
Proceedings of Informing Science & IT Education Conference (InSITE) 2012 

The Use of Keywords by Context  
to Relate Items of a U-book  

John Bauer Mengelberg and Nancy Hernandez Negrete 
Colegio de Postgraduados, Mexico 

jbauer@colpos.mx  hernandez.nancy@colpos.mx  

Abstract  
The need to index large data collections and the different types of structures used to store and in-
dex them is presented for a particular application: U-books, which are collections of multimedia 
files that are presented in different ways to its readers. The descriptions of files are stored as items 
in a database table. Ordered subsets of these items - called sequences - are offered, instead of a 
single set of items of a book. Since the concept was broadened from an extension of an e-book to 
other types of uses of the materials, the number of files could be sufficiently large to require addi-
tional descriptors to retrieve them individually or in subsets satisfying certain search criteria. To 
perform these searches efficiently, the items must be indexed in some manner. RISP, a compo-
nent of SPRP - the software package that implements these books - is used to relate items based 
on keywords by context, which are tags provided to indicate their interpretation. The data struc-
tures and methods of RISP are described, and the need to index the keywords leads to the use of 
KBC, a particular indexing scheme that is essentially a Generalized Inverted index but also offers 
the use of equivalent terms which will be indexed by a common term. An example based on a 
collection of multimedia teaching materials used by schools and colleges is used to explain and 
illustrate the features of U-books and the software. Some technical details are included as part of 
the descriptions; others are either included in the Appendix or omitted.  

Keywords: e-book, index, generalized inverted index, keywords by context, informing process, 
information retrieval 

Introduction 
The proverbial needle in a haystack provides a good way to explain the topic of this paper. There 
are essentially three ways to look for the needle: you look all over the place; somebody told you it 
would only be in one small sector of the stacks; or you might be told exactly where it is. In many 
situations regarding information retrieval, the situation is complicated by the fact that the longest 
needle is sought but the number of needles is unknown. A search to find one or more elements of 
a repository or collection of information items is such a situation. A strategy to reduce the amount 

of work is to index the information so 
that it is not necessary to examine every 
item individually. Thus such indices are 
necessary, not just convenient, for al-
most any large collection of objects.  

In order to index something, you have to 
decide on some attribute or property of 
the object to which the index will refer. 
In a book a chapter index helps find a 
particular topic, but to find a particular 
word one would use a word index. In a 

Material published as part of this publication, either on-line or 
in print, is copyrighted by the Informing Science Institute. 
Permission to make digital or paper copy of part or all of these 
works for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit 
or commercial advantage AND that copies 1) bear this notice 
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To 
copy in all other cases or to republish or to post on a server or 
to redistribute to lists requires specific permission and payment 
of a fee. Contact Publisher@InformingScience.org  to request 
redistribution permission.  

This paper was accepted through blinded executive review 

mailto:jbauer@colpos.mx
mailto:Publisher@InformingScience.org


Use of Keywords by Context 

database, you can include several indices that will point to different elements (fields or combina-
tion of columns) of records of the same table. Thus the index itself (not its values) can be consid-
ered as a pair: what you are indexing, and the way you build, store and use it.  

A client seeking knowledge or information will formulate a question and the programs should 
respond accordingly. Thus, the software must provide both components: the one that will accept 
(and understand) questions formulated in a certain way; the other used to find and deliver the re-
sults. Search engines are perhaps the best known of such products, since we all use them con-
stantly. Of course there are other information retrieval processes: someone wishes to know what 
is in a collection, instead of asking for particular items. This is the case in business analytics or 
data mining applications, but also in many others. The software product will include the conven-
ient indices, probably based on some type of cost-benefit considerations – especially in computer 
resources and response times, but also constrained by the possibility to include an adequate index: 
once again, you cannot index something that is not defined or specified as an attribute of the ob-
ject you are indexing.  

This is the topic of this paper: in a particular situation, it was not possible to include the necessary 
mechanisms to deliver the information so as to satisfy some of the attributes we expect from an 
informing process. The situation we describe concerns U-books, which can be succinctly de-
scribed as follows: U-books (Bauer Mengelberg, 2007) are collections of items, which may be 
thought of as files containing multimedia objects, and sequences, through which ordered subsets 
of these items are offered to a reader. Further descriptions as well as some comments about the 
origin of these books will be presented in a separate section: this organization of the paper was 
chosen in order to introduce the need to include keywords and index them promptly.  

There is a collection files which can be almost anything that can reside on a computer disk, in-
cluding local devices or remote ones. A U-book allows offering these files to readers that differ   
regarding to what they wish to read or find out. It uses a database to describe the files. An item is 
a record of a table that contains certain general descriptors of one of more files that represent or 
refer to the same knowledge, event, fact or other contents, but in different languages or versions. 
Thus an item is actually a pointer to its files.   

We will use a single example of a U-book throughout this paper. A group of schools and colleges 
decide to share their materials, including almost anything that might be useful to teachers, either 
for preparing a class, assigning tasks, formulating exams, writing a textbook or class notes, group 
discussions about teaching methods and techniques, results of certain methods, experiments, 
evaluations by teachers and students, whatever. They decide to include all their materials in a U-
book, “Didactic material”. A name is necessary to organize the book’s data elements. 

To organize the collection so that items can be found and used, they establish certain procedures 
to include their own files as well as web pages and describe them as items of the book. For exam-
ple, they will adhere to certain classifications of the materials according to standards defined spe-
cifically for this instance. As features of U-books are described in the section dedicated to this 
topic, they will be included in the description of the example. 

The teachers and administrators understand it is a lot of work, but it will be done by several per-
sons as items become available or are found somewhere. Other schools and colleges from any 
country will be invited to join the project. They also agree on certain options offered by U-books. 
Initially, they only have materials in English and Spanish, but they expect to obtain files in other 
languages since the will invite other schools and colleges from any country to join the project. 
They will use versions of items, which they will specify according to a catalogue prepared for this 
purpose to reflect the content, presentation, types of use or other characteristics of a particular 
file.  

536 



Bauer Mengelberg & Hernandez Negrete 

An item of this collection might be an experiment in physics, and several files explain or show 
the experiment in different ways, using a video-clip, a presentation, a plain text or a link to a 
page. But versions could also indicate that the content is theoretical or demonstrative. Note that 
more than one item might refer to the same experiment. 

The main use of the items is to assemble sequences according to their purpose. A teacher may 
want to look at all items that refer to similar experiments, especially those that are useful for his 
next lecture. He will then build his sequence for the class using some of them; of course he could 
add items to the collection as he creates them or obtains them elsewhere. Other users may use the 
book to compose class notes or even a textbook. 

They also decide to make use of the restricted privileges feature, whereby certain items are only 
available to a subset of the users of the book. They understand that these constraints may be vol-
untary or not: someone wishes to hide certain materials from his students  - who of course may be 
users of the U-book as well as their teachers -  or use the constraints so as never to be offered an 
item that he does not need or will never use. Examples of the constraints used for the latter pur-
pose can be found in an application of U-books for the use of delegates to a conference in (Bauer 
Mengelberg, 2011). Several different ways are offered to delegates to find out schedules of pres-
entations, especially but not exclusively to select the ones they will attend. The knowledge field 
of every paper is included as part of its description: this allows a delegate to select the fields in 
which he is interested, thus preventing other papers to appear in the programs. Delegates can 
change these constraints either temporarily or permanently whenever they wish to do so.  

The delegate U-book also provides an example of the use of several versions of an item. For 
every paper, the title, authors, knowledge field and the session in which it will be presented con-
stitute one version; another version includes a biography and photograph of the main author, and 
still another one is the full paper. Some of the sequences prepared for delegates present the first 
version, and offer the others as an option. One could add a posteriori versions to the item, since 
the book could be offered to delegates as a memory of the conference: a video-clip of the presen-
tation itself; the list of delegates that attended it; or perhaps the discussion that followed the pa-
per. Observe that several files of this book are included in more than 1 item. For example, biogra-
phies and photos are included as items referring to authors as well as to their papers.   

The teachers in our example particularly appreciate a feature of SPRP, the software product that 
will allow them to expand their U-book to include material from other countries: it is not only 
available in several languages, but is translatable (Bauer Mengelberg, 2001) to any other lan-
guage as well, where this adjective indicates that the interfaces can be translated without any 
knowledge of programming languages, databases or other technical aspects of the programs, but 
especially without having to modify the actual programs or database tables. 

Though initially conceived as an extension of e-books, U-books can be - and are - used for sev-
eral other purposes. The example we use here illustrates one such situation, where the number of 
items is sufficiently large to necessitate more “pointers to items” – as one can interpret indices in 
this situation - than offered by the fields of the item database table. Thus, items can be furnished 
with additional descriptors – in the form of keywords – by RISP, a special component of the 
software and the topic of this paper.  

In the Didactic material book, keywords by context are added as needed for an item so it can be 
retrieved  asking for any combinations of some of them, such as the knowledge field (physics), 
the topic, the persons involved, the use of the items (class, notes), the type of description (theo-
retical or not), the type of audience (for example, to prepare an actual experiment for a particular 
class), or several other attributes that may limit the list of items delivered by a search. However, 
keywords are not enough by themselves: the term “watch” could refer to a timing device, a word 
in the title of Rembrandt’s Night Watch or as a verb. So the term by itself does not provide an 

537 



Use of Keywords by Context 

interpretation. In other words, keywords are examples of unstructured information, a designation 
that reflects precisely this circumstance, as opposed to the fields of the item’s record, whose 
meanings are conveyed by their position in the record.  

To indicate the meaning or interpretation of a keyword to differentiate it from others, we provide 
it with a tag – called its context. In (Tag metadata, 2010), a tag is defined as “a non-
hierarchical keyword or term assigned to a piece of information. This kind of metadata helps de-
scribe an item and allows it to be found again by browsing or searching.” Since a table of a rela-
tional database has fixed columns (fields) and only one value can be provided for each field, a 
NoSQL database is used, where in computing this term designates database management sys-
tems that differ from classic relational database management systems (RDBMS) in some way 
(NoSQL Concept, 2010). Amongst them, including RISP, many are based on key-value pairs, 
where a unique key is associated to one or more values. By adding their context, keywords will 
now be part of what is called semi-structured information. 

The inclusion of keywords by context offers additional ways to locate an item or a collection of 
items that satisfy a particular request, since now the criteria can include them besides the item 
table’s fields. For example, one might wish to retrieve all items that satisfy the condition: 
[Knowledge field = physics] AND [topic = pendulum] AND [language = English or Spanish] and 
[level = Expert]. As will be seen, contexts are numbered so this will not be the real query.  

To deliver the subset of items that satisfy such a search criterion, either the entire collection must 
be examined or some type of indices may be available. Since the first alternative is not attractive 
for large data collections, RISP indexes every [context, keyword] pair that is specified for its 
items. For that purpose, it uses an indexing product called KBC; it was chosen since, besides be-
ing efficient, it offers equivalences, which can be limited by context or language. Observe that 
this feature is necessary for many applications, including our example. An item can include the 
keyword “FISICA” whereas another one has “PHYSICS”, though they both indicate the same 
knowledge field. A search based on this keyword should retrieve items regardless of whether they 
have one value (of the context) or the other. So an equivalence is specified: FISICA will be 
equivalent to PHYSICS, but only in Spanish and perhaps only in certain contexts. For example, 
when the term appears in the context “topic” of an item, such as preparación física” (fitness), the 
equivalence should not apply because the term is used with a different meaning: its context is dif-
ferent.  

The quadruplet [equivalent, context, language, basic] will cause KBC to replace the equivalent by 
the basic term if the context and language constraints apply (this is the terminology used by 
KBC). The basic value will be included in the index. Whenever the equivalent term appears, KBC 
will replace it by the basic value indicated in the equivalence, but the item’s description will not 
be affected. 

Besides the features of RISP and KBC, the data structures selected for both of them are discussed, 
as well as alternatives data models that could have been used. The paper was therefore organized 
in the following manner. 

After U-books are introduced, the need to include keywords by context as additional descriptors 
of items leads to the inclusion of RISP, the software component that implements them. Equiva-
lences are introduced as part of RISP’s features. KBC is then described as the product that man-
ages the indices. Some possible applications of U-books precede the conclusions, which include 
present and future research in these topics. Some topics and details were included as an Appen-
dix, especially to allow readers to skip subjects or details in which they may not be interested. 

538 

http://en.wikipedia.org/wiki/Index_term
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system


Bauer Mengelberg & Hernandez Negrete 

U-book – An Informing Tool 

U-books as e-books 
Several years ago, people started to think about computers as a means to publish and read a book. 
An electronic book or e-Book is a text and image-based publication in digital form produced on, 
published by, and readable on computers or other digital devices (Gardiner & Musto, 2010). This 
definition does not - explicitly - include some of the new possibilities offered by digital books, 
such as the inclusion of multimedia materials, the live references to published papers and books, 
and very specially, due to its enormous impact on the way a book is now written, the possibility 
of including links – be they hypertexts or some other way to access the material in non-linear 
ways. Of course for some readers, the possibility of enlarging letters or having a software product 
read the texts out aloud may be the main advantage of reading the book on a computer or similar 
electronic device.  

Many of the available software products used to publish such an e-Book emphasize the maximi-
zation of the author’s revenues. For example, the description of a product called ebook88 
(ebook88, 2002) enhances environmental aspects, the cost of producing them and the ease of dis-
tribution, adding the possibility of making changes or adding materials to the book. This allows a 
book to offer current information, a desirable attribute of an informing process (Gackowski, 
2005). Of course the concept does not apply to any type of book, but it is vital for processes that 
offer information, precisely one of the uses of U-books. 

In “E-book, an article” (2007) we found an illustrative discussion comparing several meanings of 
the same terms, such as e-books meaning the material as well as the device to display it, and e-
texts as plain text files instead of the bundled files produced by most e-book products. E-texts 
were first introduced by Michael Hart in 1971, with the purpose of making all information avail-
able to everybody (Hart, 1992). This in turn implied offering the material through the most avail-
able software products, as is still the goal of many informers. However, the book industry mainly 
offers e-readers (or e-book devices), portable electronic devices that are designed primarily for 
the purpose of reading digital books and periodicals. Devices such as Kindle (2011) and Nook 
Color (2011) have gained acceptance far beyond expectations, so that new models and brands 
with expanded features, as well as products for use on mobile devices, are offered to the rapidly 
growing population of electronic book readers. An up-to-date comparison of available devices 
can be found in (Comparison of e-book readers, 2011) which is also the source of the definition 
of e-readers reproduced here.  

Some of us regarded the above mentioned possibilities – and several others - of digital publishing 
as the creation of a new concept, somewhat more general than a book in the traditional sense of 
the word, which would eventually replace most printed books, not just due to distribution and 
ecological considerations, but precisely because they add new dimensions to the information that 
may be transmitted to a reader. U-books are a result of precisely such an outlook: they intend to 
take advantage of most of the new features made possible by the fact that they will be read on an 
electronic device. The concept was formulated as an informing tool, and thus, adheres to Cohen’s 
sentence definition of Informing Science (Cohen, 1999): “The fields that comprise the transdisci-
pline of Informing Science provide their clientele with information in a form, format, and sched-
ule that maximizes its effectiveness.” U-books are very client-oriented; thus many of its features 
were defined following Birdsall (2009) and Gill and Bhattacherjee (2007). 

As stated in the original paper about U-books, they complement the existing enhancements made 
possible by the electronic medium. Their introduction is not meant to cause a significant change 
in the publishing world, but to offer a different way to communicate with readers of the material 
who, as stated, have a much bigger role in this interaction than in traditional books. Additionally, 

539 



Use of Keywords by Context 

other uses of the concept and the resulting software product are not only possible, but probably 
will have greater impact than any new types of books made possible by the added features.  

The concepts of U-books are not new, but after a very extensive search, both in the literature and 
the description of soft-ware products, no similar entity was found. For example “Build a Custom 
Book” (O’Reilly’s SAFARI-U, 2006) illustrates how a textbook can be created by concatenating 
articles, papers and excerpts from existing material. The idea is the same, but the differences 
when compared to U-books definitely outweigh similarities. In this context the recent announce-
ment by Apple of their Ibooks will be mentioned in the final remarks about the applications of U-
books, since some details about the latter is necessary to understand them. 

The concept of a U-book was reached in three stages. The initial idea was to offer parts of a book 
in different orderings. If would be grossly unfair to fail to refer to Julio Cortazar’s Hopscotch (the 
original title is Rayuela) in this context: the book offered several readings by changing the order 
of its chapters (Cortazar, 1963). Instead, U-books offer items to be rearranged, not entire chap-
ters.  

Next, versions and translations of the same item were included, pursuing the goal that Gackowski 
(2005) formulated as “information reaching the reader should be interpretable during acquisition, 
a primary requirement in all informing situations”. Additionally, Gackowski (2005), referring to 
the use of information for a choice between alternatives, suggests that “data or information values 
or any combination thereof should not only be usable but also useful. It means they can be used 
effectively, for which they should be interpretable during presentation”. Usefulness, however, is 
contextual, depending heavily on the situation. For example, in the context of teaching or present-
ing a subject to an audience, one wishes to achieve a certain degree of success measured by the 
degree of comprehension, assimilation and in certain instances, belief by the members of the au-
dience of the materials. The way the subject is presented will have a significant effect on these 
objectives. So offering diverse presentations of the information to different audiences constitutes 
one of the main tools available to teachers and other communicators.  

Finally, the necessity to block some of the items from certain readers led to the inclusion of the 
restricted privileges component as part of the software product. Its primary concern is, rather than 
preventing unauthorized reading of the books, to bar individual readers from seeing something 
they should not – or do not want to - see. Hereby, we address another desirable attribute of an 
informing process: its relevance and interest of the client of the information, which according to 
Gackowski rank high in the list of such attributes. A reader of a U-book may use chapter and 
level constraints to bar certain non-interesting items, of course referring to his particular interests.  

One may think of a child not being able to see adult material, or a student not having access to the 
solutions of the problems included in a textbook. On the other hand, a reader may not enjoy maps 
depicted in a history book or explanations of items that are superfluous for an expert on the sub-
ject. An examination of several publishing tools showed that they claim that they would signifi-
cantly reduce unauthorized use of the materials. On the contrary, we subscribe to the theory of 
free and unlimited distribution of knowledge, central to many organizations and groups, including 
the Informing Science Institute which applies this to any type of published material.  

U-books emerged as a result of addressing all these attributes, where the U stands for unstruc-
tured, since the parts (called items) of the book do not necessarily have a place or meaning within 
the book. Software products such as ITUNES and IPHOTO (Apple Computer, 2006), to name 
just two of them, allowed an ever increasing number of persons to build a list of items – in this 
case, a playlist or a photo book - to be enjoyed in a certain order: this is exactly the same as build-
ing a sequence of a U-book. As a matter of fact, the existence of such tools makes the explanation 
of our concept all the harder, since we are treading on known paths: people will not listen to 
added features or will tend to reject them automatically. We think of this in a peculiar manner: 

540 



Bauer Mengelberg & Hernandez Negrete 

one seeks analogies when presented with new concepts, and this process in turn causes differ-
ences to be ignored or questioned.   

As a result of applying the concept underlying U-books to different types of texts, books or other 
uses, such as the preparation of class materials, presentations, shows, catalogues and many others, 
several features were added, mainly through changes and additions to SPRP. They were included 
for different but converging purposes, including mainly: to increase the variety of items of a 
book; enhance the way to present it to its readers; and provide additional aids to those preparing 
sequences. Many of the new features included in SPRP were due to shortcomings that surfaced 
when U-books were used in different areas, admittedly most of them associated directly or indi-
rectly with academic activities. 

The software product in its different versions once again proved that perhaps the most difficult 
attribute of an informing tool is to avoid excessive task complexity (Gill & Hicks, 2006). As is 
often the case, flexibility may result in added complexity: more and similar features may cause 
the product to be quite difficult to use. Both the provider and the client of the informing process 
were taken into account in the design of SPRP, and constant changes reflect previous failures to 
achieve a certain degree of simplicity as well as improvements in this direction. The authors of a 
book will have to know how to use certain special components of the programs, or rely on some-
one else - we refer to them as editors - to perform the necessary tasks. Anybody who has pub-
lished a book or prepared an e-Book will relate easily to this concept. But, alas, the reader is the 
main stakeholder, and it is really easy to read a sequence.  

The Items of a U-book 
Conceptually, an item is a description of one or more files: one might think of it as a pointer to a 
set of files. Though the items can be used individually for many purposes, their main use is that 
they can be included in sequences. 

Suppose an item of the Didactic materials book is refers to an experiment to explain a pendulum. 
It contains step by step instructions of what materiels are used and the steps to perform the ex-
periment. However, there are several such explanations that will be included as a single item: 
some are in Spanish, and others are offered for High School and College students. Besides, some 
of the explanations were recorded as video-clips, whilst others were texts or Power Point presen-
tations. So the item will point to several files. Figure 1 shows the files associated with an item 
that consists of explanations of the pendulum.  

 

Figure 1. An item of a U-book and its files 

The Versions (numeric codes) used by the book were established previously – though others can 
be added anytime. Here we use Version 1: the default or only version; version 2: elementary ma-
terial; 3: advanced material; 4: for specialists or experts. Of course there may be others.  

541 



Use of Keywords by Context 

SPRP uses numeric codes for file directories, and refers to them as path numbers. Paths are nested 
in another path (the father path), meaning that the full directory name is obtained by concatenat-
ing the father’s and the son’s path names. This feature was included to obviate the need to change 
the paths of all files when they are moved to a different location (or computer) or to allow their 
use in different locations. For example, a user may use a book that resides on a different computer 
of the network or in a domain on the web. He would only have to change path # 7, and all the 
book’s files will then be used at this location.  

Table 1: The path numbers used by the Didactic Material U-book 

# Nested in Name Description

1 0 C:\ The directory of the user's computer

2 7 Didactic material\ the directory created for the book

3 2 item files\ part of the files of a book

4 4 SPRPfiles\ Resides in the SPRP directory

5 1 SPRP\ SPSP's programs and files

6 2 RISPdata\ part of the files of a book

7 0 C:\ Where the book's data is stored

8 3 Physics\ A subdirectory of the item files  

Typical path numbers for the book of the example are shown in Table 1. Path numbers are stored 
in the SITEBASE database. The user of a session can change a path for the purpose of his ses-
sion, but this will not update the database, which is shared by other users, not only of that book 
but any others that may have been created. Paths can be added whenever needed. 

Sequences 
A U-book offers information to its clients, whom we shall call readers of the book, though the 
term might not apply in some cases such as a student in a class. A reader will be presented some 
of the items of the book in the form of a sequence: an ordered subset of the items. Figure 2 shows 
several sequences of a book, though it also illustrates other features. The different shapes used to 
depict items are meant to show that the corresponding files may be of different (multimedia) 
types. Additionally, the chapter and level constraints are illustrated. 

Figure 2. Sequences of items 

In the sequences depicted in Figure 2, sequence S12 has sequence S3 as one of its elements, so 
we refer to the latter as a subsequence of the other one. Thus, S12 will present items 2, 10, 16, 24, 
32, 20, 24 in that order. Notice that item 24 occurs twice in the same sequence: there is no reason 

542 



Bauer Mengelberg & Hernandez Negrete 

to limit an item to appear only once in a sequence. Subsequences can simplify the construction of 
sequences, especially long ones such as a text-book, or even a presentation. They may serve to 
divide the task into a number of separate stages, but also save a lot of effort since they are reus-
able.  

A user has a level in every chapter of the book: he may not see items that have a higher level. In 
the example depicted, user #146 may not see items 24, 37, 32 since he has level 2 in chapter 3, or 
any of the items of chapter 14. Thus, User #146 would see only items 2, 10, 16, 20 when he reads 
S12. Once again, we use the terms read or see items of a sequence, though actually the reader 
may be listening to an audio clip.  

Observe that the term chapter is used with a totally different meaning than the corresponding 
term in a book. It was adopted because e-Books are often offered to readers (buyers) in releases: 
one chapter is sold or offered free, and subsequently the interested reader will purchase the other 
chapters. This misnomer was caused by our inability to find an alternate designation for such 
groups of items. Since the term is pretty much transparent to most readers, users of U-books will 
soon overcome the initial confusion caused by this terminology.  

Additionally, in every chapter, a user has a role that indicates which functions he may perform 
with items of that chapter. Roles are: 0=nothing; 1=only read; 2=update items; 9=assign roles of 
that chapter to other users. For example, User #146 is practically the “owner” of chapter 1 (he can 
do everything) whereas he is just a reader of chapter 3.  

Building a Sequence  
Elements of a sequence are either items or other sequences included as subsequences. This fea-
ture is recursive, that is, a subsequence may in turn have its own subsequences. (SPRP detects 
loops that may result from this feature.) Elements of the sequence are presented as a list, and de-
letion and reordering are performed on it by selecting an element and indicating the desired op-
eration. There are essentially three ways to add elements to a sequence.  

 An item or a sequence can be added (or inserted anywhere) individually indicating its 
item number.  

 One or more items are selected from a list of items, and added to the sequence. 
 A list of items is prepared, using a filter or relations based on their descriptors, and the 

resulting items added to the sequence. The filters are based on combinations of conditions 
formulated using the main classifications of items, such as the type of item, one or sev-
eral chapters and a minimum level of each of them, and the fixed fields that are used to 
indicate other attributes of an item.  

 An existing (previously defined) sequence can be added as a subsequence. 
 Elements of an existing sequence can be added as a special case of the filtered lists of 

items, but changes made to the source subsequence will not be reflected on the new one.  

As will be described below, the RISP feature was included mainly but not exclusively to provide 
additional ways to add elements to a sequence: it will use operations based on the keywords by 
context to build a result list of items which can be added to the sequence. 

From a list of items, there are once again three alternatives:  

 All the items of the list are added to the sequence. The user may indicate the position in 
which he wants to insert them.  

 Elements of the list are selected and added to the sequence.  
 The file corresponding to each item of the list is displayed one after another to the user, 

so he can decide if it should be added or not.  

543 



Use of Keywords by Context 

Besides its elements, a sequence has attributes of its own, which are introduced using an interface 
similar to that illustrated in Figure 3. “Default values” for the version and language may be indi-
cated. If not equal to zero, they will override the reader’s preferences. As shown below, a version 
or language can be specified for an element as well; these values will override any previous speci-
fications. Notice that understanding all these details is in no way essential for the comprehension 
of the main topics of this paper (relating items via RISP).  

 

Figure 3. The interface to update options and attributes of a sequence 

To add an item as an element of a sequence, a list of items can be invoked. Since this list may be 
too large to be of any use – think of a list of a few hundred thousand items – a filter is offered so 
that only items that may be of interest for this purpose are offered. Figure 4 shows a simplified 
version of the interface to define such a filter. 

Observe that RISP can be used to limit this list. We use this function to point out that a user will 
not see any components of the system he does not need or even know, to avoid confusing users 
that do not know the concept. For example, in a book where chapter constraints are not used (an 
option of a book) all references to chapters and levels will disappear from the screens. This par-
tially explains the design of screens, which took this feature into account for an additional reason: 
a user should not notice missing elements. 

Figure 4. Filtering the list of items offered to the builder of a sequence 

An item can be included as an element of a sequence by – first - indicating its number and using 
the ADD 1 ITEM feature, which will be disabled unless he provides the number. The same is true 
for subsequences; in both cases, the system will reject the request if the corresponding object is 
not already in the database. Figure 5 depicts some of the components of the interface used to up-
date the elements of a sequence. Other objects appear when they are invoked, and still others 

544 



Bauer Mengelberg & Hernandez Negrete 

were left out since they would only complicate explanations and are not needed to understand the 
essence of the function. 

 

Figure 5. An interface to add and edit elements of a sequence 

The “Change order” button will activate a set of fields that allow such operations. The timer fea-
ture was included to allow the builder of a sequence to determine the duration of the display of 
the item as part of a sequence. Actually, one can also indicate the duration for a particular file; the 
difference is that in this case, the same duration will apply to the item in any sequence, which 
may or may not be desirable. We use this timer to synchronize certain items when presented si-
multaneously, either on two (or even three) separate devices or on a split screen,  a topic that was 
not included in this paper but will be mentioned briefly as part of our current and future research.  

To round off this section, let us add that a sequence can be used as a source for another one. A 
new sequence duplicates the other one, typically to provide a user with the possibility to eliminate 
or add elements.  

Reading a Sequence  
The reader of a U-book is a user, that is, he has gained access to the book. When he starts a read-
ing session, he will choose one of a list of available sequences. There might be sequences that are 
reserved for certain users only, for example, somebody built a sequence only for himself. If there 
are many sequences, he may filter this list in several ways, typically by their name or description, 
but also by the author of the sequence (who built it).  

Once he has chosen a particular sequence, he may change certain reading options, especially the 
choice of a language and version: he will see the items of the sequence in the chosen version 
whenever they are available; otherwise items will be offered in their default versions. SPRP also 
remembers readers of the book: at the start of a session, even on a different computer, a reader 
will be offered the last sequence he used, and he may even indicate to restart where he left off.  

The elements of the sequence are presented one after another. He may invoke a navigator, includ-
ing an index of the sequence which can be built for it, to choose the next element he wishes to 
see. However, he will never be shown or offered an item which he may not see due to a chapter or 
level constraint.  

Finally, a reader can comment elements of a sequence, both for his own use or – optionally – also 
for the use by others. It is important to note that these comments will not refer to the items them-
selves, so that they will not apply to the same item as an element of another sequence. 

545 



Use of Keywords by Context 

Due to length considerations of an already long paper, several topics related to sequences and 
therefore to reading sessions of a U-book, are not mentioned, since they have no impact on RISP.  

The Data Model Used by SPRP 
We decided to limit this section to the main objects of a U-book: Users, chapters and levels, items 
and sequences, though there are several other tables. The main purpose of this description is to 
state why keywords had to be stored separately. 

SPRP uses 3 main relational databases (SITEBASE, ABOOKBSE AND SEQUENCEBASE) 
though there are others to store additional and temporary data. For example, the content of files 
can be stored as fields of a special database, instead of including a pointer to its location. Though 
this has several usages, the reason it was included in SPRP was to offer encoding of files: this is 
one of the security features of U-books not described here. There is also a CONSTANTSBASE 
for every language: it contains data that enables translating the names of fields, message texts and 
help features. A reading session will use the version according to the language selected for that 
session. Observe that a translation of the software consists of creating a new instance of this data-
base; separate software products are used to translate the data elements. 

SPRP offers books as part of a site: think of a publishing house that offers several books. The list 
of books (instances) is stored here: essentially a title and the location of the databases for each 
book. Users are registered and assigned a site-role in the site’s database, so they will have the 
same password for any book these use. They also have a role in the site: they may add or delete 
books, add other users, change the options of the site or update certain catalogues that contain 
data used by the programs.  

For every book of their choice, they become users of that book, and additional data is stored in 
the USERBOOK and USERCHAPTER tables for that book (in the book’s database). A user has a 
role in every book (for example, he may or not create chapters, include other users or build public 
sequences) and, as explained before, a role in every chapter of the book, once again reflecting if 
he can use or see items of that chapter or assign chapter-roles to other users. 

Items are also stored in this database. The 2 main tables are THEITEMS and ITEMVERSLANG. 
THEITEMS contains a record for every item where it is described by certain fields. Pointers to 
the actual files that constitute its content are stored in the other table, where an item has a record 
for every combination of version and language for which there is a file. The main fields of those 
records house the location of the corresponding file indicated by the triplet [path-number, file-
name, extent] described previously. 

Sequences are stored in a separate database, to allow a user to use his own copy if this were con-
venient. It has 2 main tables: SEQUENCES and SEQELEMENTS. The former contains the se-
quence’s options; the latter has a record for every element of the sequence (they are ordered 
through a principal key formed by the sequence number and the position of the element in the 
sequence (the system renumbers them automatically when an update occurs). There are other ta-
bles but their description would not add anything to the paper: some of them can be found in the 
previous papers about U-books, though several changes have occurred in the newer versions of 
the software. 

The Need for Additional Descriptors of an Item 
A U-book may easily have many hundreds of thousands - or millions - of items, since many ele-
ments will be divided into several items to enable their partial use or to be included in several 
versions or languages. Thus the task of assembling a sequence for a particular purpose may in-
volve either knowledge of everything in the repository or just a lot of work. 

546 



Bauer Mengelberg & Hernandez Negrete 

An item is included in a U-book as a record of a relational database table, and has certain attrib-
utes provided by the – fixed - fields of the table. Some of them offer certain flexibility, as is the 
case with 6 classification fields which can be used as needed by the particular book, or even in a 
different manner according to the type of item. But even though they provide certain flexibility, 
only one value of an attribute can be furnished. For example, if one wished to specify several au-
thors of an item, the fields of the table would be insufficient. 

So SPRP needs additional descriptors of items, without any constraint on their number or what 
they indicate. This necessity was implemented by RISP: relate items in structured publishing.  
The authors (there may be many, as in our example) define what we call contexts. The term was 
chosen carefully, after considering many alternatives, including ontology. “What is an ontology? 
Short answer: An ontology is a specification of a conceptualization” (Gruber, 2001). Alterna-
tively, Wikipedia reproduces a definition also due to Gruber (1993) as a "formal, explicit specifi-
cation of a shared conceptualization" but complements it thus: “An ontology renders shared vo-
cabulary and taxonomy which models a domain with the definition of objects and/or concepts and 
their properties and relations” (Arvidsson and Flycht-Eriksson, 2012). Since U-books were not 
conceived as knowledge management or sharing systems (though they can be used for such pur-
poses), we did not deem it appropriate to use those fields’ terminology. So the decision was that 
for most U-books it suffices to “know what you are talking about” when somebody utters or uses 
a term, so we called it a context.  

RISP: A Way to Relate Items of a U-book 
RISP was described briefly in the original paper about U-books, but the way they used this com-
ponent has changed in the new version of the software. The essence remained the same: provide 
items with additional descriptors - keywords by context - that allow relations between them to be 
formulated based on these additional attributes.  

We start with a brief history of this product, and then describe it fully. Technical details are pro-
vided only when deemed necessary or useful to a reader. 

The foregoer of RISP was MARTE (mark and retrieve texts) a product developed several years 
ago, partially as a Master’s Thesis of a student. Its information units were texts, individual words 
of which could be marked by context. Thus, they became keywords by context. Actually, colors 
assigned to each context were used to “tag” the keywords. The keywords by context were in-
cluded in convenient structures (indexes) which allowed retrieval of the texts that contained them. 
Boolean operations between subsets of texts that contained a particular keyword provided a very 
flexible and efficient way to find whatever was sought.  

When U-books were developed, the methods of MARTE were used to relate items of the books, 
but quite independently from the items themselves. Thus, an item of the U-book could correspond 
to a RISP text (the new name assigned to this feature) or not, and vice-versa, there could be RISP 
texts that did not (yet) correspond to an item. The same RISP text could describe several items. 
These features were offered to be able to prepare certain materials for their later inclusion as 
items of the book. This feature was not successful: it caused confusion, so it was eliminated; in 
new version of SPRP keywords are added directly to the item.  

RISP is described in separate sections for each of these topics: RISP’s functions and how they are 
used; the data structures used to store the keywords; the indexing method; and finally, certain re-
marks about the task of furnishing descriptors for large collections of items. 

It is important to point out that though the software that implements RISP is described as such 
(that is, for use in U-books) it is actually available to any application that has similar needs, and 
therefore, has its own nomenclature. For example, RISP uses the term “item” to refer to the in-

547 



Use of Keywords by Context 

formation units, but the software calls them instances or basic information units (BIU). Therefore 
RISP is implemented as a separate module (a DLL), and not as part of the application. For exam-
ple, a U-book may not require RISP at all: its users won’t even know there is such a thing avail-
able. 

The main functions performed by RISP (there are several support functions, such as reorganiza-
tion of files and recovery of loss of data) include: 

 Define and update the context catalogue for the particular U-book; 
 Add, delete or show keywords by context  of a particular item; 
 Request a list of items – a result list, in RISP terminology - satisfying certain conditions, 

which are formulated based on the keywords by context; 
 Perform massive updates or changes (explained in a separate section). 

The application – in this case, SPRP, will invoke RISP’s functions, essentially: 

 Display the keywords of a particular item; 
 Update the keywords of an item; 
 Build and deliver a result list. The criteria are indicated through a component of RISP, 

not by SPRP itself; 
 Add one of more keywords (provided by SPRP) to an item. 

The communication between SPRP and RISP is performed by RISP methods, since they do not 
have access to the other’s data. When SPRP creates an instance of RISP it provides the name of 
the directory used by the book for the RISP data, and certain options that may limit or enable fea-
tures of RISP. For example, SPRP may tell RISP that it will not need equivalences, or that it does 
not use the concept of “language of items” at all. 

Most of the interaction is based on parameters. However, result lists may be delivered as disk 
files or as arrays of integers made available to SPRP. The methods will only receive relevant 
fields. For example, RISP has the following method: 

Public function update-keywords (item-number by value, item-class by value, has-n-marks by Ref, 
pointer-to-list by ref) as integer 

The function will return a negative result if something failed (according to a coded value), the 
value zero if no changes were made, or 1 if the record should be updated with the new values. 
SPRP provides the necessary information: the item number, the item type or RISP-class, and the 
previous values of the two necessary fields: how many isolated marks (as keywords by context 
are called) and the pointer to the array of these on the disk file. The latter are passed “by refer-
ence” so RISP will update them and inform SPRP that the record corresponding to the item has to 
be updated to reflect the new values.  

The Data Model Used by RISP 
The data model stores the contexts used by the book and the actual keywords of the items. 

The catalogue of contexts for a book 
There is a list (catalogue) of contexts used by the book. We decided to include the details in the 
Appendix for interested readers. Here we only describe fields of the main table, CONTEXTS. 

Context-num: Every context is assigned a number between 1 and 999 (this is the maximum sup-
ported by RISP). 

Type-of-context:  1=unconstrained; 2=unique; 3= “catalogue”, where “unique” means there can 
only be one instance for every value of the context (this corresponds to a unique index). “Cata-

548 



Bauer Mengelberg & Hernandez Negrete 

logue” indicates that marks will be rejected if there is no previous instance for the value. Of 
course there is a way to insert the first instance that occurs. 

Names: up to 8 names (descriptions) are stored in every language used by the book.  

Actually, the specification of a context includes 2 additional components: the contexts that are 
applicable to a particular class (in RISP it is the type of item, but in other application it might be 
determined by other attributes), and a grouping of contexts. These features were added so that in a 
U-book with a large number of contexts (such as is the case in the example used in this paper), 
the list of contexts offered when keywords are updated can be limited either by the class of the 
item or by a selection of a group of contexts. There are also certain technical fields, used by the 
indexing processes to determine the appropriate data structures it will use for a particular context. 

How keywords by context are stored by RISP 
A relational database model for keywords by context could have served the purpose: its Table 
would have the fields Context-number, value and item-number. Since an index would be essen-
tial, if clustered indices were not available, the table would be duplicated (though with a different 
structure). A clustered index is an index that stores the actual data, whereas a non-clustered index 
is just a pointer to the data (Shapiro, 2006). However, we used an altogether different data struc-
ture. 

RISP stores the keywords of every item in an array of [context-value] pairs.  Such a list has the 
following elements: The item-number (included to enable recovery and efficient reorganization of 
the files); a counter of how many keywords compose the list; and finally an array of [context-
value] pairs, where the context is a 2 byte integer and the value is a 16 character string: KBC does 
not handle longer values, so the same constraint was included as part of RISP. Thus, the size (in 
bytes) of a list is: 4 + 2 + N * 18, where N is the number of pairs in the list.  

They are included in a single - logical - plain file, though it may be actually stored as several 
physical files to avoid extremely large files. When the array is modified (by additions or dele-
tions) the previous version is replaced by the new one. Should the size of the array increase, it 
will be stored in a different location – since it probably will not fit in the previous one. A B-tree 
(or order 5) is used to provide reuse of vacated locations, where the key is the number of elements 
of the list it could contain. Whenever an array is to be stored, its location will be the first free lo-
cation in which its number of elements is greater or equal than the key. Vacated locations are 
added to the B-tree. If the largest size available – stored specifically besides being in the last leaf 
of the tree - is insufficient, the array is added at end of the file. B-trees are described in the AP-
PENDIX for reference. 

How Keywords for an Item are Updated 
Items of a U-book are introduced individually or in lots or batches. The latter would be the case if 
several files are to be added as items based on their filenames or other selection criteria. They 
may already reside in other data structures (databases, lists of files, other U-books or others). The 
system will prompt users to furnish descriptions and certain attributes of the items, either indi-
vidually or once again, applicable to a subset of items. 

To add keywords to an item, the list of its current keywords (if any) is updated. Figure 6 depicts a 
screenshot of a simplified version of the interface because the real one is dynamic, meaning ob-
jects appear or disappear as needed either by the user of the system itself. Notice that it is part of 
the “update an item” function, where all attributes of an item are updated, so one can see other 
attributes of the item as well as display its files. 

549 



Use of Keywords by Context 

 

Figure 6. Update of the keywords by context of an item 

The “eye” button will display the item in its default version and language (remember there may 
be others). In SPRP buttons with a “?” label indicate that the user wishes to select the value from 
a list of alternatives. To delete a keyword, select it and use the Delete button. Change of a value is 
performed with a delete-add combination. After every operation, the list of keywords is updated 
and presented in the correct order (by context number and value).  

To add a keyword, the context can either be provided by its number or invoking a list of applica-
ble (according to the class of the item) contexts.  The new value can be keyed in or chosen from a 
list of all keywords used (previously) by items in that context. Many other features (not described 
in detail here) were included to alleviate the task of describing items. For example, a “source” 
item can be indicated and its keywords added to the item being updated.  

The “only context” feature: if a context is indicated, only keywords for that context will appear in 
the list, and values are added or deleted without having to indicate the context: for applications 
where items can have a large number of keywords, other marks may “get in the way”. 

The “Next Item” button will show the following item, which depends on the way the function 
was invoked. A user may build a list of items to be marked, and in this case the following item of 
the list will be presented. Note that this is particularly useful when the items will inherit keywords 
from a given (source) item indicated for that purpose.        

The Need to Establish Equivalences 
One of the main features of KBC - and therefore, RISP – is that it offers equivalences, described 
in the introduction. An applicable quadruplet [equivalent, context, language, basic] indicates that 
a keyword with an equivalent value will be replaced by the basic term if the equivalence is appli-
cable, meaning that both the context and language constraints of the equivalence are satisfied. 
Here we have italicized the actual terminology used by KBC. 

550 



Bauer Mengelberg & Hernandez Negrete 

When the equivalence is constrained to a particular context, it will not apply to the value when 
used in other contexts, though it may occur in several contexts. Though equivalences are an es-
sential part of RISP, details about them and the data model used by KBC to store them were once 
again deferred to the Appendix: the paper is too long! 

The Use of Keywords to Retrieve Lists of Items 
KBC will build and deliver a result list - an array of the numbers of the items that satisfy a for-
mula, which consists of a set of logical operations based on operands. The operands can be [con-
text-value] pairs or other previously obtained result lists. Operations are: AND; OR; XOR; AND 
NOT; NOT, and parentheses can be used as needed. (Actually it also implements what is known 
as UNION ALL: elements common to more than one operand are duplicated in the result list.)  

Therefore RISP has a module to define formulae: these can be very simple or as complex as nec-
essary. Users are offered several different interfaces according to different levels of expertise us-
ing this or other software products. A prototype of one such interface to define a formula is de-
picted in Figure 7. We ask the reader to ignore the actual formula, result lists and other fields 
which are neither consistent nor totally applicable to our example. 

 

Figure 7. An interface to define a formula in RISP 

The operations can be performed in stages (stepwise) to allow back-and-forth queries. After ob-
taining a list of items resulting from one or more previous operations, another constraints may be 
added as (“AND”) or other items included (“OR”). If this does not satisfy the user for some rea-
son, he can try some other change of the list, and this will not imply performing the same queries 
again. Note that result lists built previously and stored on disk may also be used: they are added 
to the list shown in the interface, either specifying their location or choosing them from a file-
picker type object. RISP has a special directory used to store temporary result lists so only the 
name of the file would have to be provided. 

The possibility to use result lists in other operations may also greatly simplify the task of formu-
lating a query. Instead of having to formulate an awkward relation, for example involving several 
levels of parenthesis, the operations to be included in each of these are performed separately and 

551 



Use of Keywords by Context 

the result lists are then combined using the appropriate operations. Interfaces were carefully de-
signed to make these tasks easy to understand and use.  

KBC to Satisfy the Need to Index Keywords 
RISP has the methods to include and store keywords of an item, but there must be a way to build 
subsets of items that have a common mark, that is, a certain keyword in a given context. Brows-
ing all items and determining if they contain that mark is – though feasible - not a good idea, so 
an indexing scheme is used. As stated, RISP uses the indexing features offered by a separate 
software product called KBC: it will store the indices, and provide the methods to use them to 
build subsets of items based on the presence or a keyword by context or by operations based on 
such lists. 

According to Rob and Coronel (2009) an index is an orderly arrangement used to logically access 
rows in a table. Every element of the arrangement will be a pair (key, position) where the key is 
the value of the index. The value is usually that of one particular field or a concatenation of fields. 
The position is an identification of the row involved, which may be the row number or an indirect 
reference, for example, the key of a clustered index. Though this definition of an index refers to 
tables of a database, it may be applied to many other types of data collections, as long as the key 
points to an element of the collection.  A discussion of different types was included in the Appen-
dix, especially Generalized Inverted Index (GIN) since it is the type used by KBC. These indices 
have become popular for very large databases, especially in Key-value stores.  

We had used these indices in the past, though the name had not been coined, especially to index 
values of several tables (not just one as in databases) and especially to allow several values of the 
“same field” to occur in the same record. Since this is the case in RISP, the choice of an appropri-
ate indexing method was quite straightforward, though several variations were introduced in 
KBC. 

Every keyword furnished for an item is included in the index corresponding to the context of the 
keyword. KBC receives triplets [instance number, context, value] from RISP or any other appli-
cation. The instance number is an identifier provided by the application: RISP uses the (unique) 
item-number as this identifier. KBC forces applications to provide such a unique identifier. The 
context is a 2-byte integer and the value is a string with no more than 16 characters (this is a con-
straint imposed by KBC).  

KBC stores keywords and uses then to build result lists. Several generations of this product were 
produced, actually with different names (KBC is the last and probably final name). The main dif-
ference in these generations – one might call them versions, but it would be a misnomer because 
the functionality changed – is twofold. The structures used to store the indices varied signifi-
cantly, and the first version did not include equivalences.  

KBC serves applications with widely differing cardinalities (number of items, contexts, values or 
instances). A typical U-book will not have a huge number of items, but the DBB database - a 
NoSQL database not totally implemented and therefore not yet published - may contain many 
billions of records. This in turn caused certain data structures used by previous versions of KBC 
to be insufficient as far as providing efficient retrieval and updates of indices. KBC stores the 
triplets using the following model. For every context, it builds a B-tree of its values (the ones for 
which triplets have been added). The leaves of the B-tree point to the location of another B-tree 
formed by the instance numbers for that value. Thus, for every context, it is a GIN that stores 
[value, instance] pairs.  

The version of KBC currently used by RISP will be described here. The newest version is in the 
final stages of development, and as soon it is ready it will replace the previous one. This will not 

552 



Bauer Mengelberg & Hernandez Negrete 

only be a simple operation (a DLL is replaced by another one) but also transparent to RISP - and 
therefore to SPRP - users. 

Due to a limit on the programming time allocated to the project (a few days) instead of using its 
own B-trees, these were implemented using relational database tables, though admittedly a very 
non-normal one, which is described in the following section. Experience (and many simulations) 
proved they were very efficient even for large collections of data. A formula requesting certain 
operations based on keywords for a set of 400,000,000 sales records, for example, was delivered 
in approximately 100 milliseconds for a short formula on a laptop computer; the longest such du-
ration – about 5 seconds – was due to a formula with many operands and extremely long result 
lists. The description of this simulation, conducted as part of the DBB project, was never pub-
lished, but is available per request to the authors of this paper.   

KBC: The Product that Manages the Indices 
The two main functions of KBC are:  

 Update an index value: include or exclude a triplet in the index corresponding to that con-
text; if there is an applicable equivalence for the value, it will be replaced the its equiva-
lent; 

 Build a list of instances satisfying a (context, value) pair as described previously; the 
value will be replaced by an applicable equivalent (if there is such) before performing the 
operations. 

Of course KBC performs many additional functions, some of which will be described and others 
are left to the imagination of the interested reader: KBC is a complete software package, so it per-
forms all the tasks that can be expected from an indexing method.  

The result of a query (formula) submitted to KBC is a result list that contains the item-numbers 
that satisfy the selection criteria. KBC can prepare and deliver this list as one of several data 
structures, though two are basic and the others are combinations of these: an array of item num-
bers: a bitmap which will indicate which items are in the subset by a value of 1 in the correspond-
ing bit. Suppose the U-book contains items numbered from 1 to 3000. The result list would be an 
array of 3000 bits (725 bytes). If the list contains items number 15, 73 and 98, the corresponding 
bits would be turned on, whilst all others would have a value of 0. The use of bitmaps was obvi-
ously not included for subsets such as this one, where an array would have been considerably 
more efficient. But logical operations on bitmaps are much faster then merging arrays. Bitmaps 
are explained in a separate section of the Appendix. 

The Database Tables and Other Structures Used by KBC 
Instead of using its own B-trees, KBC uses 2 relational database tables (MUNI and MTIP), 
though a separate instance of the table is used for each context. MUNI is used for values of 
unique contexts, whilst MTIP serves others. MUNI was not described here, since the way records 
are retrieved and used is similar to the other one, though its fields are different. 

We now describe the MTIP table used to store [Value, instance] pairs for a context, but not before 
issuing the following warning: this table is awkward, and may require a bit of effort to under-
stand, or alternatively, a skipping strategy. The reason to use such a model, instead of a straight-
forward one, is that the main enemy – though not the only one - of a database table is the number 
of its records. The repetition of values of related fields and duplicate information due to the in-
dexes are also drawbacks. In a table with the fields context-number, value and instance number, 
the two first fields would contain the same values for many records. Dividing the table into sev-
eral smaller ones (by using a table per context) was an obvious strategy. Allowing several in-

553 



Use of Keywords by Context 

stance values per record was the other, and finally, to avoid huge collections of records for the 
same value, the pointers to lists described below were used.  

The actual name of a table is MTIPnnn, where nnn is the context number. The table will contain 
one of more records for every value of that context. These records are used in one of 2 different 
ways (one might say the fields are interpreted differently). For values with less than 100 in-
stances, the instance numbers are stored as fields of the record, whereas for those with more than 
100, the other design applies, where pointers to arrays of instance-numbers - stored separately, 
that is, not in the database – are indicated in the records.  

Figure 8 depicts records for a value of the context (“JONES”) and shows the changes caused by 
two consecutive insertions. Though there are actually 16 instance numbers in the table, the model 
depicted assumes there are only 8: of course the concept is the same. The fields of this table are: 

 VALUE; the value of the context for which the list of instances will be stored in that re-
cord. If value = “JONES”, only instances of that value will be stored on the record. 

 Min_instance_number: no instance number less than this can be stored here. 
 Upper-bound_of_instance_number: no instance number equal or larger than this can be 

stored here. 
 Numbers_are_instances: false indicates that the fields contain pointers to arrays of in-

stances. 
 How_many_positions_are_occupied (of the 16 available).  
 N1, N2 … N16. 16 fields that represent an array of 16 integers, of course implemented as 

16 separate integer fields. It has 2 different interpretations, and will be explained sepa-
rately. But the way records are created and retrieved is the same for both situations.  

VALUE MIN-NUM UPPER_BND OCCUPIED N1 N2 N3 N4 N5 N6 N7 N8
JONES 1 654 5 23 40 67 123 130 158 215
JONES 654 LN 1 654

Insert new value  140  (it fits)
VALUE MIN-NUM UPPER_BND OCCUPIED N1 N2 N3 N4 N5 N6 N7 N8
JONES 1 654 6 23 40 67 123 130 140 158 215

JONES 654 LN 1 654
Insert new value  151  (the array was full)

VALUE MIN-NUM UPPER_BND OCCUPIED N1 N2 N3 N4 N5 N6 N7 N8
JONES 1 151 4 23 40 67 123 130 140
JONES 151 654 3 151 158 215

JONES 654 LN 2 654 871  

Figure 8.  Result of adding 2 successive new instance numbers of a value 

If there are many instances, the fields are used in a different manner. Essentially, 8 of the 16 
fields are used to indicate the first element of a list of fixed length (currently set at 128 elements), 
and are stored in a plain file with random access. The other 8 fields contain pointers to the loca-
tion of the list on that file. In Figure 9, used to illustrate this design, once again only fields for 4 
values and 4 pointers are illustrated, though as we said, there are really 8 of each of these.  Only a 
single record is shown, since the way to insert a new (first of list, pointer) pair is exactly the same 
as for the other use of the table explained before. 

554 



Bauer Mengelberg & Hernandez Negrete 

Figure 9. Use of the fields as pointers to lists of instances 

Observation: obviously, there will be many empty slots in the lists. KBC has a utility program to 
compress the tables and files: a new version of the table is created and records for each value are 
added, so that all lists but the last one (for that value) will be full. 

Result Lists in KBC 
A result list is an ordered set of item numbers that satisfy certain criteria, the simplest of which is: 
find the set of all items that include the pair [context C, value V]. Suppose the list of items 
marked with [Context = 43, Value = “PENDULUM”] is requested by the application. KBC will 
retrieve all the records with a query such as “Select * from MTIP043 where value = ‘PENDU-
LUM’ order by min_instance_number”. Then it will act according to the Numbers_are_instances 
field to find all the instance numbers for value V, and add them to an (empty) array of numbers. 
Observe that if the fields of the table contain pointers, the corresponding lists may be added as 
such, not one element at a time. Though this will leave empty slots in the array (minimized if the 
files were compressed), the process is much faster. This is quite significant if the value has mil-
lions of instances. In the simulation mentioned above, there were values of contexts that had sev-
eral hundred thousand instances.   

Operations involving other keywords by context and previously built result-lists are also per-
formed by KBC. As was mentioned, RISP builds formulae and KBC delivers the corresponding 
result lists. For each operand - either a previously built result list or a [context, value] pair - it will 
build the list for the pair and then perform the operation on the lists involved.   

Actually, KBC uses different types of result lists: 

 An array of item numbers 
 A bitmap representing the item numbers in the list 
 A list of bitmap intervals representing the numbers. 

The choice of the appropriate type of list to be built is either made by the request or by a special 
component of KBC which determines the appropriate type. This happens when the list is con-
structed as part of a formula, since operations on bitmaps are much more efficient than merging 
lists. Perhaps a comment on these bitmaps is appropriate: they may save memory if the lists are 
lengthy and if the ratio (number of elements of the list / largest instance number in the applica-
tion) is relatively high, say at least 20%. This happens often, since there may be contexts with few 
values, and a large number of items – or even all of them - are marked with the context. For ex-
ample, most applications will “mark” the class of the item (in RISP, the item-type). Though some 
readers would have liked to see the actual routines that perform these operations, the already ex-
cessive length of this paper prompted the decision not to include them. They consist of several 
routines to combine a number of arrays for an operation, or using the AND and OR operations 
between numbers (for bitmaps).  

555 



Use of Keywords by Context 

Features of RISP to Alleviate the Task of Key-Wording 
We consider the process of key-wording large collections of items as part of a set of methods in-
cluded in our programs called “massive updates”. Essentially, a criterion is indicated which will 
create a subset of items, and then a marking scheme is indicated. Instead of attempting to explain 
the underlying theory, we use an example to indicate the nature of the process. Many other ways 
to perform similar tasks are implemented in RISP. 

Suppose the collection includes many item referring to MATHEMATICS, some of which will 
describe the topic CALCULUS, and that both of these keywords have already been included in 
the corresponding items. However, we wish to indicate if an item refers to (or includes some ref-
erence to) the fact that it was created by a teacher called JONES and/or by another one called 
SMITH. There is a context number 32 defined precisely to allow providing this information about 
items. The process to include these keywords involves 3 steps. 

 Build a (result) list of all items satisfying: (19, “MATHEMATICS) and (32 = CALCU-
LUS) and, as stated before, these marks have been introduced previously and context 19 
is the knowledge field and 32 is the topic; 

 Indicate the marks you wish to include, and the way the user will select the items to 
which they apply via certain keystrokes (or clicks of a mouse or otherwise);  

 Execute the program.  
The system will display the items of the result list one after another and the user takes the appro-
priate action. Notice that it does not show a record, but the item itself, for example, an image, a 
text or even a presentation.  

Figures 10 and 11 show prototypes of the forms used to invoke these operations.  The actual in-
terfaces are dynamic, meaning they adapt to options as they are selected. For example, certain 
users may prefer clicks of the mouse or may have touch-screens. The programs offer many ways 
to perform the tasks, and will adapt the “show the item” form according to the user’s preferences. 
Additionally, more complicated criteria or rules may be included. Other facilities are of the type: 
use all items marked at one stage as a starting list for another massive marking sessions; this al-
lows step-wise marking of items with very little effort. The system also allows specifying several 
contexts at a time. 

Figure 10. Interface used to specify the items to be offered for key-wording 

 

556 



Bauer Mengelberg & Hernandez Negrete 

 

Figure 11. Interface used to specify the way to include keywords 

Different Applications of U-books 
U-books were conceived for a particular book. A young marine in the Second World War was 
part of a little known invasion of the Southern Coast of France in August 1944. He spent the next 
60 years gathering material of all sorts about this event. Of course he wished to publish his re-
search, and chose to do this in the form of a novel. Thus, most of the material could not have been 
included. Our suggestion to use a U-book, created precisely for him, was not followed, and the 
book was published several years later (Sussna, 2008). However, even the 740 pages of the pub-
lished book were insufficient to include the wealth of documents, affidavits, interviews, photo-
graphs, maps, layouts and other items he had assembled. The use of a U-book would have had a 
disadvantage (it would not have appeared in print) but this would have been – partially – offset by 
a number of advantages, led by the possibility to include all his materials. He would have built 
several sequences for different types of readers, some of which would be quite similar to the ac-
tual book, but perhaps with the possibility to show interested readers some of the details he could 
not furnish in the book, as well as the opposite. 

As it turned out, besides composing different versions of the same story or books where the 
reader had a selection of ways to enjoy it, some other obvious applications surfaced. Playlists or 
similar applications were the first of these. Actually, the example of the use of chapter constraints 
in the first description of U-books was the catalogue of a museum that would enable its readers to 
eliminate certain parts that did not interest them. 

A text-book where a student might browse an initial version, have the complete one during his 
semester, but not having to prepare for the pre-exam cramming version, was amongst these. Very 
recently (February 2012) Apple announced a new software product, called an Ibook which is de-
scribed as “Author Lets Anyone Create Stunning iBook Textbooks" (Apple, 2012). This 
prompted several of my former students to inform me of this misfortune, but I managed to calm 
their worries since the - enviable - product only performs very few of the functions offered by 
Ubooks, though with the huge advantage of making it available to readers on their Ipads. To point 
out just a few differences, Ubooks three main attributes are not present: present several readings 
of the same book, offer materials in different versions to readers with different interests or ap-
proaches, and finally the restricted privileges component which allows certain items to remain 
hidden to readers who should not see them or would like to skip them. Actually these new books 
are just variations of what has been offered in the past (for example Safari-U mentioned above) 
with the possibility to view them on mobile devices. 

Several non-book applications surfaced as the product gained form. We mention some of them 
briefly. The documentation of an information system or a software product such as SPRP pro-
vided an example of a situation where U-books could be really helpful. RISP would be wonderful 
to describe items of the set of documents, but also to easily prepare the inevitable presentations. 

557 



Use of Keywords by Context 

The possibility to reuse certain items for different purposes is not exclusive of this product, but is 
made easier with the features offered by the software.  

In the U-book for delegates of a conference a totally different use was explained. We have also 
conceived their use for a restaurant: the menu could be offered in many different ways, including 
languages, levels of understanding of its customers and the amount of detail provided for the dif-
ferent dishes, but also making use of multimedia files. And the use of computers and mobile de-
vices is becoming common in certain types of restaurants.  

When applications for teachers were considered, we thought U-books could become a part of 
techniques applicable to e-learning, besides situations as the one described by our example, which 
refer to in-class teaching. They seem to offer a different and perhaps efficient way to build and 
deliver learning objects. However, the greater challenge was to answer: what could the concepts 
of U-books do to increase a teacher’s toolkit?  

When reading this paper, which is inevitably about U-books though it should be about RISP, one 
might still think of several uses of the latter, even without using other features of SPRP. One 
would use the items as if they were part of a document filing system, and every once in a while 
could produce a list of certain of its documents via a sequence. The authors of this paper actually 
want to organize “everything” they have in this manner, especially all research materials. An at-
tempt to compose this paper using this strategy failed only because not enough time was dedi-
cated to the task. We started creating items: paragraphs, quotes, references including the actual 
papers whenever they were available, figures, tables, screenshots and other materials. This would 
in turn facilitate the rewriting - especially reordering – of the paper and allow images to be inter-
changed. The final version would be a copy and paste operation. Alas, we will attempt to apply 
this technique in other papers.    

The previous section was about one of the main barriers to the use of U-books for several of their 
possible applications: the need to provide descriptions of the items. Almost everyone presented 
with explanations of U-books asks if there is some way to do this without having to actually indi-
cate the keywords. Our answer is always the same: yes, it is possible; no, the software does not do 
it. It contains no elements of knowledge discovery. We thing that eventually it should have such 
elements, but not as part of the software itself, but through ways to include other products’ re-
sults, that is, providing a way to accept keywords stored in other databases. The present version 
does this partially: the import facilities can be used to obtain descriptors of files, but their conver-
sion to keywords by context for the time being still requires specific coding. It is considerably 
easier to design a program that does this for a given product than for any knowledge discovery 
program.  

Conclusions 
The use of keywords by context to further describe items of a U-book was explained, after pro-
viding background about the books. The way in which sequences of a U-book are constructed, 
and the convenience of having further descriptions of items especially to build lists of these to be 
included in sequences led to the use of keywords by context. Equivalences between keywords 
with the same interpretation were described, especially the feature that allows these relations to 
be limited by context or language. The process to add keywords to items was illustrated, and 
KBC was described as the software product that provides the indices needed to use the added de-
scriptors. Some technical comments were provided, especially to indicate the depth of the product 
but also to allow interested readers to have a more concrete grasp of the software.  

The newest version of SPRP is in its final stage of development; some of its components will 
only be added after a usable version including the main features is available. This is precisely part 
of our current research. Several features were added to U-books, especially due to the new em-

558 



Bauer Mengelberg & Hernandez Negrete 

phasis on teaching applications. Items may now be blackboards, indicating that a screen is pro-
vided for a teacher to write or draw explanations. One can also include live queries to any data-
base as items, meaning that they will be executed when the item is invoked as an element of a 
sequence. 

Perhaps the most significant additions were what we called associated elements: another item (or 
a sequence) may now be added to an element of a sequence. These associated items may in turn 
be displayed simultaneously with the original element, or alternatively, meaning that the associ-
ated item will replace the original one whenever the user indicates he wishes this to happen. The 
session can now use more than one device: it can use other projectors, monitors or television sets 
connected either to the user’s computer or using an additional computer connected to the former. 
Thus the simultaneous associated items can be displayed on another monitor. Since an associated 
item may be a sequence, some of its elements may in turn have an associated simultaneous item. 
The maximum implemented in SPRP is 3 of these concurrent items. 

The same is true for speakers: the audio component can be switched from one set of speakers to 
another. Once again, a maximum of three sets of speakers is imposed, though both computers 
could have this number of speakers. These features were added to provide a sort of extended real-
ity, so that one may simulate a conversation between 2 or more persons as part of a lecture or 
show. Timers were included to enable synchronization of items displayed simultaneously.  

Differences between versions of SPRP also address the complexity issue: we might say that now 
almost anybody can use the product, a circumstance that was far from true in the first versions, 
notwithstanding the great amount of effort invested in its design.  

Further research is primarily concerned with applications of U-books, especially in teaching. How 
can they serve different learning styles? And what other features could be offered to teachers? For 
example to switch their presentation due to some circumstance such as discovering that nobody 
was paying attention or that several members of his or  her class did not understand what was be-
ing presented. The use of touch screens, pads and pens is also included. So far there is no soft-
ware to provide use of sequences on mobile devices, another topic that not only worries us, but 
also motivates future efforts. 

There are quite a few research topics that might be conducted by specialists in knowledge discov-
ery and management, as described in the paper. Our research team does not include such re-
searchers, so we hope others will take up the challenge. 

Efforts to improve efficiency have pretty much concluded, since the response times for all func-
tions now almost satisfy our standards: usually we do not tolerate any duration of more than a 
second, and only operations involving huge data collections and complex queries may take a little 
longer, but never more than a few seconds. Finally, since current programs were written using 
Visual Basic, the main program (the one used to build and show sequences) is being converted to 
Visual Basic.Net, and the next step is to produce an online version.  

We think that the concept and software will eventually have many users, when people discover 
that it is not only useful, but relatively easy to use. As stated, there is an inherent difficulty in ex-
plaining U-books: everyone already knows what they are.  But U-books are useful and the RISP 
component described in the paper is partially responsible for this fact.  

References 

Adabas Comprehensive Data Management System. (2010). Retrieved November 11, 2011 from 
http://www.softwareag.com/corporate/products/adabas _ 2010/default.asp  

Apple Computer Inc, Iphoto and Itunes. (2006). Software product description. Retrieved February 21, 2011 
from http://www.apple.com/ilife/iphoto/ 

559 

http://www.softwareag.com/corporate/products/adabas%20_%202010/default.asp
http://www.apple.com/ilife/iphoto/


Use of Keywords by Context 

Apple Computer Inc.  (2012). Apple reinvents textbooks with iBooks 2 for iPad – New iBooks. Apple.com. 
January 19, 2012. Retrieved February 27, 2012  from  
http://www.apple.com/pr/library/2012/01/19Apple-Reinvents-Textbooks-with-iBooks-2-for-iPad.html  

Arvidsson, F., & Flycht-Eriksson, A (2009). Ontologies I (PDF). Retrieved December 4 from   
http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf  

Bartunov, O., & Sigaev, T. (2006). PostgreSQL Summit. Retrieved March 26, 2011 from 
http://www.sigaev.ru/gin/Gin.pdf  

Bauer Mengelberg, J. R. (2001). A set of components to include security, on-line translation and other fea-
tures in information systems. AMCIS 2001 Proceedings. Paper 247. 

Bauer Mengelberg, J. R. (2007). The concept of an unstructured book and the software to publish and read 
it. Information and beyond: Part II. Journal of Issues in Informing Science and Information Technol-
ogy, 4, 801-810. Santa Rosa. CA: Informing Science Press. 

Bauer Mengelberg, J. R. (2011). The use of u-books to inform delegates to a conference. Proceedings of 
Informing Science & IT Education Conference (InSITE) 2011 

Bayer, R., & McCreight, E. (1970). Organization and maintenance of large ordered indices. Original His-
toric Documents, Technical Report Di-82-0989, Boeing Scientific Research Laboratories.  

Bayer, R., & McCreight, E. (1972). Organization and maintenance of large ordered indices. Acta Infor-
matica, 1(3), 173-189. 

Birdsall, W. F. (2009). The role of the client in informing science: To be informed and to inform. Informing 
Science: the International Journal of an Emerging Transdiscipline, 12, 147-157. 

Cohen, E. (1999). Reconceptualizing information systems as a field of the transdiscipline informing sci-
ence: From ugly duckling to swan. Journal of Computing and Information Technology, 7(3), 213-219. 

Comer, D. (1979). The ubiquitious B-tree. Computing Surveys, ll(2), 121-137. 

Comparison of e-book readers. (2011). Wikipedia.Retrieved March 8, 2011 from 
http://en.wikipedia.org/wiki/Comparison_of_e-book_readers 

Cortázar, J. (1963). Hopscotch. Julio Cortazar’s Hopscotch. Retrieved August 18, 2010 from 
http://www3.iath.virginia.edu/elab/hfl0117.html  

E-book. (2007). Wikipedia. Retrieved March 2, 2009 from http://en.wikipedia.org/wiki/E-book   

ebook88: ebook Resources. (2002). Software product description. Retrieved November 3, 2006 from 
http://www.ebook88.com/articles.html#3.%20What%20software%20do%20I%20need 

Gackowski, Z. (2005). Informing systems in business environments: A purpose focused view. Informing 
Science Journal, 8, 101-122. Available at http://inform.nu/Articles/Vol8/v8p101-122Gack.pdf  

Gardiner, E., & Musto, R.G. (2010). The electronic book. In M. F. Suarez & H. R. Woudhuysen, The Ox-
ford companion to the book. Oxford: Oxford University Press. 

Gill, T. G. & Bhattacherjee, A. (2007). The informing sciences at a crossroads: The role of the client. In-
forming Science Journal, 10, 17-39. Retrieved February 20, 2010 from  
http://inform.nu/Articles/Vol10/ISJv10p017-039Gill317.pdf 

Gill, T. G. & Hicks, R. C. (2006). Task complexity and informing science: A synthesis.  Informing Science 
Journal, 8, 1-30. Retrieved February 20, 2010 from http://www.inform.nu/Articles/Vol9/v9p001-
030Gill46.pdf 

Greenwald, R., Stackowiak, R., & Stern, J. (2004). Oracle Essentials: Oracle Database 11g. Boston, MA:  
O'Reilly. 

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition 5 
(2), 199–220. Retrieved December 6 2011 from  http://tomgruber.org/writing/ontolingua-kaj-1993.pdf 

560 

http://www.apple.com/pr/library/2012/01/19Apple-Reinvents-Textbooks-with-iBooks-2-for-iPad.html
http://www.apple.com/pr/library/2012/01/19Apple-Reinvents-Textbooks-with-iBooks-2-for-iPad.html
http://www.ida.liu.se/%7Ejanma/SemWeb/Slides/ontologies1.pdf
http://www.sigaev.ru/gin/Gin.pdf
http://en.wikipedia.org/wiki/Comparison_of_e-book_readers
http://www3.iath.virginia.edu/elab/hfl0117.html
http://en.wikipedia.org/wiki/E-book
http://www.ebook88.com/articles.html#3.%20What%20software%20do%20I%20need
http://inform.nu/Articles/Vol8/v8p101-122Gack.pdf
http://www.worldcat.org/oclc/370356568
http://www.worldcat.org/oclc/370356568
http://inform.nu/Articles/Vol10/ISJv10p017-039Gill317.pdf
http://www.inform.nu/Articles/Vol9/v9p001-030Gill46.pdf
http://www.inform.nu/Articles/Vol9/v9p001-030Gill46.pdf
http://en.wikipedia.org/wiki/Tom_Gruber
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://en.wikipedia.org/wiki/Knowledge_Acquisition
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf


Bauer Mengelberg & Hernandez Negrete 

Gruber, T. R. (2001). What is an Ontology?. Stanford University. Retrieved November 2011 from 
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html 

Hart, M. (1992). History and philosophy of project Gutenberg. Retrieved March 3, 2007 from 
http://promo.net/pg/history.html  

Kindle 3 Wi-Fi 3G. Amazon. (2011). Retrieved March 7, 2011 from 
http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Ddigital-text&field-
keywords=kindle+wifi+3g&x=0&y=0   

Nookcolor. (2011). Barnes & Noble  Retrieved from http://www.barnesandnoble.com/nookcolor/index.asp  

NoSQL (CONCEPT). (2010). Wikipedia. Available: http://en.wikipedia.org/wiki/nosql_(concept) 

Null, L., & Lobur, J. (2006). The essentials of computer organization and architecture. n.p.: Jones and 
Bartlett, pp. 741-742. 

O’Reilly’s Safari Online. (2006). Product description. Retrieved September 7, 2006 from 
http://safari.oreilly.com  

Rob, P., & Coronel, C. (2009). Database systems: Design, implementation, and management. Boston, MA: 
Course Technology, pp. 90-91. 

Shapiro, J. (2006). Microsoft SQL Server 2005: The complete reference. NY: Mc Graw Hill, pp. 54-55. 

Sussna, S. (2008). Defeat and triumph: The story of a controversial Allied invasion and French rebirth. 
Jerusalem, Israel: Xlibris Corporation. 

Tag metadata. (2010). Wikipedia. Retrieved January 2011 from  
http://en.wikipedia.org/wiki/Tag_%28metadata%29   

The PostgreSQL Global Development Group. (2009). PostgreSQL 8.4 Official Documentatio, Volume V. 
n.p.: Linbrary, pp. 161-162. 

Weiss, M. A. (1993). Data structures and Algorithm Analysis. Redwood City, CA: The Benjamin Cum-
mings, pp. 133-138.  

Appendix 

B-trees 
Weiss (1993) defines a directed tree – recursively - as a collection of n nodes, which may be 
empty. Otherwise, a tree consists of a distinguished node r, called the root, and zero or more (sub) 
trees, each of them connected by a directed edge to r.  A B-tree was first defined by Bayer and 
McCreight in 1972, though there is a previous reference by the same authors (Bayer and 
McCreight, 1970) thus: Let h >= 0 be an integer, k a natural number. A directed tree T is in the 
class t(k,h) of B-trees if T is either empty (h=0) or has the following properties: i) Each path from 
the root to any leaf has the same length h, also called the height of T, i.e., h = number of nodes in 
the path; ii) each node except the root and the leaves has at least k + 1 sons. The root is a leaf or 
has at least two sons; iii) each node has at most 2k+1 sons. 

Comer (Comer, 1979) was not the first to define a B+ Tree, but he includes it in a description of 
certain variations of B-trees specially used to store an index. In a B+ tree, all keys reside in the 
leaves. The upper levels, which are organized as a B-tree, consist only of an index set (its nodes), 
a roadmap to enable rapid location of the index and key parts. Figure 12 shows the logical separa-
tion of the index and key parts in a B+ tree. Naturally, index nodes and leaf nodes may have dif-
ferent formats or even different sizes. In particular, leaf nodes are usually linked together left-to-
right, as shown, to al-low sequential processing of the leaves. The linked list of leaves is referred 
to as the sequence set.  

561 

http://en.wikipedia.org/wiki/Stanford_University
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://promo.net/pg/history.html
http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Ddigital-text&field-keywords=kindle+wifi+3g&x=0&y=0
http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Ddigital-text&field-keywords=kindle+wifi+3g&x=0&y=0
http://www.barnesandnoble.com/nookcolor/index.asp
http://en.wikipedia.org/wiki/NoSQL_(concept)
http://safari.oreilly.com/
http://en.wikipedia.org/wiki/Tag_%28metadata%29


Use of Keywords by Context 

 

Figure 12. The index and sequence sets of a B-tree 

Bitmaps  
A bitmap is an array of 0’s and 1’s where each element represents an element into an index. A 
bitmap index is used in data warehouse applications – and many others - for tables with large 
number of rows in which a small number of column values repeat many times. In (Greenwald and 
Stackowiak, 2004) a bitmap index is described stating that each bit in the index represents a 
RowId. If a particular row contains a particular value, the bit for that row is “turned on” in the 
bitmap for that value. 

In KBC the bitmaps are represented by arrays of 4-byte integers. Bits are numbered in each inte-
ger: bit 0 is the least significant bit of the integer, that is, the one representing 20, and bit 31 is the 
sign bit. The reason to adopt this strategy, instead of using an array of 1-byte integers and their 8 
bits, as is often done, is that the amount of operations to use a list may be reduced considerably. 
For example, when building a result-list or using it, a value of 0 of an integer will allow skipping 
the 32 “positions” represented by the integer, instead of only 8 positions that would result from 
the use of 1-byte integers. Analogously, similar savings are obtained when performing logical 
operations between bitmaps or during conversion of a bitmap into an array of instances. We use 
the array Only_bit_set  (0 to 31) to turn bits on and off or to determine their value. Its values are  
Only_bit_set  (k) = 2k   for k = 0 to 30, and  Only_bit_set (31) = -231  

A similar array of constants contains the complements: values of numbers where all bits except 
the one corresponding to the index are on. Its values are:    Only_bit_off (I) = - (231 – 1 – 2i)  
Only_bit_off (31) = 231 - 1 

Thus, the operation 2235 AND Only_bit_off (17) will turn off bit 17 of the number. Two frequent 
operations are: NUM = -231 indicates all bits are ON, and if NUM = 0 they are all off. 

Bitmaps are used by KBC whenever they can save processing time but space considerations are 
also taken into account. Operations between bitmaps are fast and easy to program. For example, 
to obtain the union of 2 bitmaps of length Len1 and Len2, which will be represented by 2 arrays 
of 4 byte integers ARR1 and ARR2, we build the FINAL as a copy of the longest one (supposing 
the initial positions to which the bitmap refer are the same). Finally, for each element of the other 
array (say it is array 2), we use FINAL (k) =  FINAL (k) OR ARR2 (k). When several long result 
lists are combined the number of operations can cause considerable processing time, even on very 
fast computers and efficient algorithms. This never happens when bitmaps are used. Actually, 
many applications nowadays use this structure since they manage huge collections of data.  

Types of Indexes 
As quoted in the paper, Rob and Coronel define an index as an orderly arrangement used to logi-
cally access rows in a table. Every element of the will be a pair (key, position) where the key is 
the value of the index. The value is usually that of one particular field, or a concatenation of 

562 



Bauer Mengelberg & Hernandez Negrete 

fields. The position is an identification of the row involved. This definition is applicable to other 
data collections, not only to databases. In RISP, the position will be the item-number.  

To maintain the order of the elements during updates, convenient data structures are used to store
its values. The considerations that should be taken into account when choosing the adequate data 
structure for a particular index are: the space necessary to store all its values and the number of 
operations required to update or use the index. The size of the index is important since usually it 
will be loaded into memory, besides the obvious disk space considerations. However, there is an-
other critical aspect, especially when the index refers to a very large collection of data: the num-
ber of input-output (I-O) operations necessary to use the index, either to load it 

 

totally or partially 

ta in 
 as a method usually used 

t 

 especially to allow several values of the “same field” to occur in the same record. This 
propriate indexing method was quite straight-

e 

 

lues is represented by a bitmap. In RISP terminology, it 
tores the list of item numbers (row number) that contain a given value (the key). Observe that a 

separate GIN is used for each context.  

 

in memory or for other uses, is crucial, since I-O operations often contribute a significant part of 
the total processing time required for a particular task. 

Many strategies are used to reduce the number of I-O operations, but probably the prevalent one 
is to use paging of some type, where nodes are not retrieved individually, but stored and loaded 
into pages of memory.  Shapiro (Shapiro, 2006) defines paging as the process of moving da
and out of physical memory, whereas Null & Lobur (2006) interpret it
for implementing virtual memory in which main memory is divided into fixed size blocks 
(frames) and programs are divided into the same size blocks (pages). 

Rob and Coronel, in the same reference, state that most database management systems implemen
indexes using one of the following data structures; Hash indexes, where a hash algorithm is used 
to create a hash value from a key column; B-tree indexes, the default and most common type of 
index used in databases; and Bitmap indexes as described here. Generalized Inverted Indexes 
(GIN)  described below, have joined this list since they are used extensively, especially for large 
collections of data and very specially to index key /value stores, that is, where unstructured or 
semi-structured data is present, a situation that does not happen in relational databases, where all 
values are included in specific fields of a table. We had used these indices in the past, though the 
name had not been coined, especially to index values of several tables (not just one as in data-
bases) and
is the case in RISP, of course, so the choice of an ap
forward. 

Generalized Inverted Index (GIN)  
The Adabas database (Adabas, 2010) was the first commercial product to use inverted lists in th
early 70’s, but the term GIN had not been coined, so we reproduce the definition of a GIN pro-
vided by PostgreSQL (2009): It is an index structure storing a set of (key, posting list) pairs, 
where a “posting list” is a set or rows in which the key occurs. Each indexed value can contain 
many keys, so the same row ID can appear in multiple posting lists. Internally, a GIN index con-
tains a B-Tree index constructed over keys, where each key is an element of the indexed value (a
member of an array, for example) and where each tuple in a leaf page is either a pointer to a B-
tree over heap pointers (PT, posting tree), or a list of heap pointers (PL, posting list) if the list is 
small enough. Sometimes, this list of va
s

563 



Use of Keywords by Context 

Figure 13. A structure used for a Generalized Inverted Index 

Figure 13 shows a GIN structure diagramed by Bartunov O. y Sigaev T. (2006).  Each indexed 
value can contain many keys, so the same row ID can appear in multiple posting lists. Internally, 
a GIN index contains a B-Tree index constructed over keys, where each key is an element of the 
indexed value (a member of an array, for example) and where each tuple in a leaf page is either a 
pointer to a B-tree over heap pointers (PT, posting tree), or a list of heap pointers (PL, posting 
list) if the list is small enough. KBC actually adds two additional ways to store the lists: a bitmap 
representing all possible values of the positions, or a list of bitmap intervals, as we have call them 
if they only represent part of the possible values. Often in applications certain keys will only oc-
cur in certain ranges of the numbered records. In a collection of – consecutively numbered – 
100,000,000 records, it could happen that certain keys could only occur in two ranges, say 
50,000,001 to 60,000,001 or 120,000,001 to 140,000,001. To store several bitmaps of length 12 
Megabytes (approximately) for the entire domain might be unfeasible, but the smaller 1 or 2 
megabyte arrays may be handled.  

As we pointed out before, it is not only a matter of performing operations with result lists: the 
actual construction of the individual lists, though very fast if a posting list is used, will be consid-
erably slower if a B-tree were used. Remember that nowadays applications not only handle bil-
lions of records, but they are used simultaneously by many users, so that computing resources 
may be strained.    

564 



Bauer Mengelberg & Hernandez Negrete 

Equivalences in RISP and KBC 

The concept and its use 
A DBB-equivalence (further simply referred to as an equivalence) is a quadruplet [Equivalent, 
context, language, Basic] where Basic indicates the value that is actually indexed, and equivalent 
is a term - or value - that will be replaced by the Basic when a keyword [context, equivalent] is 
included in a particular language. Note that we refer to the terms actually used by indices as BA-
SIC, and thus other terms which have the same meaning are called EQUIVALENTS. That is, the 
equivalent term will be replaced by the basic one. 

The name has two backgrounds: DBB because it was designed for the DBB database; and x-
equivalent as an instance of an equivalence relation in Mathematics.  However it is important to 
note that it is a misnomer: it is neither transitive, nor reflexive nor symmetric. Though all of these 
properties are present in abstracto, they do not apply as far to the use of the equivalences: these 
are only one-way relationships. In other words, if A is DBB-equivalent to B in context C1, they 
actually indicate the same concept but are not interchangeable except in the direction A will be 
replaced by B. An obvious comment: if an item is marked with “A” in context C1, the list of 
keywords of the item will contain the duplet [C1, “A”], that is, the original term is preserved as 
the descriptor of the item. 

Suppose the mark [Context 23, Value “RETRATO”] is added to an item, where Context 23 is 
“type of material” and the user determines that when the language is 2 (Spanish) then “RE-
TRATO” is equivalent to “PORTRAIT”. When a triplet [23, “RETRATO”, item-number] is sent 
to KBC, the language is included as a parameter and thus, since there is an equivalence applicable 
to [“RETRATO, 23, 2]) the mark is included in the index with the value “PORTRAIT”.  This 
substitution would also be made in any request to retrieve items of this [Context, Value] pair, but 
only if the user (or the system) indicates that the value was provided in language 2. 

An equivalence may specify a context of 0 (zero): this means it applies to all contexts. Similarly, 
language = 0 indicates that it applies regardless of the language. For example, the equivalence 
(“EEUU”, 0, 0,”USA”) could be introduced so that any other name would be replaced by the 
adopted standard one, regardless of the context in which it is used or in which language it oc-
curred (actually for this type of terms, no language would be specified by the user when invoking 
one of KBC’s functions). 

Equivalences are also useful to introduce codes. For example, colors may be coded in some way, 
so that in every language the color green is assigned the value “4”. Items will be marked with 
“GREEN”, “VERDE”, “VERT”, “GRUEN” (not “GRÜN since no special characters are included 
in marks) but the index would always use “4”. Observe that users can still ask for the value in its 
original form, and when they request a list of values of the context, they will be offered “4” as 
well as “GREEN” if they specify that the language is English. (Actually there is an option to ex-
clude the basic value from the list if it has an equivalent.)    

Constraints on equivalences (what should not happen) 
Chained references (one term is equivalent to another one, which in turn is equivalent to a third) 
are prohibited in KBC. Thus, when adding an equivalence to the corresponding catalogue, it will 
not be performed if the “basic” term is present as an applicable equivalent of yet another word. 
Also, the equivalence must be unique: there cannot be another applicable equivalence for the term 
being added. Here applicable indicates that it applies for the combination of context and language 
specified by its use. 

565 



Use of Keywords by Context 

These are the functions performed by the programs regarding equivalences: 

1. Add an equivalence: This may be done individually or as a batch of such equivalences, 
typically when many items are created by a process. 

2. Delete an equivalence (changes are made via delete-add). 
3. List all equivalents for a particular (basic) value. 
4. List all equivalences for a particular context (by language or all). 
5. Find the equivalent of a value to include it in an update or as a search criterion. Of course 

this is the main (most used and essential) function. 
6. Produce a list of all values that may have been used as keywords for a particular context. 

This list should not only include all basic values (the values as used by the index), but 
also their equivalents applicable to the particular context. This list may or may not be 
limited to one language. The function will provide the list of values for which keywords 
were added to items in a certain context, such as needed by someone formulating a query 
or search criterion to build a result-list. Observe that the list of basic values may not suf-
fice for this purpose. The user may specify he does not with the list to include a basic 
value for which there is at least one equivalent. 

The data model used for equivalences 
Table 2:  The EQUIVALENCES table of the relational model 

Field name Data Type Description

Equivalent Char (16) The term as used in a keyword

Context-num Integer-2 The context in which the equivalence applies

Language-num Integer-2 The language in which the equivalence applies

Basic Char (16) The term that is inserted in the index  

 

We start the description with a comment: the type of model used is of course transparent to users 
of RISP. Additionally, in a typical U-book there probably won’t be millions or even hundreds of 
thousands of equivalence quadruplets, so performance issues are not important as far as RISP 
goes. Therefore, the current version of KBC uses a very simple model: a single relational data-
base table called EQUIVALENCES, described in Table 2. Integer-2 indicates a 2 byte integer. 
Char (16) is a string of not more than 16 characters. Observe that we use upper case for the name 
of the table, and capitalize field names to avoid confusion, and have replaced underscores with 
hyphens. The principal index is formed by the first 3 fields. A secondary index (the Basic field) is 
added for performance.   

Since KBC also serves applications which might have a very large number of equivalences, the 
newest version of KBC uses a different model. To describe it succinctly, it uses a B-tree of all 
“terms” (values of any context) that are part of an equivalence, either as equivalent or as basic. 
Every term points to an array of equivalences containing the term, though the array is separated 
into 2 parts: as an equivalent or as a basic. In each element of the array, the context and language 
as well as the “other” term are specified. Other are added for further efficiency. In several simu-
lated situations, the model outperformed the relation model by a considerable factor. One advan-
tage is the size of the “main index”: the B-tree usually can be loaded into memory even for huge 
collections of data. Disk space is not a significant factor (anymore), but if no clustered indices are 
used, the relational model will be considerably larger. However, the main reason to use the hybrid 
model is that the most frequent function (finding an equivalent) is much faster:  though even in 

566 



Bauer Mengelberg & Hernandez Negrete 

the relational model it only takes milliseconds, in the hybrid model it consists of 1 search in a B-
tree (in memory) and 1 access to a plain disk file. 

Examples of queries to achieve the functions 
Some examples are provided for an interested reader. The most frequent function is of course: 
find the applicable equivalent of E1 for context C1 and language L1. The query is: “Select Basic 
from EQUIVALENCES where (Equivalent = E1) and (Context-num = c1 or Context-num = 0) 
and (Language-num = L1 or Language-num = 0)”. This will return no record if there is no appli-
cable equivalence, or furnish the correct Basic value.  Observe that there cannot be 2 values due 
to the constraints placed on equivalences.  

Now consider the process of adding a quadruplet [E1, C1, L1, B1] where C1 or L1 – or both - 
could be 0. First determine if there is a previous equivalent for E1 in those contexts of languages. 
If there is none (and thus the operation may be feasible) you still have to check that B1 is not in 
an applicable equivalence of its own. You could perform the following query: “Select Equivalent, 
Basic from EQUIVALENCES where (equivalent = E1 or equivalent = B1) and (Context-num = 
c1 or Context-num = 0) and (Language-num = L1 or Language-num = 0)”. If this query produces 
a record, the add operation should fail for any of the 2 reasons, and you could inform the user 
which equivalence is the one that causes the conflict. Two successive queries could also be used 
to determine the absence of an equivalence that would block the new one. 

Some of the other functions also may be performed with straightforward queries, but a relatively 
frequent one requires specific coding: Produce a list of all values that may have been used as 
keywords for a particular context and perhaps, in a given language. Here we have to find all the 
equivalent terms for every basic term that occurs in the index. So we start building the list of all 
values in the index (this is performed on the index’s structures, not the equivalences) and sort the 
list in ascending order. Next we have to find all the applicable equivalents of every basic value in 
this list. 

One way to do this is as follows.  Build the list of all applicable equivalences (constrained by 
context and or language as usual): “Select Equivalent, Basic from Equivalences where (Context-
num = c1 or Context-num = 0) and (Language-num = L1 or Language-num = 0), order by Basic”. 
Finally, merge the two lists (both are sorted by the Basic field). KBC performs this with specific 
code, since it cannot be done using a query.  Observe that the query will either browse the entire 
table, or use or build a “Context” index. This may be a good reason to include the Context index 
as part of the design, especially if the application uses many contexts that allow equivalences. 

An improvement of the data model could be obtained by using a clustered key if they are offered 
by the RDBMS. This will cause the records to be stored in the order of the index, instead of 
building a structure to contain the index besides the table itself. If the table is not very large, it 
will be loaded into memory, just as the index would be if its size allows that operation. One 
would still add the other index – the Basic field. 

Updates of equivalences 

The interface used to update equivalences is difficult to show via a screenshot, since it has many 
options that cause objects to appear and disappear as needed. Perhaps the prototype shown in 
Figure 14 will serve the purpose partially. The system will not perform any updates until the op-
eration is confirmed; this allows the use of the same interface for certain queries about equiva-
lences, but also to “try” an equivalence to find out if you should introduce it. For example, there 
might be a different “basic” value that you should use. Notice that a very important validation is 
necessary (unless the user is sure it is not the case): the term you furnish to be replaced should not 
be in a triplet already in the index (that is, the value was included as a keyword of an item in this 

567 



Use of Keywords by Context 

context before you declare the equivalence). Note that such triplets would never be accessed after 
you update the equivalence.  

 

Figure 14. The interface to update equivalences 

The “Select from list” buttons will display the requested list (languages or contexts). The descrip-
tions of contexts will be furnished in the language of the session, unless a single language was 
indicated for the equivalence: then the name of the context will appear in that language. The 
“SHOW” commands will cause the equivalences to appear on the screen.  

Contexts in RISP 
When RISP is invoked by an application, it loads this catalogue into memory, so the model was 
designed for this purpose, and not to provide constant access to the tables during execution. This 
should explain why it is somewhat complicated or even confusing. The description of the model 
begins with the fields of the context table (already described in the paper) and is followed by the 
complementary tables. The explanations provided for certain fields were used to introduce further 
concepts regarding the contexts. Note that the context is described in every language used by the 
book (though there is a maximum of 8 languages). Please note that in this paper we have replaced 
underscores used for the actual names of fields by hyphens. Also, we use upper case for table 
names and capitalize field names.  

Fields of the CONTEXT table 
Context-num: Every context is assigned a number between 1 and 999 (this is the maximum sup-
ported by RISP). 

Type-of-context:  1=unconstrained; 2=unique; 3= “catalogue”, where “unique” means there can 
only be one instance for every value of the context (this corresponds to a unique index). “Cata-
logue” indicates that marks will be rejected if there is no previous instance for the value. Of 
course there is a way to insert the first instance that occurs. 

Names: up to 8 names (descriptions) are stored in every language used by the book.  

Actually, the specification of a context includes 2 additional components: the contexts that are 
applicable to a particular class (in RISP it is the type of item, but in other application it might be 
determined by other attributes), and a grouping of contexts. These features were added so that in a 
U-book with a large number of contexts (such as is the case in the example used in this paper), 
the list of contexts offered when keywords are updated can be limited either by the class of the 
item or by a selection of a group of contexts.  

568 



Bauer Mengelberg & Hernandez Negrete 

569 

 

at 

Table GROUPS: group-number; description in 8 languages. 

Table CLASS-CONTEXT: class-number; applicable-contexts. The latter is a 128 byte string 
(1024 bits, which are interpreted as 128 4-byte integers by the program). Its first 999 bits are 
turned ON if the context is used by the class. Note that we could have used a 125 byte string in-
stead, but decided to waste 3 bytes per class. The table is used to create an array for every class at 
the start of a session, so the model was designed for efficiency, not for ease of use.  

Table GROUP-CONTEXT: group-number, context-included-in-group. The same design as in the 
previous table was used. 

Thus, RISP has a component to create and update the Catalogue of Contexts it will use. Its design 
was chosen to enable even an occasional user to operate its functions without having to remember 
how it is done (this is what we call user-friendly). The convenience of the users was also taken 
into account. For example, two ways to indicate the classes that will use a context are furnished: 
select contexts used by 1 class, or indicate the classes that use a context. 

Biographies 
Juan R. Bauer Mengelberg (aka. John). After obtaining a degree in 
Mathematics at the Universidad de Buenos Aires, Argentina (1963), he 
got a PhD in Statistics and Operations Research at the University of 
Wisconsin, at Madison (1970) where he also taught courses in the area 
of Stochastic Programming. He has since worked in Mexico, where 
besides teaching at the Colegio de Postgraduados, a school primarily 
involved in the field of Agronomy but also offers graduate degrees in 
Statistics and Applied Computing, he has held several positions, al-
ways connected with the field of Information Systems, in which he has
also been a consultant all his professional life. He is concerned with the 
subject of “systems that work”, a concept he formulated to indicate th

they work even in abnormal circumstances. He has created and implemented many software 
packages, and his current research includes informing processes - especially teaching and elec-
tronic publishing – as well as hybrid databases and data-warehouses. 

 

Nancy Hernández Negrete. A Master’s Degree in Applied Computing 
(2010) completed her current education after obtaining a Bachelor’s 
degree in Administrative Informatics, both in Mexico. Her thesis dealt 
precisely with KBC, basically in the selection of efficient data struc-
tures and their implementation. She presently works as a systems ana-
lyst and programmer at the CRIL department (Crop Research Informat-
ics Laboratory) of CIMMYT (International Maize and Wheat Im-
provement Center), an international research center with its headquar-
ters in Mexico. Her plans include obtaining a Doctorate degree in the 
field of data-warehousing and analytics. 

 


	The Use of Keywords by Context to Relate Items of a U-book 
	John Bauer Mengelberg and Nancy Hernandez NegreteColegio de Postgraduados, Mexico

	Abstract 
	Introduction
	U-book – An Informing Tool
	U-books as e-books
	The Items of a U-book
	Sequences
	Building a Sequence 
	Reading a Sequence 
	The Data Model Used by SPRP
	The Need for Additional Descriptors of an Item

	RISP: A Way to Relate Items of a U-book
	The Data Model Used by RISP
	The catalogue of contexts for a book
	How keywords by context are stored by RISP

	How Keywords for an Item are Updated
	The Need to Establish Equivalences
	The Use of Keywords to Retrieve Lists of Items

	KBC to Satisfy the Need to Index Keywords
	KBC: The Product that Manages the Indices
	The Database Tables and Other Structures Used by KBC
	Observation: obviously, there will be many empty slots in the lists. KBC has a utility program to compress the tables and files: a new version of the table is created and records for each value are added, so that all lists but the last one (for that value) will be full.
	Result Lists in KBC

	Features of RISP to Alleviate the Task of Key-Wording
	Different Applications of U-books
	Conclusions
	References
	Appendix
	B-trees
	Figure 12. The index and sequence sets of a B-tree
	Bitmaps 
	Types of Indexes
	Generalized Inverted Index (GIN) 
	Equivalences in RISP and KBC
	The concept and its use
	Constraints on equivalences (what should not happen)
	The data model used for equivalences
	Examples of queries to achieve the functions
	Updates of equivalences

	Contexts in RISP
	Fields of the CONTEXT table



