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Abstract 
This paper proposes the innovative methodologies for the robust and stable design of infinite im-
pulse response (IIR) digital filters using different mutation variants of differential evolution (DE). 
A multivariable optimization is employed as the design criterion to obtain the optimal stable digi-
tal IIR filter which satisfies the different performance requirements like minimizing the magni-
tude approximation error and minimizing the ripple magnitude in pass band and stop band. DE 
method is undertaken as a global search technique. Exploratory search is exploited as a local 
search technique. The proposed ten different mutation variants of DE method enhance the capa-
bility to explore and exploit the search space locally as well globally to obtain the optimal filter 
design parameters. The chance of starting with better solution is improved by comparing the op-
posite solution. Here both methods are effectively applied for the design of low-pass, and high-
pass digital IIR filters being multivariable optimization problems. The computational experi-

mental results show that DE methods 
are superior or at least comparable to 
other algorithms and can be efficiently 
applied for higher order filter design. 

Keywords: Digital IIR filters, Differen-
tial Evolution, Exploratory search, Multi 
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Introduction 
A filter is a selective circuit that permits a certain band of frequency to pass while the other fre-
quencies get attenuated. The digital filters can be implemented in hardware or through software 
and are capable to process both real-time and on-line signals. These days the digital filters are 
being used to perform many filtering tasks, which previously were performed almost exclusively 
by analog filters and the digital filters are replacing the traditional role of analog filters in many 
applications such as image processing, speech synthesis, secure communication, radar processing 
and biomedical etc. The design of digital infinite impulse response (IIR) filter follows either 
transformation technique or optimization technique. Using the transformation techniques (Op-
penheim, Schafer, & Buck, 1999), Butterworth, Chebyshev and Elliptic function, have been de-
signed. Optimization methods have been applied whereby performance for the design of digital 
IIR filters is measured in terms of the magnitude error, and ripple magnitudes (tolerances) of both 
pass-band and stop-band. 

Jiang & Kwan (2009) has designed the IIR filter by having stability constraint and employs an 
iterative second-order cone programming method. The simultaneous design in magnitude and 
group delay has been discussed by Cortelazzo and Lightener (1984). For designing problem of 
IIR filter in a convex form, the semi-definite programming relaxation technique (Jiang & Kwan, 
2010) has been applied. Being a sequential design procedure, the algorithm finds a feasible solu-
tion within a set of relaxed constraints. However, non-linear and multimodal nature of error sur-
face of IIR filters, conventional gradient-based design may easily get stuck in the local minima of 
error surface. The draw backs of gradient methods, have been conquered by various researchers 
by applying modern heuristics optimization algorithms such as genetic algorithms (Harris, & 
Ifeachor, 1998; Li & Yin, 1996; Ng, S. C., Chung, C. Y., Leung, S. H., & A. Luk, 1994; Tang, 
Man, Kwong, & Liu, 1998; Uesaka, K., & Kawamata, M., 2000; Vanuytsel, Boets, Biesen, & 
Temmerman, 2002; Zhang, Jin, & Jin, 2003), particle swarm optimization (PSO) (Sun, Xu, & 
Feng, 2004), seeker- optimization- algorithm -based evolutionary method (Dai, Chen, & Zhu, 
2006), simulated annealing (SA) (Chen, Istepanian, & Luk (2001), tabu search (Kalinli, & 
Karaboga, 2005), ant colony optimization (Karaboga, Kalinli, & Karaboga, 2004), immune algo-
rithm (Tsai & Chou, 2006) etc. for the design of digital filters. 

Evolutionary algorithms (EAs) are based on the mechanics of natural selection and genetics. Ge-
netic algorithms are one example of EAs. The optimization methods based on genetic algorithms 
are only capable of searching multidimensional and multimodal spaces. These are also able to 
optimize complex and discontinuous functions (Tang et al., 1998). The digital IIR filter can be 
structured such as cascade, parallel, or lattice. The low-pass, high-pass, band-pass, and band-stop 
filters can be independently designed. To design the digital IIR filters genetic algorithm has been 
applied by Tang et al. (1998). The genetic methods are normally compromised because of their 
very slow convergence. When the number of the parameters is large, these may trap in the local 
optima of objective function and there are numerous local optima (Renders & Flasse, 1996). The 
hybrid Taguchi genetic algorithm has been applied by Tsai, Chou, & Liu (2006) for design of 
optimal IIR filters. With hybrid Taguchi genetic algorithm approach, the combination of the tradi-
tional genetic algorithms, which has a powerful global exploration capability, is applied with the 
Taguchi method. Hence, it is necessary for further developing an efficient heuristic algorithm so 
as to design the optimal digital IIR filters. 

Taguchi-immune algorithm (TIA) is based on the approach that integrates immune algorithm and 
Taugchi method (Tsai et al., 2006). Yu and Xinjie(2007) have proposed cooperative co-
evolutionary genetic algorithm for digital IIR filter design. For finding the lowest filter order, the 
magnitude and the phase response has been considered. The structure and the coefficients of the 
digital IIR filter have been coded separately. For keeping the diversity, the simulated annealing 
has been applied for the coefficient species, but to arrive at global minima (Chen et al., 2001), it 
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may require too many function evaluations. The seeker-optimization-algorithm based evolution-
ary method has been implemented for digital IIR filters by Dai et al. (2006). Kaur, Patterh, & 
Dhillon (2012) have given design of optimal stable digital IIR filters by applying hybrid optimi-
zation algorithms. In another attempt, they have applied the heuristic search methods for the digi-
tal IIR filter design (Kaur, Patterh, Dhillon, & Singh, 2012). 

In the literature, there are various methods with which the optimization problem under different 
conditions is addressed. Based on the type of the search space and the objective function optimi-
zation methods are classified. Due to the time-consuming computer simulation or expensive 
physical experiments, the evaluation of candidate solutions could be computationally and/or fi-
nancially expensive in IIR filter design problems. Therefore, a method is of great practical inter-
est if it is able to produce reasonably good solutions within a given budget on computational 
cost/time.  

The intent of this paper is to explore the performance of different mutation variants of differential 
evolution (DE) method while implementing for the design of IIR digital filters. Moreover, these 
methods are undertaken as global search techniques and an exploratory search is proposed as a 
local search technique so that these procedures randomly explore the search space globally as 
well locally. The values of the filter coefficients are optimized with DE to achieve magnitude er-
ror and ripple magnitude as objective functions for optimization problem. Constraints are taken 
care of by applying exterior penalty method.  

The paper is organized in six sections. In the next section IIR filter design problem statement is 
described. In the third section the solution methodology is briefed. The detail of DE algorithm for 
designing the optimal digital IIR filters have been described in the fourth section. In the fifth sec-
tion, the performance of the proposed mutation variants of DE methods have been evaluated and 
achieved results are compared with the design results given by Tang et al. (1998), Tsai et al. 
(2006), Tsai, & Chou, (2006), Kaur, Patterh, & Dhillon, (2012), and Kaur, Patterh, Dhillon, & 
Singh (2012).] for the LP, HP, BP, and BS filters. Finally, the conclusions and discussions are 
outlined. 

IIR Filter Design Problem 
A digital filter design problem determines a set of filter coefficients which meet performance 
specifications. These performance specifications are (a) pass band width and its corresponding 
gain, (b) width of the stop-band and attenuation, (c) band edge frequencies, and (d) tolerable peak 
ripple in the pass band and stop-band. The transfer function of IIR filter is defined below:  
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where N and M give order of filter with M≥N. 

The design of digital filter design problem involves evaluation of a set of filter coefficients, pk

and q j  which meet the performance indices. Several first- and second-order sections are cascad-
ed together [6-7] for realizing IIR filters. In the IIR filter, the coefficients are optimized such that 
the approximation error function for magnitude is to be minimized. The magnitude response is 
specified at K equally spaced discrete frequency points in pass-band and stop-band. The multivar-
iable constrained optimization problem is stated as below: 

 
Minimize )()( xexf =   (2) 
Subject to the stability constraints:- 
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)....,,2,1(01 12 Nix i =≥+ +   (3) 
)....,,2,1(01 12 Nix i =≥− +   (4) 

)....,,2,1,2)1(42(01 3 MkkNlxl =+−+=≥− + . (5) 
),....,,2,1,2)1(42(01 32 MkkNlxx ll =+−+=≥++ ++ . (6) 

)....,,2,1,2)1(42(01 32 NkkNlxx ll =+−+=≥+− ++   (7) 
The stability constraints are included in the design of casual recursive filters, which are obtained 
by using the Jury method (1964). Here, )(xe denotes the absolute error and is defined as below: 

∑
=

−=
K

i
iid xHHxe

0
),()()( ωω .  (8) 

Desired magnitude response, )( idH ω  of IIR filter is given as: 
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The cascaded transfer function of IIR filter is denoted by ),( xH ω , involving the filter coefficients 
like, poles and zeros. Irrespective of the filter type, the structure of cascading type digital IIR fil-
ter, is stated as (Ng, Chung, Leung, & Luk, 1994)). 
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where 2)1(42 +−+= kNl  and vector [ ]TSxxxx ....21=  denotes the filter coefficients of dimension 
S×1 with S = 2N + 4M + 1. The scalar constrained optimization problem is converted into uncon-
strained multivariable optimization problem using penalty method. Augmented function is de-
fined as: 

( )termPrxfxA += )()(   (11) 
where 
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r is a penalty parameter having large value. 

Bracket function for constraint given by Eq. (3) is stated below:- 
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Bracket function for constraint given by Eq. (6) is stated below:- 
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Similarly bracket functions for other constraints given by Eq. (4), Eq.(5) and Eq. (7) are under-
taken. 

Solution Methodology 
Various mutation variants of DE have been undertaken to design IIR digital filters. These meth-
ods perform global search and an exploratory search is proposed to perform local search so that 
global as well as local search is performed simultaneously. Opposition based learning is imple-
mented to improve the chance of starting with better solution by checking the opposite solution. 
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Differential Evolution  
Differential Evolution is a population-based stochastic method. It is applied to minimize perfor-
mance index. Differential evolution uses a rather greedy and less stochastic approach to problem 
solving in comparison to evolutionary algorithms. DE combines simple arithmetical operators 
with the classical operators of the recombination, mutation, and selection to evolve from a ran-
domly generated starting population to a final solution (Qin, Huang, & Sugathan, 2009). Various 
mutation strategies are available in literature which affects the performance of DE. 

Exploratory Move 
In the exploratory move, the current point is perturbed in positive and negative directions along 
each variable one at a time and the best point is recorded. The current point is updated to the best 
point at the end of each design variable perturbation may either be directed or random. If the 
point found at the end of all filter coefficient perturbations is different from the original point, the 
exploratory move is a success; otherwise, the exploratory move is a failure. In any case, the best 
point is considered to be the outcome of the exploratory move. The starting point obtained with 
the help of random initialization is explored iteratively and filter coefficient ix is initialized as 
follows: 

 
(14) 
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S denotes number of variables. 

The objective function denoted by )( n
ixA is calculated as follows 
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where )...,,2,1( Si = and iΔ is random for global search and fixed for local search. The process is 
repeated till all the filter coefficients are explored and overall minimum is selected as new start-
ing point for next iteration. The stepwise algorithm to explore filter coefficients is outlined below.  
Algorithm I: Exploratory move 
1. Select small change, ∆𝑖, and 𝑥𝑖𝑜 and compute 𝑓(𝑥𝑖𝑜) 
2. Initialize iteration counter, IT=0 
3. Increment the counter, IT=IT+1 
4. IF (𝐼𝑃 > 𝐼𝑃𝑚𝑎𝑥) GO TO 12 
5. Initialize filter coefficient counter j=0 
6. Increment filter coefficient counter, j=j+1 
7. Find 𝑢𝑖

𝑗using Eq. (15) 
8. Evaluate performance function, 𝐴(𝑥𝑖𝑜 + ∆𝑖𝑢𝑖

𝑗) and 𝐴(𝑥𝑖𝑜 − ∆𝑖𝑢𝑖
𝑗) 

9. Select 𝑥𝑖𝑛using Eq. (16) and 𝐴(𝑥𝑖𝑛) 
10. IF ( )Sj ≤  GO TO 6 and repeat. 
11. IF 𝐴(𝑥𝑖𝑛) < 𝐴(𝑥𝑖𝑜)  

THEN GO TO 5  
ELSE  ∆𝑖= (∆𝑖/1.618) and GOTO 3 and repeat. 

12. STOP 
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Population Initialization  
Initialize a population t

ijx  ( j =1, 2, …, S; i = 1, 2, ..., L) individuals with random values generated 
according to a uniform probability distribution in the S-dimensional problem space. Initialize the 
entire solution vector population within the given upper and lower limits of the search space.

)()( minmaxmin
jjj

t
ij xxrandxx −+=  

(j =1, 2, …, S;  i =1, 2, …, L) (17) 

The vector population may violate inequality constraints. This violation is corrected by fixing 
them either at lower or at upper limit. 

Opposition-Based Learning 
Evolutionary optimization methods start with some initial solutions and try to improve them to-
ward some optimal solution(s). The process of searching terminates when some predefined crite-
ria are satisfied. In the absence of prior information about the solution, it is usually started with 
random guesses. The computation time, among others, is related to the distance of these initial 
guesses from the optimal solution. It can improve the chance of starting with a better solution by 
simultaneously checking the opposite solution (Tizhoosh, 2009). By doing this, the better one 
either guess or opposite guess can be chosen as an initial solution. As per the probability theory, 
50% of the time, a guess is farther from the solution than its opposite guess (Rahnamayan, 
Tizhoosh, & Salama, 2008). Therefore, starting with the closer of the two guesses as judged by its 
objective function has the potential to accelerate convergence. The same approach can be applied 
not only to initial solutions but also continuously to each solution in the current population 
(Rahnamayan, et al. 2008). 

t
ijjj

t
jLi xxxx −+=+

maxmin
,  

(j =1, 2, …, S;  i =1, 2, …, L). (18) 
where min

jx  and max
jx are lower and upper limits of filter coefficients.  

Evaluation of the Individual Population 
The goal is to minimize the objective function. The elements of parent/offspring t

ijx may violate 
constraint. A penalty term is introduced in the objective function to penalize its objective function 
value. Objective function is changed to the following generalized form: 

( )termijiiji PrxexA += )()(   
 (j = 1, 2,..., S; i = 1, 2, , L)                           (19) 
where penalty factor is given by Eq. (12) and Eq. (13). 

DE for IIR Filter Design  
The different variants of DE are classified using: DE/α/β/δ. α indicates the method for selecting 
the parent chromosome that will form the base of the mutated vector. β indicates the number of 
difference vectors used to perturb the base chromosome. δ indicates the recombination mecha-
nism used to create the offspring population. The bin acronym indicates that the recombination is 
controlled by a series of independent binomial experiments. The variant implemented here is the 
DE/rand/1/bin, which involves the following steps and procedures (Das & Suganthan, 2011). The 
DE search procedure of the proposed differential evolution method has been outlined below. 
ALGORITHM II: Differential Evolution 
1 Input data  
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2. Generate initial population and apply opposition learning strategy 
3. Arrange population in ascending order and select first L members . 
4. Set iteration counter, t = 0 
5. Increment the iteration counter, t = t + 1 
6. Apply mutation operator (variants). 

   7. Apply recombination operation to compute 1+t
ijU using Eq.(32). 

   8. Apply selection operation to compute variable 1+t
ijx using Eq.(33) 

   9. Apply exploratory move to improve the population by implementing algorithm 1. 
10. Apply random migration to compute variable 1+t

ijx using Eq.(34)). 
11. IF (t < Tmax) THEN GOTO 5 
12. STOP. 

Parameter Setup 
The user selects the key parameters that control the DE, i.e. population size (L), boundary con-
straints of optimization variables (S), mutation factor )( mf , crossover rate (CR), and the stopping 
criterion of maximum number of iterations (generations) Tmax. The set of real IIR digital filter co-
efficient (X) of all generators is represented as the population. For a system with S filter coeffi-
cients, the population is represented as a vector of length, S. If there are L members in the popula-
tion, the complete population is represented as a matrix given below: 
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where t
ijX is the jth element of S set of filter coefficients giving ith individual of a population. Fur-

ther, [ ]Tt
iS

t
i

t
i

t
i xxxX ...,,, 21= stands for the position of the ith individual of a population of real 

valued S-dimensional vectors  

Mutation Operation Differential Operation  
Mutation is an operation that adds a vector differential to a population vector of individuals. 
There are several variations of differential evolution algorithm strategies that can be employed for 
optimization as mentioned by Sum-Im, Taylor, Irving, and Song (2009). The mutation operation 
using the difference between two randomly selected individuals may cause the mutant individual 
to escape from the search domain. If an optimized variable for the mutant individual is outside the 
search domain, then this variable is replaced by its lower bound or its upper bound so that each 
individual can be restricted to the search domain. So, the ten mutation variations, which are de-
fined as the following mutation strategies are considered for study: 
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 (j =1, 2, …, S; i =1, 2, …, L) 
where t is the time (generation); R1, R2 and R3 are mutually different integers that are also differ-
ent from the running index, i, randomly selected with uniform distribution from the set 
{ }Lii ...,,1,1...,,2,1 +− . )(tfm  is the mutation factor and  0)( >tfm  is a real parameter, which 
controls the amplification of the difference between two individuals with indexes R2 and R3 so as 
to avoid search stagnation and is usually a constant value taken from the range [0.4, 1] using cha-
otic sequence. 

The better solution out of the four mutation strategies (DE-11) based on minimum augmented 
objective function is selected as: 
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Recombination Operation 
Recombination is employed to generate a trial vector by replacing certain parameters of the target 
vector by the corresponding parameters of a randomly generated donor vector.  

For each vector, 1+t
iZ , an index R5(i) ∈ {1, 2, ..., S} is randomly chosen using a uniform distribu-

tion, and a trial vector, [ ]Tt
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Where R4(j) is the jth evaluation of a uniform random number generation with [0, 1]. CR is the 
crossover or recombination rate in the range [0, 1]. Usually, the performance of a DE algorithm 
depends on three variables: the population size, the mutation factor )(tfm  and the CR. 

Selection Operation 
Selection is the procedure whereby better offspring are produced. To decide whether the vector 

1+t
iU  should be a member of the population comprising the next generation, it is compared with 

the corresponding vector t
iX . Thus, if A denotes the objective function under minimization, then
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In this case, the objective Aj of each trial vector 1+t

ijU  is compared with that of its parent target 

vector t
ijx . If the augmented objective function, Aj of the target vector t

ijx  is lower than that of the 
trial vector, the target is allowed to advance to the next generation. Otherwise, a trial vector re-
places the target vector in the next generation. 



Singh, Dhillon, & Brar 

429 

Migration Operator 
The population diversity and its exploration of the search space are rapidly decreased, and the 
clustered individuals cannot reproduce newly better individuals by mutation and crossover. In 
order to increase the exploration of the search space and decrease the selection pressure for a 
small population, it is randomly selected 0.2L individuals to start migration operation.  

The jth gene of the ith individual is randomly regenerated as follows (Vanuytsel et al., 2002): 
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where 1+t
bjx  is the best individual. Ri and δ are uniform random number.  

Design and Comparison of IIR Filters  
The design of cascaded digital IIR filter has been implemented. The filter coefficients have been 
evaluated by applying different mutation variants of DE method. The low pass (LP) and high pass 
(HP), digital filters have been considered for the design. The design conditions for these filters 
are given in Table 1. 
 

Table No.1 
 Design conditions for LP, HP, BP and BS filters. 

Filter type Pass-band Stop-band ),( xH ω  

Low-Pass(LP) πω 2.00 ≤≤  πωπ ≤≤3.0  1 

High-Pass(HP) πωπ ≤≤8.0  πω 7.00 ≤≤  1 

 
To design digital IIR filter, 200 equally spaced points are set within the frequency domain [ ]π,0 , 
such that the number of discrete frequency points in Eq. (8), comes out 182 for the LP and HP 
filters, along with prescribed pass-band and stop-band frequency range is given in Table 1. The 
ripple magnitudes of pass-band and stop-band are given by )(1 xδ and ),(2 xδ  respectively (Light-
ner & Director, 1981). Ripple magnitudes are defined as: 
 

{ } { } passband;),(min),(max)(1 ∈−= iii xHxHx
ii

ωωωδ
ωω

 (35) 

and 
{ } stopbandxHx ii

i
∈= ωωδ

ω
;),(max)(2  (36) 

Parameters for DE 
For LP, and HP digital IIR filters ten different mutation variants of DE, (DE-1 to DE-11) have 
been applied to access the effect on performance of DE. For each mutation the value of M and N 
has been varied from (2,2) to (7,7) for LP filter and HP filter, The maximum number of iterations 
has been taken as 100 for all eleven mutant variants of DE. The maximum migration value is 50. 
The mutation ratio, fm and crossover ratio, CR has been taken as 0.85 and 0.25, respectively. The 
rate of opposition varies between 0 and 1 has been taken as 0.6 Exploratory move is repeated 20 
times. For comparison purposes the value of α has been taken 1.618 for all eleven mutation vari-
ants of DE. 
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Low Pass Filter 
The low pass filter is designed, as per parameters given in Table 1. The algorithm was given 100 
runs for all ten mutation variants (DE-1 to DE-10) of DE, along with the four mutation strategies 
combined together (DE-11) as given in Eq. (31). All eleven DE mutant variants were run for var-
ious combinations of M & N varying from (2, 2) to (7, 7). The best results obtained from each of 
the eleven mutations are given in Table 3 along with order number. It is observed from the results 
given in Table 3 ,that out of the eleven implemented mutation strategies, the mutation strategy 
number 4 (DE-4), with value of M & N as (2,3) and having order no 8  gives the best result for 
LP filter. The coefficients of IIR filter model designed by this mutation strategy (DE-4), for filter 
order 8 are given in Table 2.  

Table No 2 
Low Pass Filter Coefficients 

X1=+0.903007 X2=-0.564147 X3=1.451793 X4=-0.560768 

X5=-0.296367 X6=1.415108 X7=-1.255359 X8=+0.541980 

X9=-0.195037 X10=+0.604557 X11=-1.166718 X12=+0.662336 

X13=-0.184995 X14=+0.752750 X15=-1.257409 X16=+0.7611914 

 
 Table No. 3 

 Design Result For LP Filter 
Mutation Order Magnitude Error Pass-band performance Stop-band performance 

DE-1 
8 

0.97106 
02162.1)(89114.0 ≤≤ ωjeH  

(0.12989) 
88338.0)( ≤ωjeH  

(0.88338) 

DE-2 
8 

6.05279 
05889.1)(79569.0 ≤≤ ωjeH  

(0.26330) 
32409.0)( ≤ωjeH  

(0.32409) 

DE-3 
10 

1.52052 
03353.1)(99143.0 ≤≤ ωjeH  

(0.42104) 
247831.0)( ≤ωjeH   

(0.247831) 

DE-4 
8 

0.773449 
01635.1)(96626.0 ≤≤ ωjeH  

(0.05009) 
05883.0)( ≤ωjeH  

(0.05883) 

DE-5 
16 

2.03332 
04628.1)(80309.0 ≤≤ ωjeH  

(0.24317) 
05398.0)( ≤ωjeH   

(0.05398) 

DE-6 
16 

2.37581 
01217.1)(93905.0 ≤≤ ωjeH  

(0.073119) 
251464.0)( ≤ωjeH   

(0.251464) 

DE-7 
9 

4.05596 
14128.1)(90914.0 ≤≤ ωjeH  

(0.23214) 
10647.0)( ≤ωjeH  

 (0.10647) 

DE-8 
8 

4.62363 
04904.1)(96450.0 ≤≤ ωjeH  

(0.08453) 
42837.0)( ≤ωjeH   

(0.42837) 

DE-9 
11 

1.174421 
01441.1)(90913.0 ≤≤ ωjeH  

(0.10528) 
09852.0)( ≤ωjeH   

(0.09852) 

DE-10 
21 

3.27079 
02075.1)(92213.0 ≤≤ ωjeH  

(0.098221) 
34024.0)( ≤ωjeH   

(0.34024) 

DE-11 
21 

3.66998 
03221.1)(99300.0 ≤≤ ωjeH  

(0.039209) 
58160.0)( ≤ωjeH   

(0.58160) 
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For low pass filter the results obtained by Hybrid (Kaur, Patterh, & Dhillon, 2012), Heuristic 
(Kaur, Patterh, Dhillon, & Singh, 2012), HGA (Tang et al., 1998), HTGA (Tsai et al., 2006) and 
TIA (Tsai & Chou, 2006) with filter order 3 (M and N taken as 1,1 respectively) are depicted in 
Table 4 below. It is observed that the results obtained by DE-4 with M & N as (2,3) are better 
than the results depicted by Harris and Ifeachor (1998), Tsai et al. (2006), Tsai and Chou (2006), 
Kaur, Patterh, and Dhillon (2012), and Kaur, Patterh, Dhillon, and Singh (2012) given in Table 4 
for value of M & N as (1,1) respectively  

Table No 4: Results of previous researchers 

Method  
Order Magnitude Error Pass-band performance Stop-band performance 

Hybrid 
(Kaur, 
Patterh, & 
Dhillon, 
2012) 

3 

3.7903 0260.1)(9283.0 ≤≤ ωjeH  
(0.0976) 

1405.0)( ≤ωjeH  
 (0.1405) 

Heuristic 
(Kaur, 
Patterh, 
Dhillon, & 
Singh, 
2012) 

3 

4.1145 0110.1)(9246.0 ≤≤ ωjeH  
(0.0871) 

1238.0)( ≤ωjeH  
 (0.1238) 

HGA 
(Tang et 
al., 1998) 

3 
4.3395 009.1)(8870.0 ≤≤ ωjeH  

 (0.1139) 

1802.0)( ≤ωjeH  
(0.1802) 

HTGA 
(Tsai et al., 

2006) 

3 
4.2511 

000.1)(90004.0 ≤≤ ωjeH  
 (0.0996) 

1247.0)( ≤ωjeH  
(0.1247) 

TIA (Tsai 
& Chou, 

2006) 

3 
3.8157 000.1)(8914.0 ≤≤ ωjeH

  
(0.1086) 

1638.0)( ≤ωjeH  
(0.1638) 

 

 
Figure 1: Magnitude versus Iterations for DE-4 with filter order as 8 

 
After 100 runs of each mutation with varying values of M and N, the best results are depicted in 
Table 3. Out of  these,  for the best result obtained from mutation  DE-4 with M & N values as 
(2,3) and order 8, the maximum, minimum and average value of magnitude error along with 
standard deviation for low pass filter are given in Table 14. For the best results obtained from 
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DE-4 with order 8, the magnitude versus number of iterations graph for its internal 90 runs is 
shown in Figure 1. The frequency response of DE-4 with order 8 has been shown in Figure 2 and 
the corresponding pole-zero plot for DE-4 with order 8 has been shown in Figure 3. 

 
Figure 2 Frequency response of LP filter using DE-4 

 

 
Figure 3 Pole-Zero plot of LP filter using DE-4 

High Pass Filter 
The high pass filter is designed as per parameters given in Table 1. The algorithm was given 100 
runs for all ten mutation variants (DE-1 to DE-10) of DE along with the four mutation strategies 
combined together (DE-11) as given in Eq. (31). All eleven DE mutant variants of high pass filter 
were run for various combinations of  M & N varying from (2,2) to (7,7).The best results ob-
tained from each of the eleven  mutation are given in Table 6 along with its order number. 



Singh, Dhillon, & Brar 

433 

Table No 5 
High Pass Filter Coefficients 

X1=-0.040361 X2=+0.649865 X3=-0.315249 X4=+0.626751 

X5=-0.872858 X6=+0.260470 X7=+0.370351 X8=+0.497021 

X9=+0.803198 X10=+0.410948 X11=+0.516738 X12=+0.692301 

X13=1.604773 X14=+0.770023 X15=+0.432912 X16=+0.334600 

X17=+0.792747 X18=+0.492930 X19=+0.145277 X20=+0.318842 

X21=-0.889507 X22=+0.889072   

 
It is observed from the results given in Table 6 that out of the eleven implemented mutation strat-
egies, the mutation strategy number 6 (DE-6), with value of M& N as (3,4) and having order  11  
gives the best result for HP filter. The coefficients of IIR filter model designed by this mutation 
strategy DE-6, for filter order 11 are given in Table 5.  

 Table No.6 
Design Results For HP Filter 

Mutation Order Magnitude 
Error 

Pass-band  performance Stop-band performance 

 
DE-1 

7 
4.71661 02733.1)(95667.0 ≤≤ ωjeH  

(0.70663) 

26693.0)( ≤ωjeH  
(0.26693) 

 
DE-2 

17 
3.76309 04976.1)(92255.0 ≤≤ ωjeH  

(0.12720) 

25695.0)( ≤ωjeH  
(0.25695) 

 
DE-3 

10 
3.32338 

03233.1)(93565.0 ≤≤ ωjeH  
(0.09667) 

21574.0)( ≤ωjeH  
(0.21574) 

 
DE-4 

14 
2.66384 03402.1)(77406.0 ≤≤ ωjeH  

(0.25996) 

08972.0)( ≤ωjeH  
(0.08972) 

 
DE-5 

7 
2.88517 10768.1)(89707.0 ≤≤ ωjeH  

(0.21060) 

04362.0)( ≤ωjeH  
(0.04362) 

 
DE-6 

11 
2.22471 01675.1)(91528.0 ≤≤ ωjeH  

(0.10146) 

10209.0)( ≤ωjeH  
(0.10209) 

 
DE-7 

10 
3.36576 

02236.1)(94582.0 ≤≤ ωjeH  
(0.07653) 

19688.0)( ≤ωjeH  
(0.19688) 

 
DE-8 

21 
4.13695 

01243.1)(85498.0 ≤≤ ωjeH  
(0.15744) 

16092.0)( ≤ωjeH  
(0.16092) 

 
DE-9 

8 
2.83621 

07140.1)(91645.0 ≤≤ ωjeH  
(0.15494) 

11302.0)( ≤ωjeH  
(0.11302) 

 
DE-10 

7 
6.65741 

06433.1)(98191.0 ≤≤ ωjeH  
(0.08242) 

50469.0)( ≤ωjeH  
(0.50469) 

 
DE-11 

15 
2.39701 

02005.1)(97889.0 ≤≤ ωjeH  
(0.04116) 

09198.0)( ≤ωjeH  
(0.09198) 
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For high pass filter the results obtained by Hybrid (Kaur, Patterh, & Dhillon, 2012), Heuristic 
(Kaur, Patterh, Dhillon, & Singh, 2012), HGA (Tang et al., 1998), HTGA (Tsai et al., 2006) and 
TIA (Tsai & Chou, 2006) with filter order 3 (M and N taken as 1,1 )  are depicted in Table 7 be-
low. It is observed that the results obtained by DE-6 with M & N as (3,4) are better than the re-
sults depicted by Harris and Ifeachor (1998), Tsai et al. (2006), Tsai and Chou (2006), Kaur, Pat-
terh, and Dhillon (2012), and Kaur, Patterh, Dhillon, and Singh (2012) given in Table 6 for values 
of M & N as (1,1) respectively. 

Table No 7 

Method Order Magnitude 
Error 

Pass-band  performance Stop-band performance 

 
Hybrid 
(Kaur, 
Patterh, & 
Dhillon, 
2012) 

 3.9724 0265.1)(9625.0 ≤≤ ωjeH (0.0639) 1536.0)( ≤ωjeH  
(0.1536) 

Heuristic 
(Kaur, 
Patterh, 
Dhillon, & 
Singh, 
2012) 

 4.6635 0080.1)(9584.0 ≤≤ ωjeH (0.0504) 1477.0)( ≤ωjeH  
(0.1477) 

HGA 
(Tang et 
al., 1998) 

 14.507 00.1)(9224.0 ≤≤ ωjeH  (0.0779) 1819.0)( ≤ωjeH  
(0.1819) 

HTGA 
(Tsai et 

al., 2006) 

 4.8372 00.1)(9460.0 ≤≤ ωjeH (0.0540) 1457.0)( ≤ωjeH  
(0.1457) 

TIA (Tsai 
& Chou, 

2006) 

 4.1819 00.1)(9229.0 ≤≤ ωjeH (0.0771) 1424.0)( ≤ωjeH  
(0.1424) 

 
After 100 runs of each mutation with varying values of M and N, the best results are depicted in 
Table 6. Out of  these, for the best result obtained from mutation  DE-6 with M & N values as 
(3,4) and order 11, the maximum, minimum and average value of magnitude error along with 
standard deviation for high pass filter are given in Table 14. For the best results obtained from 
DE-6 with order 11, the magnitude versus number of iterations graph for its internal 90 runs is 
shown in Figure 4. The frequency response of DE-6 with order 11 has been shown in Figure 5 
and the corresponding pole-zero plot for DE-6 with order 11 has been shown in Figure 6. 
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Figure 4 Magnitude versus Iterations for DE-6 

 
Figure 5 Frequency Response of HP filter using DE-6 

 

 
Figure 6: pole zero plot of HP filter using DE-6 
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The maximum, minimum and average values of magnitude error along with standard deviation  
obtained after 100 runs for Low Pass filter with mutation 4 (DE-4) and  order 8, for high pass fil-
ter with mutation 6 (DE-6) and order 11, have been given below in Table No 14.  

Table No 14 
Maximum, Minimum, Average  values of magnitude error along with Standard Devi-

ation for LP and HP Digital IIR Filters 
Filter Mutation Order Maximum H Minimum H Average Std Dev 

LP DE-4 8 4.740610 0.703530 2.706241 0.930259 
HP DE-6 11 5.826424 2.224717 3.432110 0.854246 

 

Conclusion 
This paper proposes the different eleven mutation variants of DE for the design of digital IIR fil-
ters whereby locally fine-tuned by exploratory search method. As shown through simulation re-
sults, all DE methods work well with an arbitrary random initialization and it satisfies prescribed 
amplitude specifications consistently. Therefore, the proposed algorithms are useful tool for the 
design of IIR filters.  

On the basis of above results obtained for the design of digital IIR filter, it can be concluded that 
for low- pass, high-pass, band-pass and band-stop filters, out of the proposed eleven mutation 
variants of DE method DE-4 and DE-6 methods of DE, respectively are superior to the GA-based 
method. Further, the proposed DE approach for the design of digital IIR filters allows each filter, 
whether it is LP and HP digital IIR filter, to be independently designed. 

The proposed DE methods are very much feasible to design the digital IIR filters, particularly 
with the complicated constraints. Parameters tuning still is the potential area for further research. 
The unique combination of exploration search and global search optimization method that is 
predator-prey optimization provided by the two types of algorithms yields a powerful option for 
the design of IIR filters. 
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	Abstract
	This paper proposes the innovative methodologies for the robust and stable design of infinite impulse response (IIR) digital filters using different mutation variants of differential evolution (DE). A multivariable optimization is employed as the design criterion to obtain the optimal stable digital IIR filter which satisfies the different performance requirements like minimizing the magnitude approximation error and minimizing the ripple magnitude in pass band and stop band. DE method is undertaken as a global search technique. Exploratory search is exploited as a local search technique. The proposed ten different mutation variants of DE method enhance the capability to explore and exploit the search space locally as well globally to obtain the optimal filter design parameters. The chance of starting with better solution is improved by comparing the opposite solution. Here both methods are effectively applied for the design of low-pass, and high-pass digital IIR filters being multivariable optimization problems. The computational experimental results show that DE methods are superior or at least comparable to other algorithms and can be efficiently applied for higher order filter design.
	Keywords: Digital IIR filters, Differential Evolution, Exploratory search, Multi parameter optimization, Opposition based learning.
	Introduction
	A filter is a selective circuit that permits a certain band of frequency to pass while the other frequencies get attenuated. The digital filters can be implemented in hardware or through software and are capable to process both real-time and on-line signals. These days the digital filters are being used to perform many filtering tasks, which previously were performed almost exclusively by analog filters and the digital filters are replacing the traditional role of analog filters in many applications such as image processing, speech synthesis, secure communication, radar processing and biomedical etc. The design of digital infinite impulse response (IIR) filter follows either transformation technique or optimization technique. Using the transformation techniques (Oppenheim, Schafer, & Buck, 1999), Butterworth, Chebyshev and Elliptic function, have been designed. Optimization methods have been applied whereby performance for the design of digital IIR filters is measured in terms of the magnitude error, and ripple magnitudes (tolerances) of both pass-band and stop-band.
	Jiang & Kwan (2009) has designed the IIR filter by having stability constraint and employs an iterative second-order cone programming method. The simultaneous design in magnitude and group delay has been discussed by Cortelazzo and Lightener (1984). For designing problem of IIR filter in a convex form, the semi-definite programming relaxation technique (Jiang & Kwan, 2010) has been applied. Being a sequential design procedure, the algorithm finds a feasible solution within a set of relaxed constraints. However, non-linear and multimodal nature of error surface of IIR filters, conventional gradient-based design may easily get stuck in the local minima of error surface. The draw backs of gradient methods, have been conquered by various researchers by applying modern heuristics optimization algorithms such as genetic algorithms (Harris, & Ifeachor, 1998; Li & Yin, 1996; Ng, S. C., Chung, C. Y., Leung, S. H., & A. Luk, 1994; Tang, Man, Kwong, & Liu, 1998; Uesaka, K., & Kawamata, M., 2000; Vanuytsel, Boets, Biesen, & Temmerman, 2002; Zhang, Jin, & Jin, 2003), particle swarm optimization (PSO) (Sun, Xu, & Feng, 2004), seeker- optimization- algorithm -based evolutionary method (Dai, Chen, & Zhu, 2006), simulated annealing (SA) (Chen, Istepanian, & Luk (2001), tabu search (Kalinli, & Karaboga, 2005), ant colony optimization (Karaboga, Kalinli, & Karaboga, 2004), immune algorithm (Tsai & Chou, 2006) etc. for the design of digital filters.
	Evolutionary algorithms (EAs) are based on the mechanics of natural selection and genetics. Genetic algorithms are one example of EAs. The optimization methods based on genetic algorithms are only capable of searching multidimensional and multimodal spaces. These are also able to optimize complex and discontinuous functions (Tang et al., 1998). The digital IIR filter can be structured such as cascade, parallel, or lattice. The low-pass, high-pass, band-pass, and band-stop filters can be independently designed. To design the digital IIR filters genetic algorithm has been applied by Tang et al. (1998). The genetic methods are normally compromised because of their very slow convergence. When the number of the parameters is large, these may trap in the local optima of objective function and there are numerous local optima (Renders & Flasse, 1996). The hybrid Taguchi genetic algorithm has been applied by Tsai, Chou, & Liu (2006) for design of optimal IIR filters. With hybrid Taguchi genetic algorithm approach, the combination of the traditional genetic algorithms, which has a powerful global exploration capability, is applied with the Taguchi method. Hence, it is necessary for further developing an efficient heuristic algorithm so as to design the optimal digital IIR filters.
	Taguchi-immune algorithm (TIA) is based on the approach that integrates immune algorithm and Taugchi method (Tsai et al., 2006). Yu and Xinjie(2007) have proposed cooperative co-evolutionary genetic algorithm for digital IIR filter design. For finding the lowest filter order, the magnitude and the phase response has been considered. The structure and the coefficients of the digital IIR filter have been coded separately. For keeping the diversity, the simulated annealing has been applied for the coefficient species, but to arrive at global minima (Chen et al., 2001), it may require too many function evaluations. The seeker-optimization-algorithm based evolutionary method has been implemented for digital IIR filters by Dai et al. (2006). Kaur, Patterh, & Dhillon (2012) have given design of optimal stable digital IIR filters by applying hybrid optimization algorithms. In another attempt, they have applied the heuristic search methods for the digital IIR filter design (Kaur, Patterh, Dhillon, & Singh, 2012).
	In the literature, there are various methods with which the optimization problem under different conditions is addressed. Based on the type of the search space and the objective function optimization methods are classified. Due to the time-consuming computer simulation or expensive physical experiments, the evaluation of candidate solutions could be computationally and/or financially expensive in IIR filter design problems. Therefore, a method is of great practical interest if it is able to produce reasonably good solutions within a given budget on computational cost/time. 
	The intent of this paper is to explore the performance of different mutation variants of differential evolution (DE) method while implementing for the design of IIR digital filters. Moreover, these methods are undertaken as global search techniques and an exploratory search is proposed as a local search technique so that these procedures randomly explore the search space globally as well locally. The values of the filter coefficients are optimized with DE to achieve magnitude error and ripple magnitude as objective functions for optimization problem. Constraints are taken care of by applying exterior penalty method. 
	The paper is organized in six sections. In the next section IIR filter design problem statement is described. In the third section the solution methodology is briefed. The detail of DE algorithm for designing the optimal digital IIR filters have been described in the fourth section. In the fifth section, the performance of the proposed mutation variants of DE methods have been evaluated and achieved results are compared with the design results given by Tang et al. (1998), Tsai et al. (2006), Tsai, & Chou, (2006), Kaur, Patterh, & Dhillon, (2012), and Kaur, Patterh, Dhillon, & Singh (2012).] for the LP, HP, BP, and BS filters. Finally, the conclusions and discussions are outlined.
	IIR Filter Design Problem
	A digital filter design problem determines a set of filter coefficients which meet performance specifications. These performance specifications are (a) pass band width and its corresponding gain, (b) width of the stop-band and attenuation, (c) band edge frequencies, and (d) tolerable peak ripple in the pass band and stop-band. The transfer function of IIR filter is defined below: 
	  (1)
	where N and M give order of filter with M≥N.
	The design of digital filter design problem involves evaluation of a set of filter coefficients, and  which meet the performance indices. Several first- and second-order sections are cascaded together [6-7] for realizing IIR filters. In the IIR filter, the coefficients are optimized such that the approximation error function for magnitude is to be minimized. The magnitude response is specified at K equally spaced discrete frequency points in pass-band and stop-band. The multivariable constrained optimization problem is stated as below:
	Minimize   (2)
	Subject to the stability constraints:-
	  (3)
	  (4)
	. (5)
	. (6)
	  (7)
	The stability constraints are included in the design of casual recursive filters, which are obtained by using the Jury method (1964). Here, denotes the absolute error and is defined as below:
	.  (8)
	Desired magnitude response,  of IIR filter is given as:
	   (9)
	The cascaded transfer function of IIR filter is denoted by, involving the filter coefficients like, poles and zeros. Irrespective of the filter type, the structure of cascading type digital IIR filter, is stated as (Ng, Chung, Leung, & Luk, 1994)).
	  (10)
	where  and vector  denotes the filter coefficients of dimension S×1 with S = 2N + 4M + 1. The scalar constrained optimization problem is converted into unconstrained multivariable optimization problem using penalty method. Augmented function is defined as:
	  (11)
	where
	r is a penalty parameter having large value.
	Bracket function for constraint given by Eq. (3) is stated below:-
	  (12)
	Bracket function for constraint given by Eq. (6) is stated below:-
	  (13)
	Similarly bracket functions for other constraints given by Eq. (4), Eq.(5) and Eq. (7) are undertaken.
	Solution Methodology
	Differential Evolution
	Exploratory Move
	Population Initialization
	Opposition-Based Learning
	Evaluation of the Individual Population

	Various mutation variants of DE have been undertaken to design IIR digital filters. These methods perform global search and an exploratory search is proposed to perform local search so that global as well as local search is performed simultaneously. Opposition based learning is implemented to improve the chance of starting with better solution by checking the opposite solution.
	Differential Evolution is a population-based stochastic method. It is applied to minimize performance index. Differential evolution uses a rather greedy and less stochastic approach to problem solving in comparison to evolutionary algorithms. DE combines simple arithmetical operators with the classical operators of the recombination, mutation, and selection to evolve from a randomly generated starting population to a final solution (Qin, Huang, & Sugathan, 2009). Various mutation strategies are available in literature which affects the performance of DE.
	In the exploratory move, the current point is perturbed in positive and negative directions along each variable one at a time and the best point is recorded. The current point is updated to the best point at the end of each design variable perturbation may either be directed or random. If the point found at the end of all filter coefficient perturbations is different from the original point, the exploratory move is a success; otherwise, the exploratory move is a failure. In any case, the best point is considered to be the outcome of the exploratory move. The starting point obtained with the help of random initialization is explored iteratively and filter coefficient is initialized as follows:
	(14)
	Where   (15)
	S denotes number of variables.
	The objective function denoted by is calculated as follows
	  (16)
	where and is random for global search and fixed for local search. The process is repeated till all the filter coefficients are explored and overall minimum is selected as new starting point for next iteration. The stepwise algorithm to explore filter coefficients is outlined below. 
	Algorithm I: Exploratory move
	1. Select small change, ∆𝑖, and 𝑥𝑖𝑜 and compute 𝑓(𝑥𝑖𝑜)
	2. Initialize iteration counter, IT=0
	3. Increment the counter, IT=IT+1
	4. IF (𝐼𝑃>𝐼𝑃𝑚𝑎𝑥) GO TO 12
	5. Initialize filter coefficient counter j=0
	6. Increment filter coefficient counter, j=j+1
	7. Find 𝑢𝑖𝑗using Eq. (15)
	8. Evaluate performance function, 𝐴(𝑥𝑖𝑜+∆𝑖𝑢𝑖𝑗) and 𝐴(𝑥𝑖𝑜−∆𝑖𝑢𝑖𝑗)
	9. Select 𝑥𝑖𝑛using Eq. (16) and 𝐴(𝑥𝑖𝑛)
	10. IF  GO TO 6 and repeat.
	11. IF 𝐴(𝑥𝑖𝑛)<𝐴(𝑥𝑖𝑜) 
	THEN GO TO 5 
	ELSE  ∆𝑖=∆𝑖/1.618 and GOTO 3 and repeat.
	12. STOP
	Initialize a population  ( j =1, 2, …, S; i = 1, 2, ..., L) individuals with random values generated according to a uniform probability distribution in the S-dimensional problem space. Initialize the entire solution vector population within the given upper and lower limits of the search space.
	(j =1, 2, …, S;  i =1, 2, …, L) (17)
	The vector population may violate inequality constraints. This violation is corrected by fixing them either at lower or at upper limit.
	Evolutionary optimization methods start with some initial solutions and try to improve them toward some optimal solution(s). The process of searching terminates when some predefined criteria are satisfied. In the absence of prior information about the solution, it is usually started with random guesses. The computation time, among others, is related to the distance of these initial guesses from the optimal solution. It can improve the chance of starting with a better solution by simultaneously checking the opposite solution (Tizhoosh, 2009). By doing this, the better one either guess or opposite guess can be chosen as an initial solution. As per the probability theory, 50% of the time, a guess is farther from the solution than its opposite guess (Rahnamayan, Tizhoosh, & Salama, 2008). Therefore, starting with the closer of the two guesses as judged by its objective function has the potential to accelerate convergence. The same approach can be applied not only to initial solutions but also continuously to each solution in the current population (Rahnamayan, et al. 2008).
	(j =1, 2, …, S;  i =1, 2, …, L). (18)
	where  and are lower and upper limits of filter coefficients. 
	The goal is to minimize the objective function. The elements of parent/offspring may violate constraint. A penalty term is introduced in the objective function to penalize its objective function value. Objective function is changed to the following generalized form:
	 (j = 1, 2,..., S; i = 1, 2, , L)                           (19)
	where penalty factor is given by Eq. (12) and Eq. (13).
	DE for IIR Filter Design
	The different variants of DE are classified using: DE/α/β/δ. α indicates the method for selecting the parent chromosome that will form the base of the mutated vector. β indicates the number of difference vectors used to perturb the base chromosome. δ indicates the recombination mechanism used to create the offspring population. The bin acronym indicates that the recombination is controlled by a series of independent binomial experiments. The variant implemented here is the DE/rand/1/bin, which involves the following steps and procedures (Das & Suganthan, 2011). The DE search procedure of the proposed differential evolution method has been outlined below.
	ALGORITHM II: Differential Evolution
	1 Input data 
	2. Generate initial population and apply opposition learning strategy
	3. Arrange population in ascending order and select first L members .
	4. Set iteration counter, t = 0
	5. Increment the iteration counter, t = t + 1
	6. Apply mutation operator (variants).
	7. Apply recombination operation to compute using Eq.(32).
	8. Apply selection operation to compute variable using Eq.(33)
	9. Apply exploratory move to improve the population by implementing algorithm 1.
	10. Apply random migration to compute variable using Eq.(34)).
	11. IF (t < Tmax) THEN GOTO 5
	12. STOP.
	Parameter Setup
	Mutation Operation Differential Operation
	Recombination Operation
	Selection Operation
	Migration Operator

	The user selects the key parameters that control the DE, i.e. population size (L), boundary constraints of optimization variables (S), mutation factor, crossover rate (CR), and the stopping criterion of maximum number of iterations (generations) Tmax. The set of real IIR digital filter co-efficient (X) of all generators is represented as the population. For a system with S filter coefficients, the population is represented as a vector of length, S. If there are L members in the population, the complete population is represented as a matrix given below:
	  (20)
	where is the jth element of S set of filter coefficients giving ith individual of a population. Further, stands for the position of the ith individual of a population of real valued S-dimensional vectors 
	Mutation is an operation that adds a vector differential to a population vector of individuals. There are several variations of differential evolution algorithm strategies that can be employed for optimization as mentioned by Sum-Im, Taylor, Irving, and Song (2009). The mutation operation using the difference between two randomly selected individuals may cause the mutant individual to escape from the search domain. If an optimized variable for the mutant individual is outside the search domain, then this variable is replaced by its lower bound or its upper bound so that each individual can be restricted to the search domain. So, the ten mutation variations, which are defined as the following mutation strategies are considered for study:
	DE-1;     (21)
	DE-2;    (22)
	DE-3;   (23)
	DE-4;   (24)
	DE-5;   (25)
	DE-6;  (26)
	DE-7;   (27)
	DE-8;   (28)
	DE-9;   (29)
	DE-10;  (30)
	 (j =1, 2, …, S; i =1, 2, …, L)
	where t is the time (generation); R1, R2 and R3 are mutually different integers that are also different from the running index, i, randomly selected with uniform distribution from the set .  is the mutation factor and   is a real parameter, which controls the amplification of the difference between two individuals with indexes R2 and R3 so as to avoid search stagnation and is usually a constant value taken from the range [0.4, 1] using chaotic sequence.
	The better solution out of the four mutation strategies (DE-11) based on minimum augmented objective function is selected as:
	  (31)
	stands for the position of the ith individual of a mutant vector.
	Recombination is employed to generate a trial vector by replacing certain parameters of the target vector by the corresponding parameters of a randomly generated donor vector. 
	For each vector, , an index R5(i)  {1, 2, ..., S} is randomly chosen using a uniform distribution, and a trial vector,
	(j =1, 2, …, S; i=1, 2, …, L). (32)
	Where R4(j) is the jth evaluation of a uniform random number generation with [0, 1]. CR is the crossover or recombination rate in the range [0, 1]. Usually, the performance of a DE algorithm depends on three variables: the population size, the mutation factor  and the CR.
	Selection is the procedure whereby better offspring are produced. To decide whether the vector  should be a member of the population comprising the next generation, it is compared with the corresponding vector. Thus, if A denotes the objective function under minimization, then
	( i = 1, 2, …, L)   (33)
	In this case, the objective Aj of each trial vector  is compared with that of its parent target vector. If the augmented objective function, Aj of the target vector  is lower than that of the trial vector, the target is allowed to advance to the next generation. Otherwise, a trial vector replaces the target vector in the next generation.
	The population diversity and its exploration of the search space are rapidly decreased, and the clustered individuals cannot reproduce newly better individuals by mutation and crossover. In order to increase the exploration of the search space and decrease the selection pressure for a small population, it is randomly selected 0.2L individuals to start migration operation. 
	The jth gene of the ith individual is randomly regenerated as follows (Vanuytsel et al., 2002):
	  (34)
	where  is the best individual. Ri and δ are uniform random number. 
	Design and Comparison of IIR Filters
	Parameters for DE
	Low Pass Filter
	High Pass Filter

	The design of cascaded digital IIR filter has been implemented. The filter coefficients have been evaluated by applying different mutation variants of DE method. The low pass (LP) and high pass (HP), digital filters have been considered for the design. The design conditions for these filters are given in Table 1.
	Table No.1
	 Design conditions for LP, HP, BP and BS filters.
	Stop-band
	Pass-band
	Filter type
	1
	Low-Pass(LP)
	1
	High-Pass(HP)
	To design digital IIR filter, 200 equally spaced points are set within the frequency domain, such that the number of discrete frequency points in Eq. (8), comes out 182 for the LP and HP filters, along with prescribed pass-band and stop-band frequency range is given in Table 1. The ripple magnitudes of pass-band and stop-band are given by and  respectively (Lightner & Director, 1981). Ripple magnitudes are defined as:
	 (35)
	and
	 (36)
	For LP, and HP digital IIR filters ten different mutation variants of DE, (DE-1 to DE-11) have been applied to access the effect on performance of DE. For each mutation the value of M and N has been varied from (2,2) to (7,7) for LP filter and HP filter, The maximum number of iterations has been taken as 100 for all eleven mutant variants of DE. The maximum migration value is 50. The mutation ratio, fm and crossover ratio, CR has been taken as 0.85 and 0.25, respectively. The rate of opposition varies between 0 and 1 has been taken as 0.6 Exploratory move is repeated 20 times. For comparison purposes the value of α has been taken 1.618 for all eleven mutation variants of DE.
	The low pass filter is designed, as per parameters given in Table 1. The algorithm was given 100 runs for all ten mutation variants (DE-1 to DE-10) of DE, along with the four mutation strategies combined together (DE-11) as given in Eq. (31). All eleven DE mutant variants were run for various combinations of M & N varying from (2, 2) to (7, 7). The best results obtained from each of the eleven mutations are given in Table 3 along with order number. It is observed from the results given in Table 3 ,that out of the eleven implemented mutation strategies, the mutation strategy number 4 (DE-4), with value of M & N as (2,3) and having order no 8  gives the best result for LP filter. The coefficients of IIR filter model designed by this mutation strategy (DE-4), for filter order 8 are given in Table 2. 
	Table No. 3
	 Design Result For LP Filter
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Order
	Mutation
	8
	0.97106
	DE-1
	(0.88338)
	(0.12989)
	8
	6.05279
	DE-2
	(0.32409)
	(0.26330)
	10
	1.52052
	DE-3
	(0.247831)
	(0.42104)
	8
	0.773449
	DE-4
	(0.05883)
	(0.05009)
	16
	2.03332
	DE-5
	(0.05398)
	(0.24317)
	16
	2.37581
	DE-6
	(0.251464)
	(0.073119)
	9
	4.05596
	DE-7
	 (0.10647)
	(0.23214)
	8
	4.62363
	DE-8
	(0.42837)
	(0.08453)
	11
	1.174421
	DE-9
	(0.09852)
	(0.10528)
	21
	3.27079
	DE-10
	(0.34024)
	(0.098221)
	21
	3.66998
	DE-11
	(0.58160)
	(0.039209)
	For low pass filter the results obtained by Hybrid (Kaur, Patterh, & Dhillon, 2012), Heuristic (Kaur, Patterh, Dhillon, & Singh, 2012), HGA (Tang et al., 1998), HTGA (Tsai et al., 2006) and TIA (Tsai & Chou, 2006) with filter order 3 (M and N taken as 1,1 respectively) are depicted in Table 4 below. It is observed that the results obtained by DE-4 with M & N as (2,3) are better than the results depicted by Harris and Ifeachor (1998), Tsai et al. (2006), Tsai and Chou (2006), Kaur, Patterh, and Dhillon (2012), and Kaur, Patterh, Dhillon, and Singh (2012) given in Table 4 for value of M & N as (1,1) respectively 
	Table No 4: Results of previous researchers
	Stop-band performance
	Pass-band performance
	Magnitude Error
	Method
	Order
	3
	Hybrid
	(Kaur, Patterh, & Dhillon, 2012)
	3.7903
	 (0.1405)
	(0.0976)
	3
	Heuristic (Kaur, Patterh, Dhillon, & Singh, 2012)
	4.1145
	 (0.1238)
	(0.0871)
	3
	HGA (Tang et al., 1998)
	4.3395
	(0.1802)
	 (0.1139)
	3
	HTGA (Tsai et al., 2006)
	4.2511
	(0.1247)
	 (0.0996)
	3
	TIA (Tsai & Chou, 2006)
	3.8157
	(0.1638)
	(0.1086)
	/
	Figure 1: Magnitude versus Iterations for DE-4 with filter order as 8
	After 100 runs of each mutation with varying values of M and N, the best results are depicted in Table 3. Out of  these,  for the best result obtained from mutation  DE-4 with M & N values as (2,3) and order 8, the maximum, minimum and average value of magnitude error along with standard deviation for low pass filter are given in Table 14. For the best results obtained from DE-4 with order 8, the magnitude versus number of iterations graph for its internal 90 runs is shown in Figure 1. The frequency response of DE-4 with order 8 has been shown in Figure 2 and the corresponding pole-zero plot for DE-4 with order 8 has been shown in Figure 3.
	/
	Figure 2 Frequency response of LP filter using DE-4
	/
	Figure 3 Pole-Zero plot of LP filter using DE-4
	The high pass filter is designed as per parameters given in Table 1. The algorithm was given 100 runs for all ten mutation variants (DE-1 to DE-10) of DE along with the four mutation strategies combined together (DE-11) as given in Eq. (31). All eleven DE mutant variants of high pass filter were run for various combinations of  M & N varying from (2,2) to (7,7).The best results obtained from each of the eleven  mutation are given in Table 6 along with its order number.
	It is observed from the results given in Table 6 that out of the eleven implemented mutation strategies, the mutation strategy number 6 (DE-6), with value of M& N as (3,4) and having order  11  gives the best result for HP filter. The coefficients of IIR filter model designed by this mutation strategy DE-6, for filter order 11 are given in Table 5. 
	Table No.6
	Design Results For HP Filter
	Stop-band performance
	Pass-band  performance
	Magnitude Error
	Order
	Mutation
	7
	4.71661
	DE-1
	(0.26693)
	(0.70663)
	17
	3.76309
	DE-2
	(0.25695)
	(0.12720)
	10
	3.32338
	DE-3
	(0.21574)
	(0.09667)
	14
	2.66384
	DE-4
	(0.08972)
	(0.25996)
	7
	2.88517
	DE-5
	(0.04362)
	(0.21060)
	11
	2.22471
	DE-6
	(0.10209)
	(0.10146)
	10
	3.36576
	DE-7
	(0.19688)
	(0.07653)
	21
	4.13695
	DE-8
	(0.16092)
	(0.15744)
	8
	2.83621
	DE-9
	(0.11302)
	(0.15494)
	7
	6.65741
	DE-10
	(0.50469)
	(0.08242)
	15
	2.39701
	DE-11
	(0.09198)
	(0.04116)
	For high pass filter the results obtained by Hybrid (Kaur, Patterh, & Dhillon, 2012), Heuristic (Kaur, Patterh, Dhillon, & Singh, 2012), HGA (Tang et al., 1998), HTGA (Tsai et al., 2006) and TIA (Tsai & Chou, 2006) with filter order 3 (M and N taken as 1,1 )  are depicted in Table 7 below. It is observed that the results obtained by DE-6 with M & N as (3,4) are better than the results depicted by Harris and Ifeachor (1998), Tsai et al. (2006), Tsai and Chou (2006), Kaur, Patterh, and Dhillon (2012), and Kaur, Patterh, Dhillon, and Singh (2012) given in Table 6 for values of M & N as (1,1) respectively.
	Table No 7
	Stop-band performance
	Pass-band  performance
	Magnitude Error
	Order
	Method
	3.9724
	(0.0639)
	Hybrid
	(0.1536)
	(Kaur, Patterh, & Dhillon, 2012)
	4.6635
	Heuristic (Kaur, Patterh, Dhillon, & Singh, 2012)
	(0.0504)
	(0.1477)
	14.507
	HGA (Tang et al., 1998)
	 (0.0779)
	(0.1819)
	4.8372
	HTGA (Tsai et al., 2006)
	(0.0540)
	(0.1457)
	4.1819
	TIA (Tsai & Chou, 2006)
	(0.0771)
	(0.1424)
	After 100 runs of each mutation with varying values of M and N, the best results are depicted in Table 6. Out of  these, for the best result obtained from mutation  DE-6 with M & N values as (3,4) and order 11, the maximum, minimum and average value of magnitude error along with standard deviation for high pass filter are given in Table 14. For the best results obtained from DE-6 with order 11, the magnitude versus number of iterations graph for its internal 90 runs is shown in Figure 4. The frequency response of DE-6 with order 11 has been shown in Figure 5 and the corresponding pole-zero plot for DE-6 with order 11 has been shown in Figure 6.
	/
	Figure 4 Magnitude versus Iterations for DE-6
	/
	Figure 5 Frequency Response of HP filter using DE-6
	/
	Figure 6: pole zero plot of HP filter using DE-6
	The maximum, minimum and average values of magnitude error along with standard deviation  obtained after 100 runs for Low Pass filter with mutation 4 (DE-4) and  order 8, for high pass filter with mutation 6 (DE-6) and order 11, have been given below in Table No 14. 
	Conclusion
	This paper proposes the different eleven mutation variants of DE for the design of digital IIR filters whereby locally fine-tuned by exploratory search method. As shown through simulation results, all DE methods work well with an arbitrary random initialization and it satisfies prescribed amplitude specifications consistently. Therefore, the proposed algorithms are useful tool for the design of IIR filters. 
	On the basis of above results obtained for the design of digital IIR filter, it can be concluded that for low- pass, high-pass, band-pass and band-stop filters, out of the proposed eleven mutation variants of DE method DE-4 and DE-6 methods of DE, respectively are superior to the GA-based method. Further, the proposed DE approach for the design of digital IIR filters allows each filter, whether it is LP and HP digital IIR filter, to be independently designed.
	The proposed DE methods are very much feasible to design the digital IIR filters, particularly with the complicated constraints. Parameters tuning still is the potential area for further research. The unique combination of exploration search and global search optimization method that is predator-prey optimization provided by the two types of algorithms yields a powerful option for the design of IIR filters.
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