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Abstract 
An important purpose of architectural design is to ensure that the system meets its quality re-
quirements by defining a set of system wide design decisions. An important part of these design 
decisions is the set of architectural design rules that shall be followed by developers in the de-
tailed design. The state of practice is to define these rules in natural language and to use manual 
reviews to enforce them. This way of transferring the rules to the developers is however error 
prone and requires a lot of effort from the architects since natural language is ambiguous and 
open for different interpretations and rule following have to be checked with manual reviews. 
This paper reports from an action case study where a novel approach for architectural modeling 
and automated conformance checking has been investigated regarding its ability to better com-
municate architectural design decisions to the developers. The findings indicate that the novel 
approach is significantly more effective than the state of practice. The findings also show that an 
important reason for this is that using a tool for conformance checking allows the developers to 
learn the rules by experimenting. 

Keywords:  Action Case study, Meta-modeling, Model-Driven Development, Software Architec-
ture. 

Introduction 
An important design artifact in any 
software development project is the 
software architecture (Bass, Clements, 
& Kazman, 2003) consisting of system 
wide design decisions to be followed in 
the detailed design. The purpose of the 
architecture is to guide and control the 
design of the system so that it meets its 
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quality requirements. Architectural design rules are defined by the architect as a part of the archi-
tecture and have to be followed by the developers in their detailed design of the system. A com-
mon way of capturing the architecture is to define a high level structure of the system as a set of 
subsystems with defined interfaces, together with a framework implementing a communication 
infrastructure used by the components of the subsystems (Mattsson, Lundell, Lings, & Fitzgerald, 
2009). This is however not enough; you also need to specify rules as to what kinds of component 
to put in different subsystems and how the components are supposed to use the infrastructure. 
These rules cannot be handled by simply putting the components into the subsystems since the 
rules span more than the current version of the system, so more elements will be added later that 
also have to follow the rules. Examples of such rules, taken from the embedded software domain, 
are: 

 “A sensor shall be defined in the Sensors package.” 

 “A sensor may inherit Infrastructure::Observer to be able to react to changes in 
Data_Items, for instance to activate or deactivate itself.” 

 “A sensor may only have associations to In_Port_Ifc and Data_Items. These associations 
shall only be navigable from the sensor.” 

 “A sensor may not have any public operations or attributes.” 

Architectural design rules have been recognized as an important part of the architecture from the 
early works on software architecture by Perry and Wolf (Perry & Wolf, 1992) to recent research 
in software architecture. In the work of Perry and Wolf architectural design rules are represented 
as form in the formula: Software Architecture = {Elements, Form, Rationale}, where form repre-
sents constraints on choice of elements and relationships between elements. In recent research 
focused on the treatment of architectural design decisions as first class entities (Jansen & Bosch, 
2005; Jansen, van der Ven, Avgeriou, & Hammer, 2007; Kruchten, 2004a; Kruchten, Lago, & 
van Vliet, 2006; Tyree & Akerman, 2005), architectural design decisions impose rules and con-
straints on the design together with rationale. Identification of design rules are also typically an 
activity in methods for architectural design as elaborated below: 

 In ADD (Bass et al., 2003; Wojcik et al., 2006) architectural design rules are represented 
as responsibilities and design constraints. 

 In RUP 4+1 Views (Kruchten, 1995, 2004b) architectural design rules are represented as 
design guidelines. 

 In QASAR (Bengtsson & Bosch, 1998; Bosch, 2000; Bosch & Molin, 1999) architectural 
design rules are represented bas rules and constraints. 

 In S4V (Hofmeister, Nord, & Soni, 2000; Soni, Nord, & Hofmeister, 1995) architectural 
design rules are represented as design guidelines and design strategies. 

 In ASC (Ran, 2000) architectural design rules are represented as design decisions. 

However, neither of these research streams nor methods provide any suggestion on how to model 
architectural design rules, other than as informal text. There are also numerous languages in-
tended for architectural descriptions, so called Architectural Description Languages (ADL) 
(Medvidovic, Dashofy, & Taylor, 2007; Medvidovic, Rosenblum, Redmiles, & Robbins, 2002; 
Medvidovic & Taylor, 2000) (e.g. ACME, Aesop, C2, MetaH, AADL, SysML and UML). How-
ever, none of these provide sufficient means to specify constraints or rules on groups of concep-
tual components only partly specified by the architect where the actual components are intended 
to be identified and designed by developers in later design phases. The main problem is that the 
ability to express these kinds of constraints is either missing, or the expressions to define even 
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quite simple rules become much too complicated to be usable in practice. An important factor to 
remember is that architectural design rules must be easily understandable by architects and devel-
opers; otherwise there is a risk that productivity will decrease instead of increase. 

As a result of this lack of satisfactory support for modeling of architectural design rules the state 
of practice is to specify these kinds of rules in informal text. Informal text is ambiguous, open for 
different interpretations and impossible to automatically enforce. This makes transferring them to 
the developers an error-prone and time-consuming manual task, as reported in (Mattsson et al., 
2009; Lang et al., 2005).  

There is however a novel approach that promises to solve these problems by providing a method 
to model architectural design rules and automatically check that the detailed design conforms to 
the rules (Mattsson, Fitzgerald, Lundell, & Lings, 2012). An important feature of the approach is 
that the architectural rules are easily understandable by architects and developers, as claimed by 
the designers of the approach. This paper reports on the findings from an action case study using 
the approach in an industrial development project. The research objective was to study the effects 
on productivity and quality as well as the learnability of the approach in order to estimate its ef-
fectiveness in transferring architectural design decisions to the developers. 

The rest of this paper is organized as follows. In the next section we introduce the novel approach 
for architectural modeling investigated in the action case study. Thereafter we present the re-
search approach adopted for the study. Following that our findings are presented. Finally we dis-
cuss our conclusions. 

On the Investigated Approach 
In order to be successful in practice, it is essential that architectural design rules are modeled in 
such a way that they are both amenable to automatic enforcement and easy to understand and use 
by architects and developers. The latter is important in order to avoid increasing the work of de-
veloping the rules; otherwise there is a risk that the work burden is increased instead of decreased 
even though the enforcement is automated. Another important issue is that it should be possible to 
use current mainstream modeling tools to model both the architectural design rules and the sys-
tem model so as to make it widely adoptable.  

Modelling Tool

Architectural
rules model System Model

Architect Developer

Modelling Tool
Architectural Conformance 

Validator (ArCon)

High level structure,
Support framework 

(Infrastructure)Architectural 
design rules

Rules modelled at meta-
model level in UML

Traditional UML model

Reads the models and report 
on any rule violations

 

Figure 1: An approach for automatic enforcement of architectural design rules. 
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Such an approach is defined in (Mattsson et al., 2012) with tooling and modeling method avail-
able as open source at http://code.google.com/a/eclipselabs.org/p/arcon/. The approach, illustrated 
in Figure 1 is based on the idea to use UML (OMG, 2011) to define architectural design rules in a 
meta-model that constrains the use of UML in a system model. 

Classes in the architectural rules model are transformed into UML stereotypes carrying con-
straints given by the constructs of the architectural rules model. The full mapping between UML 
constructs in the architectural rules model and the stereotypes used in the system model are pro-
vided in Appendix. Using this approach the constraint,  “A sensor may only have associations to 
In_Port_Ifc and Data_Items. These associations shall only be navigable from the sensor”, is 
modeled according to Figure 2. 

Data_ItemSensor
*

In_Port_Ifc
*

<<Association>> <<Association>>

 

Figure 2: An architectural rule modeled according to the novel approach 

Accompanying the method a tool called ArCon (Architectural Conformance Validator) has been 
built. ArCon is a stand–alone tool that reads the system model and the architectural rules model 
upon request, and reports on any violations in the system model against the rules defined in the 
architectural rules model. The idea is that developers should use the ArCon tool regularly to 
check that they are following the rules, thus eliminating the need for manual architectural re-
views.  

Research Approach 

On the Research Approach Adopted 
The objective of the research presented in this paper was to understand the effect of using the ap-
proach for automatic architectural enforcement illustrated in Figure 1 in an industrial develop-
ment project. Of specific interest were effects on productivity and quality as well as the learn-
abilty of the method and tool in order to understand its effectiveness in communicating architec-
tural design decisions. 

Given this objective, a hybrid of the interventionist/change and interpretivist/understanding per-
spectives was appropriate. Braa and Vidgen (Braa & Vidgen, 1999) locate a number of hybrid 
research approaches where a mixture of perspectives is motivating the research, and in case of a 
mixture of interventionist/change and interpretivist/understanding perspectives, as in this study, 
the Action Case approach is deemed appropriate. The Action Case approach is a hybrid of the 
Soft Case and Action Research approaches, each of which is discussed in turn below. 

In Soft Case research an interpretivist approach is adopted. The concern is more with gaining un-
derstanding and insight (Walsham, 1993). It is our belief that in this area where little exists by 
way of successful exemplars, then the appropriate approach is an in-depth study which a single 
case provides, what has been termed the “revelatory case” (Yin, 1994). A single case strategy is 
also strongly recommended by Mintzberg who poses the very apt question: “what, for example, is 
wrong with samples of one?” (Mintzberg, 1979). One of the limitations of this study might appear 
to be the fact that it is based on a single case and thus there is limited scope for generalisation. 
However, Lee and Baskerville (Lee & Baskerville, 2003) identify a fundamental and long-
standing problem with the type of generalization based on the type of statistical sampling fre-
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quently sought in research, namely the problem of attempting to generalize to any other settings 
beyond the current one. Following this conventional model, researchers have suggested increas-
ing sample size or number of case study organizations, but Baskerville and Lee argue cogently for 
the ultimate futility of this flawed strategy. In terms of external validity, while a single case study 
cannot achieve statistical generalization(Runeson & Höst, 2009), but rather contribute to an ana-
lytical generalization in which the findings of the case study contribute more generally to devel-
oping a theory of the phenomenon being studied.  

Action research originates from the work of Lewin (Lewin, 1948) and several ‘flavours’ have 
emerged. At heart, however, there is general agreement on a number of essential characteristics: it 
is a highly participative approach which implies a close intertwining between researchers and 
practitioners intervening on real problems in real contexts, with two primary outcomes: an action 
outcome in terms of a (hopefully) beneficial intervention in the organisation, and a research out-
come in terms of a contribution to research on the phenomenon in question. It is also a longitudi-
nal cyclical process of intervention and reflection, with any learning fed back in successive action 
research cycles e.g. (Baskerville, 1999; Kock, McQueen, & Scott, 1997; Lau, 1997). 

The Action Case is a trade-off between being an observer who can make interpretations (under-
standing) and a researcher involved in creating change in practice. With case study methods the 
researcher aims to collect a rich set of data to provide insight into some situation, while in action 
research the aim is to support desirable change in an organizational setting. However, when doing 
case studies researchers contribute to change by questioning events and applying new concepts. 
On the other hand, full-scale action research projects are often not appropriate due to organiza-
tional constraints or the nature of the topic to be investigated. Small scale intervention with a 
deep contextual understanding is one way of balancing this dilemma (Boland et al., 2004). 

These characteristics were very much present in this research: The intervention was done in a 
relatively small project over a limited time period, and where the researcher had deep knowledge 
of the problem domain and the organization. He had 20 years of experience from development of 
embedded real-time systems across a wide range of organizations in the automotive, defence, 
medical, telecom and automation industries. The last 15 of these years he had alternated between 
the roles of a software architect and a mentor in software architecture and Model-Driven Devel-
opment in numerous projects, several of these in the organization where this action case study 
was performed. However, in this action case study the role of the researcher was purely that of a 
researcher, transferring the method to the architect and observing the use of it. 

Data Collection and Analysis 
Data was collected and analyzed following the suggestions of Seaman (Seaman, 1999). Building 
on constructs derived from earlier work an interview guide was created. Interviews were tran-
scribed and items of relevance were coded. Archival data in the form of models and other devel-
opment artifacts, as detailed below, was used as a second data source. In order to increase the va-
lidity of the results the two data sources were used for triangulation. 

Semi-structured interviews were used to provide rich information on the interviewees’ prior 
knowledge, values and expectations, all important for the estimation of the learnability of the 
method (Lings & Lundell, 2004). They were also used to provide information on perceived effi-
ciency and quality of the work done. 

Two interviews were done with each interviewee. The first, focusing on prior knowledge, values 
and expectations, was performed before interviewees started to work with the method. The sec-
ond interview, focusing on usability, learnability of the method, perceived development effi-
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ciency and product quality compared to traditional way of working, was performed when they 
had worked with the method for two to six months.  

Four persons were interviewed - the architect and three developers working with the operating 
system kernel. Each interview started with a specific set of questions prepared in advance. Many 
of these were open-ended, intended to solicit information not foreseen by the interviewer and en-
couraging the interviewee to tell context-rich stories. The interviews were recorded and then tran-
scribed. The transcribed interviews were sent to the interviewee who was invited to clarify, cor-
rect, and elaborate parts of the interview. All interviewees were also promised anonymity in any 
reports. 

In addition to the interviews archival data was used in the data analysis as a tactic to further 
minimize the risk of bias from the researcher and improve the validity of the results. The fol-
lowing artifacts produced during development were used as data sources:  

 The architectural rules model.  
 The system model.  
 A text document with the textual rules and additional rationale for the rules  

Findings 
This section describes the research findings, beginning with a description of the research context. 

Action Case Context 
The action case study was performed in a development project at a company within the Swedish 
defense industry. The purpose of the development project was to develop a software platform, 
including a real-time operating system with special scheduling features, to be used in some of the 
system computers in a fighter aircraft. The project involved one project manager, one software 
architect and five developers during sixteen months until first customer delivery.  

The project used MDD (Model Driven Development) with Rhapsody as modeling tool. Although 
there had been previous projects using UML modeling and code synchronization with the Ra-
tional Rose tool this was the first project using this tool chain and MDD with full code generation 
at the company. 

The project followed RTCA/DO-178B for level A software, the highest safety level for avionics 
software. This meant that there were very strict and rigorous rules for how to develop and verify 
the software. Of specific interest for this study was the fact that although the architectural rules 
were modeled they still also had to be documented as text. The alternative would have been to 
qualify the architectural validation tool according to RTCA/DO-178B but that would have been 
far too costly for this project. The need for keeping the textual rules made it possible to count 
them and make comparisons between modeled versus non-modeled rules but it also made the 
benefits of reduced effort for defining the rules less than what could normally be expected. 

The project started with an initial phase during one month where the initial architectural rules 
were modeled in collaboration between the researcher and the architect. Then this architecture 
model was evolved by the architect alone during four months. At that point a four-hour workshop 
was held where the rules were presented for the developers by the architect. The developers then 
started the detailed design according to the architecture. Three incremental iterations were done 
during twelve moths until first delivery. 
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Findings in Development Artifacts 
There were 126 rules and 39 guidelines in the Architectural rules document. Rules had to be 
complied with always, whereas guidelines were recommendations that could be broken if there 
were good reasons. Guidelines were also often more vague than rules and might require the de-
veloper to exercise judgment in order to follow them. Typical examples of rules were: “A 
Data_Class shall only have private attributes” and “A Data_Class is only allowed to have opera-
tions to read and write attributes”. Typical examples of guidelines were “Keep the coupling be-
tween components as low as possible” and “The use of inheritance should be avoided”.  

Of the 126 rules, 121 were modeled and automatically validated by the tool. The five additional 
rules could be modeled according to the method but not automatically validated since they were 
using OCL (OMG, 2003) expressions not supported by the tool. The rules were modeled in seven 
different class diagrams. The most complex one is shown in Figure 3. 

Of the 39 guidelines 18 could have been modeled and automatically validated by the tool. How-
ever, the architect chose not to model guidelines at all. The motivation for this was that since fol-
lowing them was not mandatory, there was a risk of ‘polluting’ the validation reports with error 
messages that should have been treated as warnings. The remaining 11 guidelines that could not 
be modeled were all of the nature of requiring the developer to exercise judgment in following 
them, which made them inherently impossible to formalize. 

Thus, in total 73% of the rules and guidelines could be automatically verified and potentially, 
with some additions to the tooling, 89% would be possible to automate. This would have a major 
impact both on reduced effort for manual reviews and on the quality of the system.  
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Figure 3: Model of rules applying to Components in the Logical View 

Effects on Productivity 
The architect stated that even though he was forced to develop both textual rules and the model, 
due to process requirements (see section “Action Case Context”), he gained efficiency in devel-
oping the architecture. This was due to the fact that the model was at a higher level of abstraction 
than the textual rules, making the complexity lower, and that the formalism of the models elimi-
nated ambiguous and contradicting rules. It was easier, more efficient and gave better results to 
first model the rules and then manually extracts the textual rules from the model, than the tradi-
tional practice to work with rules only as text. He estimated that in a normal situation where the 
textual rules would not be needed he would gain between 10 to 50% depending on the complexity 
of the rules, in this phase. The greatest effect for his productivity though, he estimated, was that 
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he had to spend a lot less time communicating and reviewing the design than in a normal MDD 
project. Normally he would spend one to two days doing an architectural review; this time was 
now reduced to less than an hour checking the five rules not checked by the tool. He also used to 
spend a large part of his time explaining the meaning of the rules to the teams, with this new way 
of working there was almost no such questions. Spending a lot less time on reviews and commu-
nicating the rules enabled him to do optimizations to the architecture and supporting the teams in 
their design which, he stated, had made the system better and the teams more efficient. 

All developers claimed that they found it faster to read and understand the modeled rules than the 
textual rules. The only difficulty they saw was that the error messages from the tool sometimes 
were difficult to understand, but as one of them pointed out:  

“This is the same problem you have with a new compiler; the error messages can be hard to un-
derstand at the beginning but you soon learn how to interpret them”. 

 All developers believed that after a few days they were already more efficient then they would 
have been if working the traditional way, and were sure that the quality, in respect to how they 
had followed the rules, was much higher than if they would have had to manually follow the tex-
tual rules. This, they estimated, had an even greater impact on their productivity since there was 
no longer any rework after the architectural reviews.  

Effects on Quality 
According to the architect, when working in the traditional way where the architectural rules are 
enforced by manual reviews, generally a few violations are not detected until very late in the 
process, typically in the design of a future version of the system, since many architectural rules 
address maintainability, scalability and portability requirements. With automatic detection of all 
violations there are no violations to the architectural design rules in the system. According to 
Boehm and Basili (Boehm & Basili, 2001): 

 “Finding and fixing a software problem after delivery is often 100 times more expensive than 
finding and fixing it during the requirements and design phase.” 

This means that eliminating architectural violations should have a major impact on the quality of 
the system. The architect also claimed that the rules were of higher quality, compared to textual 
rules, since there were no ambiguous, redundant or contradicting rules due to the formal model-
ing. 

Another effect was that both the review and the discussions about the architecture between the 
architect and the developers focused on how to package the functionality in different components 
and not on how to follow detailed design rules since this latter question was automatically han-
dled. The architect claimed that in a “normal” project this would have been the opposite way 
around and that he believed that the increased focus on more difficult design decisions also led to 
a better system. The only apparent risk was that of relying too much on the tool and missing 
things that were not checked by the tool either by design or because of possible errors in the tool. 

Learnability of the Method 
The architect had eleven years of experience from UML modeling working as an architect in sev-
eral organizations within the embedded software industry. He had also quite deep knowledge of 
the UML meta-model from building model-to-code transformations in MDWorkbench. The ar-
chitect was positively disposed to using the approach since he was the one who had taken the ini-
tiative to use it after having seen a presentation of the method and tool at an internal workshop 
arranged for technology leaders within the company. 
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Developer A had a master degree in mechatronics and automation and two years of experience of 
design and implementation of embedded software. Developer B had a bachelor degree in elec-
tronics and three years of experience in design and implementation of embedded software. De-
veloper C had a master degree in software engineering and electronics and two-and-a-half years 
of experience of design and implementation of embedded software. None of the developers had 
any knowledge of meta-modeling and all had only a one-week training course in UML modeling. 
All developers were positively disposed to using the method and tool based on expectations that it 
would reduce the effort needed to follow the architectural rules. 

The architect and a researcher familiar with the method collaborated in developing an initial ver-
sion of the architectural rules model with an effort of about two person-weeks during one month. 
After that the architectural rules model was evolved by the architect alone during four months 
with an effort of about three person-weeks. At that point the model was presented to the develop-
ers in a four-hour long workshop. After that there were only minor adjustments to the architec-
tural rules model. The architect estimated that it took about one month to master most of the 
modeling concepts and an additional month to fully master the method.  

Both the developers and the architect emphasized the benefits of getting immediate feedback 
from the tool, it made the learning of the rules much faster. All three developers claimed that they 
found it easy to understand the modeled rules right from the beginning with the primary reasons 
being that the rules were modeled in UML, which they all had some experience of, and that they 
got instant feedback from the validation tool, illustrated by these statements: 

- “If you understand UML then you understand the rules”  

- “Instant feedback is the only efficient way to learn. If you give a banana to a monkey one 
hour after it has done something good nothing happens, if you do it instantly, it will learn 
to do it again” 

Conclusions 
There is a lack of satisfactory solutions on how to model architectural design rules in the current 
body of literature. As a result the state of practice is to specify these kinds of rules in informal 
text. Informal text is ambiguous, open for different interpretations and impossible to automati-
cally enforce. This makes transferring them to the developers an error-prone and time-consuming 
manual task. The objective of this study was to understand the effects of using a novel approach 
that promises to solve this problem in an industrial development project.  

Several findings indicate that the approach provides a more efficient way of communicating ar-
chitectural design decisions than the traditional way:  

 Normally the architect would spend one to two days doing an architectural review; this 
time was now reduced to less than an hour checking the five rules not checked by the 
tool. The architect also used to spend a large part of his time explaining the meaning of 
the rules to the teams, with this new way of working there was almost no such questions. 

 All developers claimed that they found it faster to read and understand the modeled rules 
than the textual rules. 

 All developers claimed that they found it easy to understand the modeled rules right from 
the beginning.  

 The architect claimed that the rules were of higher quality, compared to textual rules, 
since there were no ambiguous, redundant or contradicting rules due to the formal model-
ing. 
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 Both the review and the discussions about the architecture between the architect and the 
developers focused on how to package the functionality in different components and not 
on how to follow detailed design rules since this latter question was automatically han-
dled. The architect claimed that in a “normal” project this would have been the opposite 
way around and that he believed that the increased focus on more difficult design deci-
sions also led to a better system.  

An important reason for the more efficient communication was that the rules were modeled in 
UML, which is a widely spread modeling language that all interviewees had experience in. An-
other important reason, as pointed out by several of the interviewees, was that that they got in-
stant feedback from the validation tool whether they followed the rules or not. 

Also the approach proved to be easy to learn, especially for the developers. The demands are of 
course much higher for the architect, who is tasked with constructing the rules, so it is not surpris-
ing it takes longer to master the method, still, two months must be considered to be a relatively 
short time to fully master a new modeling technique. It probably takes longer without any knowl-
edge of meta-modeling but judging from how fast the developers, without any meta-modeling 
experience, understood the models this should not be a major hurdle. A lack of experience in 
UML modeling (or more significantly, any OO modeling language) would probably be a bigger 
problem, but UML modeling are today to be considered to be a basic required skill for a software 
architect 

However, since change in work practice requires people to change, perhaps the most important 
finding was the enthusiasm expressed both by the architect and the developers, they all thought 
that they produced a better result with less effort and had more fun doing it. As expressed by one 
of the interviewees: 

- “I think you have come up with something really useful here.” 

Although the action case study only covered one development project, two factors suggest that 
the results should, to a large extent, be transferable to other systems and organizations, at least in 
the embedded software domain: 

1. The defined transformations are based on raising the general modeling constructs of 
UML to the meta-model level, not on the specific needs of the developed system. 

2. The developed system is a real-world system. 
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Appendix 
In Table 1 the definition on how to interpret the constructs in the architectural rules model as 
constraints on a system model is given. The definitions refer to an architectural rules model com-
plying with the form of the generic model given in  

Figure 4. References to terms defined in the generic model are written in italics. 

<<M1>>
C1

<<M2>>
C2<<SR1>> R1

<<SR2>> R2

Mu2
Mu1

<<SA>>A:T

C3

<<MA, S1…Sn>>

 

Figure 4: A generic architectural rules model used in the definition of the transformations 

 

486 



Mattsson, Lundell, & Fitzgerald 

Table 1 Definition of transformations between constructs in the architectural rules model 
and constraints on stereotypes in the system model 

Example Transformation 
Architectural rules 
model 

System model stereotypes 

T1: A class named C1 with the stereo-
type M1 is transformed into a stereo-
type named C1 extending the meta-
class M1 unless transformation number 
T3 below applies. If M1 is undefined 
then “Class” is assumed  

 
IT2: If SR2 is the role in the language 
meta-model on the far end of an asso-
ciation from the meta-class of C1 to the 
meta-class of C2 then the multiplicity 
of R2 for a <<C2>> element shall be 
constrained to Mu2 in stereotype 
<<C1>> 

  
T3: If M1 equals “metaclass” then C1 
represents the class C1 in the UML 
meta-model and is not transformed into 
anything in the system model. This can 
be used to specify constraints in other 
stereotypes in respect to these meta-
classes 

T4: If SA equals “meta” far an attribute 
A and the name of A matches the name 
of an attribute of class M1 in the meta-
model then it is transformed into a con-
straint on that attribute on allowed val-
ues. The value of the attribute is con-
strained to match a regular expression 
specified as the default value of the 
attribute. 

 

T5: If no match is found for an A 
where SA equals “meta” (according to 
T4) then A is transformed into an at-
tribute A of the stereotype (tag-
definition), thus defining a tagged 
value to be set in the model elements 
where the stereotype is applied 

 
 

<<Package>> 
Sensor_Pkg 

Sensor 

<<Class>>
Sensor 

<<Property>> 
SamplingPeriod

1
<<ownedAttribute>> 

<<stereotype>> 
Sensor 

{A <<Sensor>> Class must have one owne-
dAttribute of the stereotype SamplingPeriod }  

<<stereotype>> 
SamplingPeriod 

<<stereotype>> 
Sensor 

{A <<Sensor>> Class must have one owne-
dAttribute of the stereotype SamplingPeriod 

and no other ownedAttributes }  

<<stereotype>> 
SamplingPeriod 

<<stereotype>> 
Sensor_Pkg 

UML::Package 

<<stereotype>> 
Sensor 

UML::Class 

<<Class>>
Sensor 

<<metaclass>> 

<<stereotype>> 
SamplingPeriod 

{A <<SamplingPeriod>> Property must have 
the name “SamplingPeriod” and the visibility 

“private”}  

Property 

<<ownedAttribute>> 0 

<<Property>> 
SamplingPeriod

1

<<ownedAttribute>> 

<<Property>> 
SamplingPeriod 

<<meta>> name =  
      “SamplingPeriod” 
<<meta>> visibility = “private” 

<<Class>> 
All_Classes 

<<meta>> Designer:String 

<<stereotype>> 
All_Classes 

Designer:String 

487 



Communicating Architectural Design Rules 

Example Transformation 
Architectural rules 
model 

System model stereotypes 

T6: Any OCL constraint in the context 
of a class C1 is copied exactly as it is 
into the stereotype C1 

T7: A generalisation relationship from 
a class C3 to a class C1 in the architec-
tural rules model is transformed to a 
generalisation from stereotype <<C3>> 
to stereotype <<C1>>.  

The UML meaning of this is that all 
constraints and attributes of the stereo-
type <<C1>> are inherited by the 
stereotype <<C3>> and that any 
<<C3>> element is also an <<C1>> 
element. 

  

T8: If M1 equals “Package” and the 
aggregation of R1 is “composite”:  

A <<C1>> Package is constrained to 
have Mu2 number of <<C2>> ele-
ments as packagedElements. The visi-
bility of these elements shall be the 
visibility of Mu2.  

Also, a <<C1>> package is not al-
lowed to have any packagedElements 
unless explicitly allowed iin the model. 

 

 

T9: <<C1>> elements are only allowed 
to have the associations, dependencies, 
generalizations and realizations explic-
itly allowed according to T10 and T11. 

See examples for T10 
and T11. 

 

T10: If MA equals “Association”: 

A <<C1>> element shall be associated 
with Mu2 number of <<C2>> ele-
ments. The association ends shall have 
the same navigability, aggregation 
(none, shared or composite) and visi-
bility as R1 and R2. The association 
ends shall also have qualifiers accord-
ing to the qualifiers of R1 and R2. The 
name and type of these shall be accord-
ing to the transformations for attributes 
specified in T12. The association shall 
have the stereotypes S1 to Sn. 

 

 

<<stereotype>>
Sensor 

<<stereotype>>
All_Classes 

<<Class>>
Sensor 

<<Class>> 
All_Classes

<<stereotype>> 
Sensor 

{ inv: self.base_Class.ownedOperation. 
extension_Sample.size()=1 xor 
self.base_Class.ownedOperation. 

extension_Trig.size()=1}  

<<Class>> 
Sensor 

{ inv: 
self.base_Class.ownedOperation. 
extension_Sample.size()=1 xor 
self.base_Class.ownedOperation. 

extension_Trig.size()=1 }  

<<Package>> 
Sensors 

* 

<<stereotype>> 
Sensors 

{A <<Sensors>> Package may contain 
any number of <<Sensor>> Classes 

and no other elements} 

<<Class>> 
Sensor 

{A <<Sensor>> Class may have any 
number of associations only navigable 

to a <<Data_Item>> class } 

<<stereotype>> 
Sensor 

Sensor 

* 

* 
<<Association>> 

Data_Item 

{A <<Data_Item>> Class may have any 
number of associations only navigable 

from a <<Sensor>> class} 

<<stereotype>> 
Data_Item 

488 



Mattsson, Lundell, & Fitzgerald 

Example Transformation 
Architectural rules 
model 

System model stereotypes 

T11: If MA equals “Dependency”, 
“Generalization” or “Realization” and 
the association is only navigable from 
C1 to C2: 

A <<C1>> element shall have a rela-
tionship according to MA to Mu2 num-
ber of <<C2>> elements with stereo-
types S1 to Sn 

 

 

T12: If there are attributes A of C1 
where SA is not equal to “meta”:  

 All parts of the definition of an 
attribute of a <<C1>> class must 
match the corresponding part of an 
A, where the wild card characters 
“@” and “%” in any part of the 
definition of A can be replaced 
with any character sequence. Parts 
of A not specified (as for instance 
default value for Sampling_Period 
in the example to the right) 

 All A must be matched by one at-
tribute in a <<C1>> class. An ex-
ception to this is if the name of A 
contains the wild card character 
“%”; in this case any number of 
matches (including zero) is al-
lowed. 

 If the name of a type of A is identi-
cal to the name of a class C in the 
architectural rules model then the 
type of a matching attribute must 
be a <<C>> element. 

 

In_Port_Ifc 

In_Port 

<<Realization>> 

1 
{An <<In_Port>> Class shall realize 

one <<In_Port_Ifc>> Class} 

<<stereotype>> 
In_Port 

<<Class>> 
Sensor 

- Sampling_Period : int 
- % : @ 

<<stereotype>> 
Sensor 

{A <<Sensor>> Class must have one 
private attribute named Sam-

pling_Period with a type named int and 
any number of other private attributes 

with any type} 
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Example Transformation 
Architectural rules 
model 

System model stereotypes 

T13: If there are operations O of C1:  

 All parts of the definition of an 
operation of a <<C1>> class must 
match the corresponding part of an 
O, where, for each part of the defi-
nition, the wild card characters 
“@” and “%” can be replaced with 
any character sequence. Properties 
of O not specified (as for instance 
parameter directions for operations 
in the example to the right) are un-
constrained. 

 This requirement holds for all parts 
of the definition of O defined in 
the UML meta-model, such as for 
instance opaque behaviour speci-
fied for the operation.  

 The character “%” in a parameter 
name means that the definition of 
this parameter can be repeated any 
number of times, including zero. In 
these parameter definitions “%” 
can be replaced with any character 
sequence.  

 If the name of the type of O or a 
parameter of O is identical to the 
name of a class B in the architec-
tural rules model then the type of 
matching operations or parameters 
in the <<C1>> class must be of a 
<<B>> Class. 

 All O must be matched by one op-
eration in a <<C1>> class. An ex-
ception to this is if the name of O 
contains the wild card character 
“%”; in this case any number of 
matches (including zero) is al-
lowed. 

 

 

Subject 

+Attach(O:Observer) 

Observer 

Set_%(%:@) 
{ 
   @ 
   Notify(); 
} 

Data_Item 

+Set_%(%:@) 

{A <<Data_Item>> Class shall have any 
number of public operations who's name 
begins with “Set_” . The operations can 
have any parameters of any type. The 
operations shall have no return value. The 
operations shall have an opaque behav-
iour specification ending with “Notify();”} 

<<stereotype>> 
Data_Item 

{A <<Subject>> Class shall have one 
public operation named “Attach” with 
one parameter named “O”. The type of 
this parameter shall be a Class stereo-
typed <<Observer>>. The operation 
shall have no return value} 

<<stereotype>> 
Subject 

490 



Mattsson, Lundell, & Fitzgerald 

Example Transformation 
Architectural rules 
model 

System model stereotypes 

T14: If C1 has a state machine then a 
<<C1>> class must have a state ma-
chine where there for each region in C1 
shall be an identical region in the 
<<C1>> class. The wild card character 
“@” may be used in the transition 
definitions in C1 and shall then be 
matched with any text string in the cor-
responding transition in the state ma-
chine of a <<C1>> class. It is allowed 
to have additional regions in the state 
machine of a <<C1>> class. 

 

Sampling

after(Sampling_Period)/Sample() 

stm Sensor 

{A <<Sensor>> Class shall have a state 
machine with a top level region with a 
state machine that is a copy of the state 
machine of Sensor class in the architec-
tural rules model} 

<<stereotype>> 
Sensor 
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