 
	 108227 
	 75572 
	 303690 
	655430
	800
	 80237 
	 121756 
	 86768 
	 382995 
	821037
	900
	 90034 
	 138083 
	 97498 
	 470696 
	1003903
	1000
	If the size variable is N, then each column can be correlated with N2 and NlogN to estimate the order-of-growth of the algorithm. For selection sort and insertion sort, the correlation with N2 is 0.99988 and 0.99998, respectively. This matches the known order-of-growth for these algorithms.
	Selection sort and insertion sort have the same order-of-growth, but not the same execution speed. Order-of-growth ignores constants. Our data indicate that insertion sort takes less than half the time as selection sort. This fact is ignored by the usual order-of-growth models.
	Over our limited range of array sizes, the remaining three algorithms correlate higher than 0.999 with NlogN. This is consistent with the order-of-growth for merge sort and quick sort. The growth rate for shell sort depends on the initial gap sequence used in the algorithm.
	From the data in Table 2, shell sort and quick sort are approximately the same speed until the array size reaches 500. Beyond that point, quick sort becomes slightly faster. Both quick sort and shell sort are noticeably faster than merge sort for all array sizes.
	The measure of central tendency provided by the median in our data is limited in precision by the size of the nanoTime clock increment. Means have a smaller standard error than medians, but the accuracy of the mean for estimating the center of the "normal" values is substantially diminished by outliers.
	To see the effect of outliers on sample means, we present a special statistical summary in Table 3. In this table, we show the largest execution time for each sorting algorithm (across its 10 array size distributions). 
	Table 3: Sort-time Distribution - Outlier Effects
	Quick
	Merge
	Shell
	Insert
	Select
	800
	100
	800
	800
	400
	Size
	2207002
	4932750
	4897762
	3801492
	6645264
	Max
	71630
	11201
	77009
	305492
	179409
	Mean
	70441
	9797
	75572
	303690
	177735
	Median
	1189
	1404
	1437
	1802
	1674
	SkewDiff
	1.69
	14.33
	1.90
	0.59
	0.94
	SkewPct
	The largest outlier for selection sort is 6645264 for array size 400. The mean of this distribution is 179409, and its median is 177735. The skewness difference (mean minus median) provides a simple measure of skewness. Here the value is 1674. The contribution to the mean from this largest single outlier is 665 (outlier divided by sample size). Without the outlier, the mean would be 178744, and the skewness difference would be reduced to 1009.
	The skewness percent (100 * skewness difference divided by median) states the amount of skewness as a percentage of the median. The skewness difference of 1674 represents 0.94% of the median value of 17735. With the outlier removed, the skewness percent drops to 0.57%.
	Almost all sample distributions have multiple outliers. If the outliers are removed, we expect the mean to be closer to the median. The skewness difference would be near 0, and the associated skewness percent would be 0.0%.
	For the original (untrimmed) sample data across sorting algorithm and array size, the largest skewness difference was 6822. This was for merge sort with array size 1000. The largest skewness percent was a hefty 18.01% for merge sort with array size 300.
	To remove outliers, we initially trimmed each sample by removing the top and bottom 1% of the sort-times. In doing so, the largest skewness difference dropped to 1953, again for merge sort with array size 1000. The largest skewness percent decreased significantly to 1.81% for merge sort with array size 100.
	When we removed the top and bottom 5% of each sample, the largest skewness difference was 549 for selection sort on arrays of size 900. Skewness difference for the other sorting algorithms was always under 250. All but two of the differences were below the resolution of the nanoTime clock. The largest skewness percent was 1.38% for merge sort with array size 100. With 5% trimming, skewness was essentially eliminated for all sort algorithms and array sizes. 
	Note that the median remains unchanged for all trimmed samples because we removed the same number of values from both ends of the sort-time distribution.
	In our methodology, we trimmed enough values from each distribution so that the trimmed mean approached the median, thus reducing skewness. For most of our sample distributions, removing the top and bottom 1% was sufficient to remove the effect of outliers. Merge sort was an exception. The 5% trimmed (top and bottom) means are presented in Table 4. 
	Table 4: Sort-time Distribution - 95/05Trimmed Mean
	Quick
	Merge
	Shell
	Insert
	Select
	Size
	 6869 
	 9932 
	 5955 
	 5978 
	14760
	100
	 14993 
	 22076 
	 14161 
	 20983 
	50199
	200
	 23635 
	 34957 
	 23061 
	 45112 
	104119
	300
	 32624 
	 49545 
	 32764 
	 78312 
	177519
	400
	 41831 
	 62719 
	 43104 
	 121001 
	268548
	500
	 51186 
	 79828 
	 53798 
	 172852 
	378619
	600
	 60723 
	 93390 
	 64423 
	 233798 
	507313
	700
	 70298 
	 108118 
	 75363 
	 303735 
	655875
	800
	 80032 
	 121676 
	 86614 
	 383141 
	821586
	900
	 89890 
	 138228 
	 97731 
	 470823 
	1004434
	1000
	These 5% trimmed means are nearly identical to the corresponding medians shown in Table 2. Correlations between trimmed and untrimmed means is above 0.999 for each algorithm. Trimming has a much greater effect on measures of dispersion.
	Sort-time Dispersion
	Trimmed Standard Deviation
	Coefficient of Variation
	Interquartile Range
	Unexplained Variation

	The execution time statistics in the tables result from random sampling of an algorithm. With means, the statistics are relatively stable, even in the presence of a moderate number of outliers. The same claim cannot be made for measures of dispersion. Statistics that measure dispersion  can be greatly distorted when even a few outliers appear in the sample. 
	The most common measure of dispersion for a distribution is the standard deviation. However, the standard deviation is very sensitive to outliers. To illustrate how volatile standard deviations can be when outliers are present, in Figure 1 we display standard deviations calculated from full samples of 10000 sort-times.    
	In Figure 1, it is impossible to detect an explainable pattern relating the standard deviation to array size for any of the algorithms. However, with judicious trimming of outliers from the samples, simple patterns do appear, at the cost of losing some "normal" variation.
	Figure 1: Sort-time Distribution - Standard Deviation
	If we trim the top and bottom 1% of each distribution, the basic standard deviation patterns for the sorting algorithms are shown in Figure 2.
	Figure 2: Sort-time Distribution -  99/01 Trimmed Standard Deviation
	For each algorithm, the trimmed standard deviation increases steadily with the sample size. Merge sort has a break in the pattern when the array size reaches 900. At this point, the standard deviation increases sharply. One possible reason for this abrupt change is that merge sort requires extra memory. Java's runtime garbage collection eventually has to do much more work, which increases the number of outliers.
	When we trim the top and bottom 5% of each distribution, a stable pattern for standard deviations emerges for all sort algorithms and array sizes. The values of the 95/05 trimmed standard deviations are listed in Table 5. The choice of 5% limits is consistent with the previous trimming of means. In practice, 5% trimming might not always be sufficient to stabilize trends in the standard deviation.
	Table 5: Sort-time Distribution - 95/05 Trimmed Standard Deviation
	Quick
	Merge
	Shell
	Insert
	Select
	Size
	 282 
	 333 
	 248 
	 317 
	267
	100
	 318 
	 400 
	 259 
	 749 
	426
	200
	 409 
	 419 
	 338 
	 1,349 
	619
	300
	 493 
	 520 
	 404 
	 2,010 
	799
	400
	 551 
	 491 
	 436 
	 2,862 
	943
	500
	 621 
	 663 
	 585 
	 3,720 
	1174
	600
	 720 
	 667 
	 627 
	 4,597 
	1684
	700
	 765 
	 733 
	 702 
	 5,748 
	2329
	800
	 842 
	 899 
	 773 
	 6,886 
	2623
	900
	 947 
	 1,080 
	 850 
	 7,767 
	3328
	1000
	For the trimmed standard deviations in Table 5, the pattern in each column shows an increase in dispersion as the array size increases. The greatest rate of increase in dispersion is for insertion sort. The smallest rates of increase are for shell sort and quicksort.
	The relative magnitude of the standard deviations can be partially explained by the nature of the sorting algorithms. In selection sort, the number of comparison operations is fairly constant, regardless of the values in the array. The insertion sort algorithm can terminate early when the initial data is partially sorted. Thus, selection sort has less variation than insertion sort. The other algorithms have smaller variation because their implementations are faster and leave less time to vary.
	Another way to compare dispersion among similar distributions is by measuring relative variation. To do this, we divide the standard deviation by the corresponding mean. The statistic is called the coefficient of variation. To make the statistic easier to interpret, we multiply it by 100, so that it expresses the standard deviation as a percentage of the mean.
	The coefficient of variation for our sorting algorithms and array sizes are displayed in Figure 3. Means and standard deviations have been trimmed top and bottom at 5% levels.
	Figure 3: Sort-time Distribution -  95/05 Coefficient of Variation
	Selection sort has the smallest values for the coefficient of variation. The selection sort mean execution times are more than twice as large as the times for insertion sort, and selection sort has smaller standard deviations. The combined result is less relative variation for selection sort than insertion sort.
	The other three algorithms have relatively small standard deviations and means, so their ratios fall in between the high and low values of insertion sort and selection sort. One property revealed by Figure 3 is that, for all five algorithms, the coefficient of variation decreases as the array size increases. It is tempting to conjecture that the ratios approach a lower bound for large arrays.
	Another measure of dispersion is the range statistic, which is the difference between the highest and lowest scores in the sample. The range statistic is even more susceptible to outliers than is the standard deviation.
	Nevertheless, a trimmed range can provide a useful measure of dispersion. We trimmed the top and bottom 25% from each distribution and calculated the interquartile range (IQR). This range for the middle 50% of the sort-times is not affected by outliers. In Table 6, we list the IQR statistics in nanoseconds for each algorithm and array size combination in our design.
	For small array sizes, the values of IQR are almost identical for all sort algorithms. This is primarily due to the coarseness of the nanoTime clock and the large number of repeat values in the sort-time distributions. Insertion sort shows the largest IQR growth over the range of array sizes, followed by selection sort. The growth patterns for IQR are roughly similar to the patterns for trimmed standard deviations.
	We calculated other range statistics by trimming the top and bottom 10% (and 5%) of the samples, giving the ranges for the middle 80% (and 90%) of the sort-times. The purpose of these alternative range statistics was to describe dispersion for a larger percentage of each sample. However, the volatility of the range statistic made the pattern of dispersion versus array size approach the irregular variation of untrimmed standard deviations.
	Table 6: Sort-time Distribution - Interquartile Range
	Quick
	Merge
	Shell
	Insert
	Select
	Size
	 1 
	 467 
	 467 
	 467 
	 466 
	100
	 466 
	 467 
	 466 
	 933 
	 467 
	200
	 467 
	 933 
	 467 
	 2332 
	 933 
	300
	 933 
	 932 
	 467 
	 3265 
	 1399 
	400
	 933 
	 932 
	 468 
	 4665 
	 1400 
	500
	 933 
	 933 
	 933 
	 6065 
	 1866 
	600
	 934 
	 933 
	 933 
	 7465 
	 1867 
	700
	 1399 
	 933 
	 1399 
	 9331 
	 2333 
	800
	 1399 
	 933 
	 1399 
	 11662 
	 2799 
	900
	 1400 
	 1399 
	 1399 
	 13062 
	 2799 
	1000
	The most puzzling aspect of our performance measurement was the frequent appearance of large positive outliers. Outliers can have multiple causes. In our study we have a "prime suspect"--the Java runtime environment. This software performs various actions to improve performance of running programs. The feature most relevant, after a "warm-up" period, seems to be Java's automatic garbage collection. At various points during the execution of a program, the Java runtime chooses to free memory that was previously allocated but is currently unreferenced. Each measured execution time might include an unknown amount of memory reclamation time in addition to algorithm processing time.
	The simple solution for running benchmark programs with Java would be to turn off automatic garbage collection. That is not a Java runtime option. Our alternative solution is to remove outliers from the sort-time data. Sort-time statistics are affected most when garbage collection takes a very long time. We treat all suspiciously large execution times as outliers, regardless of cause. 
	Conclusions
	Future Research

	The primary purpose of this study was to analyze variation in the performance of sorting algorithms written in Java. We were interested in the distribution of execution times when an algorithm is run multiple times for a given problem size.
	Our experiment was performed for five sorting algorithms: selection sort, insertion sort, shell sort, merge sort, and quicksort. For each algorithm, a range of array sizes were examined. Some of the reported results include:
	1. Execution time distributions were discrete, with relatively few distinct values. This was pri marily due  to the limited resolution of the Java nanoTime method.
	2. Distributions were positively skewed and included a few large outliers. Samples had to be  trimmed before calculating statistics. Trimming the top and bottom 5% of each sample  eliminated skewness for all sorting algorithms and array sizes.
	3. For all sorting algorithms, the mean sort-time increased as the array size increased. The dif ferent observed rates of increase were consistent with known order-of-growth models.
	4. For each algorithm, the trimmed standard deviation of sort-times increased with array size.  The algorithms differed in the amount of variation and the pattern of growth. The patterns can  be interpreted in terms of the internal structure of each algorithm.
	5. For each algorithm, the standard deviation grew at a slower rate than the mean. This was  demonstrated by a decreasing coefficient of variation as the array size increased.
	Several conclusions can be drawn from our results. First, sort-time variation is an important factor in systems with real-time constraints. Second, sort-time variation is less important for large arrays because the amount of variation is small relative to the mean. Third, beware of outliers, especially when using the Java runtime environment to run benchmarks. Including a suitable warm-up period and employing effective trimming strategies on sample execution times can lessen the influence of outliers.
	Good research generates more questions than it answers. This is true for this study. Our planned future research activities include: 
	1. Examine sort-time variation for larger array sizes to see if distribution patterns persist.
	2. Use our research approach on algorithms written in other programming languages, especially  with fully-compiled programs. An obvious next language is C++. However, C++ provides  different timer functions in alternative operating  environments.
	3. Examine the variation in execution times when the data is non-random or constant. In particu- lar,  measure the variation when best-case and worst-case examples are run repeatedly.
	4. Study the effect of rounding errors introduced by the coarseness of Java's nanoTime method.  This research would examine how Oracle utilizes "the most precise available system timer" in  different hardware and software environments.
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