
Proceedings of Informing Science & IT Education Conference (InSITE) 2012

Rapid Digital Game Creation
for Learning Object-Oriented Concepts

Nikunj Dalal (Management Science and Information Systems),
Subhash Kak (Computer Science), and
Sohum Sohoni (Computer Engineering)

Oklahoma State University, Stillwater, OK, USA

nik@okstate.edu; subhash.kak@okstate.edu;
sohum.sohoni@okstate.edu

Abstract
A large body of research from multiple fields demonstrates the power of digital games in learn-
ing. This article is about the learning that occurs from making games, rather than from playing
games. In this paper, we describe the use of Rapid Digital Game Creation (RDGC) for learning
and teaching Object-Oriented (O-O) concepts. RDGC involves the rapid building of digital games
with high-level software that requires little or no programming knowledge. We examine how
RDGC supports the understanding of various O-O concepts. Using a theoretical framework of
constructionism, we discuss pedagogical guidelines for RDGC-based learning. We suggest that
RDGC is a useful pedagogic tool that complements formal programming languages and can help
flatten the steep learning curve needed to learn O-O computer programming (or OOP).

Keywords: Rapid digital game creation, Learning, Object-oriented concepts, Pedagogy, Comput-
ing education

Introduction
In recent years, digital game based learning has received considerable attention from researchers
as it has been found that playing videogames can enhance learning in both adults and children. A
large body of research from multiple fields (Babcock & Marks 2010; Gee 2007; Lenhart, Kahne,
Middaugh, Macgill, Evans, & Vitak, 2008) demonstrates the power of games, and a growing
number of researchers are incorporating games into education. Digital games are linked to ex-
citement, energy, motivation, imagination, learning, and flow. Play fosters learning, flexibility,
and creativity (Silveira, Araújo, Veiga, Naito, & Comotti, 2011). Moreover, recent research
(Lenhart et al., 2008) has shown that games cut across gender, ethnic, and socio-economic
boundaries. This study showed how ubiquitous games are to the younger generation raised in the
computer, gaming and Internet era, that is, the digital natives (Prensky, 2001) — 98% of teenage

boys and 94% of girls play electronic
games—and shattered stereotypes about
games as being restricted to a “solitary,
nerd” subculture. The motivational po-
tential of digital games staggers the
imagination. Games form a context for
learning which can be understood by
people from diverse cultures and back-
grounds.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:nik@okstate.edu
mailto:subhash.kak@okstate.edu
mailto:sohum.sohoni@okstate.edu
mailto:Publisher@InformingScience.org

Rapid Digital Game Creation

Considerable research in digital game based learning has been about the learning that occurs
from playing games. But what is the learning that can occur from building rather than playing
games? Curricula that have used game design in computing currcula have largely found high mo-
tivation, increased learning, and positive effects on students (e.g., Bayliss & Strout, 2006; Par-
berry, Kazemzadeh, & Roden, 2006). In recent years, the dramatic increase in rapid prototyping
tools for building games and applications is leading to a new interest in innovative learning
from rapidly creating games. Hence, in this paper, we specifically focus on rapid game creation.
Rapid Digital Game Creation or RDGC is the process “used to build computer games quickly and
easily using game creation software that requires little or no programming knowledge. Rapid
game creation enables a creator to build a quick prototype game and to see the effects of changes
almost immediately (Dalal, Dalal, Kak, Antonenko, & Stansberry, 2009, p. 125).” Why focus on
learning from rapid game creation and not from design of digital games from scratch? Design of
games from scratch is a very complex cognitive activity (Sweller, 1998) involving considerable
expertise, high costs, and development time, and as such is not readily possible or available for
wide communities of learners. In contrast, RDGC-based learning can be a fun process that is not
highly difficult or expensive to implement and maintain.

While RDGC-based learning involves fun, motivation, art, music, and creativity, our focus in this
paper is on the use of RDGC for learning and teaching of object-oriented concepts. All major ac-
ademic recommendations for information systems and computing curricula
(http://www.acm.org/education/curricula-recommendations) include the concepts of O-O pro-
gramming, O-O analysis, O-O modeling, and O-O design. Concepts such as classes, objects,
events, instances and their subconcepts are intrinsic to the understanding of the development of
modern systems. Moreover, such concepts make up a deeper type of thinking skill important for
students to learn: that we might call object-oriented thinking. As Wright (2007) asserts:

“Object-oriented thinking has been around even before object-oriented pro-
gramming. People do it without knowing it might be called object-oriented. It
helps us conceptualize a system and better grasp it. It helps us wrap our mind
around a system without blowing a fuse. It makes programming easier for us
and easier for others coming to our code. Object-oriented programming was
created to make it easy to transfer our object-oriented thinking into code, al-
though we can still program procedurally our object-oriented design.”

Object-oriented thinking, in turn, may be seen as an aspect of computational thinking, which
“represents a universally applicable attitude and skill set that everyone, not just computer scien-
tists, would be eager to learn and use…It is concerned with conceptualizing, problem-solving
and designing systems drawing upon mathematical and engineering thinking using concepts fun-
damental to computing” (Wing, 2006).

In this paper, we propose the use of RDGC for the learning and innovative teaching of basic and
advanced O-O concepts. This paper is organized as follows. In the next section, we describe the
RDGC process and tools and demonstrate the creation of a Pong game using a tool called Game
Maker. Next, we discuss the theoretical basis of constructionism. Then we discuss pedagogy for
O-O learning and teaching with RDGC. Finally, we conclude with limitations and implications
for future teaching and research.

Rapid Digital Game Creation
As described earlier, RDGC refers to the process of building computer games quickly and easily,
using game creation software that requires little or no programming knowledge. RDGC offers an
easy and enjoyable way of achieving this task of building computer games. It does not require
the user to have prior knowledge of programming. There are various RDGC tools available such

238

Dalal, Kak, & Sohoni

as Game Maker (http://www.yoyogames.com), Multimedia Fusion
(http://www.clickteam.com/website/usa), Alice (http://www.alice.org), and Scratch
(http://scratch.mit.edu/) among others. Tools such as App Inventor
(http://www.appinventorbeta.com/) are also available for building mobile games and apps. The
tools vary in several aspects such as ease of use, ease of learning, type of deployment platform,
and in the availability of different complex options for building a game. But they all offer a visual
object oriented platform with a variety of options to create and specify objects, events and meth-
ods. Some tools are specialized for building games whereas others can be used for building more
general applications or software. However, note that the approach described in this paper is plat-
form independent as any of the tools can be used as a means to learn and teach O-O skills.

As an example, see Figure 1, which shows the user-interface of Multimedia Fusion 2. Area 1 is
the workspace that shows the levels of the game. Area 2 shows the properties of a game or any of
its objects. The objects used by the game are themselves displayed in Area 3. These objects can
be laid out in a frame as shown in Area 4. Other rapid game-making programs have interfaces
with similar functionality.

Figure 1: Screenshot of the user interface of Multimedia Fusion 2

Creating a Game in Game Maker
In this paper, we illustrate the RDGC process in relation to O-O concepts using Game Maker as
the platform because it is popularly available in the public domain and because of the relatively
short learning curve it requires (Habgood & Overmars, 2006). Game Maker enables the game
creator to create sprites (the graphic images for the characters required for the game), objects
(where the characters created using the sprites are assigned properties), events (e.g., collision be-

 239

http://www.yoyogames.com/
http://www.clickteam.com/website/usa
http://www.alice.org/
http://scratch.mit.edu/
http://www.appinventorbeta.com/

Rapid Digital Game Creation

tween objects), actions in response to the events (e.g., ball goes up upon collision with the wall),
rooms (used to implement different levels of the game), sounds, backgrounds, and others.

Figure 2 shows a screen shot from a prototype Pong game created using Game Maker. The Pong
game was designed as an aid to illustrate O-O concepts. The time it takes to create the initial
game is as little as 30 minutes.

Figure 2. Prototype Pong Game designed using GameMaker

Designing the game in Game Maker requires very little or no programming knowledge. It has
several in-built menu options that can be selected as per the user’s requirements. Initially, we
need to create the sprites or graphic images for the ball and the paddle. This is done using the
built-in editor in minutes.

Figure 3. Designing an object

Once the required sprites are created, we use them as graphic images to represent the objects. Af-
ter the objects are created, the next step is to specify events (such as collision between ball and
paddle or key press by game player) and the actions performed by the objects in response to the
events (e.g., bounce the ball back or move the paddle). This process is shown in Figures 3 and 4.
With the use of events and actions, the game creator can iterate through different ‘if-then-else’
scenarios as required for the game.

240

Dalal, Kak, & Sohoni

Figure 4. Adding events to objects

After assigning the required events and setting up other aspects of the game such as the score
board and the room design where the objects are to be placed (see Figure 4), the final game is
ready to be played.

Figure 5. Design of room where the objects are to be placed

Theoretical Basis of Rapid Digital Game
Creation-Based Learning

RDGC-based learning is grounded in the learning theories of social constructivism (Solomon
1994) and constructionism (Harel & Papert 1991). Piaget’s theory of constructivism argues that
knowledge and meaning are constructed rather than pre-existing (Piaget & Inhelder 1969). Ex-
periences drive the development of ideas in a continuum that the learner ultimately derives mean-
ing from. This makes the student a "builder" of knowledge, as opposed to a simple recipient of
knowledge. This is at odds with the traditional classroom where a student is a quiet receptor and
the teacher is a guardian of secret knowledge that is "gifted" onto the student. Social constructiv-
ism and constructionism (Harel & Papert 1991) go beyond constructivism by asserting that the
best context for learning happens "when the learner is engaged in the construction of something
external or at least shareable... a sand castle, a machine, a computer program, a book. This leads
us to a model using a cycle of internalization of what is outside, then externalization of what is
inside and so on." This is also a kind of “learning-by-making”, as articulated by Papert (1991).

 241

Rapid Digital Game Creation

Constructionism is thus an epistemological framework concerned with building things, both in
the sense of building understanding (as in constructivism) and building artifacts. RDGC is a con-
structionist learning activity because it involves the creation of a tangible artifact – a game, which
in turn involves the designing of characters, virtual locations, and interactions of characters.
Hence, it is a multi-layered constructionist process where building each artifact within the game
is considered a separate, measurable instance of constructionist learning (Dalal et al., 2009). Bas-
ing on constructionism, learning in the RDGC environment happens from the process of creating
the game and its components, experimenting with them to see how they work, modifying them to
work better, and reflecting upon this process.

RDGC not only provides an opportunity to learn as a consequence of designing a game, it also
allows for learning from the environment in which the game is developed, including fellow stu-
dents and programming partners. Moreover, the learning is implicit, and a consequence of the
main activity of designing a game. This is important, since game design is an exciting activity
that provides a narrative to motivate students to continue engaging in the activity, without neces-
sarily focusing on what they are learning. They can later reflect on what they learned, and thereby
complete the loop for metacognition.

RDGC and Object-Oriented Concepts
There is some evidence that using a rapid prototyping tool in a classroom and lab before exposing
students to formal programming would create a better understanding of O-O concepts and im-
prove their programming skills (see e.g., Cooper, Dann, & Pausch, 2003). Scratch, a creation of
MIT’s media lab, has been used prior to teaching Java in an introductory computer science course
at Harvard (Malan & Leitner, 2007) and it was found that the use of the software was exciting to
students at a critical time during their first exposure to computer science and it helped the novice
learners of programming to learn without the distraction of syntax.

Object-oriented thinking and its realization in the form of a prototype game is intrinsic to the
RDGC process. Object orientation involves an intuitive if not explicit understanding of concepts
such as objects, instances, events, abstraction, polymorphism, encapsulation among others. At a
lower level, it also involves the understanding of programming structures such as sequence, deci-
sions, and iterations. Table 1 shows some common O-O concepts also used in OOP languages
such as Java. This is not meant to be a comprehensive list.

Table 1: Commong O-O Concepts

Concept Description

1) Abstraction Abstraction is used to represent essential characteristics without neces-
sarily explaining all the details. This includes the notions of object clas-
ses and instances.

2) Inheritance Inheritance allows an object of a class to acquire the properties of the
object of a super class. This allows for reusability.

3) Polymorphism Polymorphism allows an operation to take more than one form and
hence can allow an object to show different behaviors in different situa-
tions.

4) Encapsulation
Encapsulation compartmentalizes the functional details of some or all of
the object's components such that the internal details are hidden from
view outside the object. This involves the concepts of properties and
methods.

242

http://en.wikipedia.org/wiki/Object_(computer_science)

Dalal, Kak, & Sohoni

RDGC for O-O Learning And Teaching
How does designing a game such as Pong using an RDGC tool help the learner understand O-O
concepts and how can an instructor demonstrate the concepts via the game? One teaching ap-
proach is to illustrate the concepts by having the students build a game and explore the concepts
by means of their RDGC implementation, and then reflect on their exploration and experiences.
This may be done in an introductory computing course or a pre-OOP course. This approach is
consistent with an objects-first strategy recommended by curriculum experts of computing, where
students learn O-O concepts first in contrast to the more commonly used programming-first ap-
proach (Cooper, Dann, & Pausch, 2003; Topi, Valacich, Kaiser, Nunamaker, Sipior, de Vreede,
& Wright (2010).

The theoretical framework of constructionism suggests the following pedagogic guidelines:

1. Create different learning activities to be related to a larger task. This allows students to
see the interconnectedness of different concepts and skills. With RDGC, the overarching
goal of creating a prototype digital game will be the central theme for the learning activi-
ties, which include O-O learning.

2. The learner needs to be given ownership of the overall problem, which allows for free
exploration of alternative solutions. Hence, Pong can be a starting point but learners
should be allowed to make their own games.

3. An authentic task should be designed for the learner- i.e. the learner should feel that the
game that they are creating will be fun to play, and will be used by others.

4. Allow reflection on the content being learned. Students may be asked to write a report for
the game that they created along with a separate reflection essay on their experiences
with RDGC and their understanding of O-O concepts. After creating several games, stu-
dents may be asked to select one or two games to include in a digital portfolio, justifying
why they picked those specific ones.

5. Later, when students learn an OOP such as Java, they can be asked to create an equiva-
lent Pong game and asked to show the correspondences from the RDGC implementation
to the equivalent Java code.

Hence, in an attempt to build a digital game, learners intrinsically learn basic OOP concepts
without necessarily realizing that they are using those concepts. Subsequently, when they do learn
an OOP language, it is easier for them to understand the programming constructs because they
can be correlated with specific examples from the user’s own game products. RDGC can also
help better understand the basic concepts of programming such as the use of sequence, loops, de-
cision structures, and other aspects of programming because they are direct implementations of
earlier-performed intuitive RDGC tasks.

We discuss below the RDGC mappings of some representative O-O concepts.

Abstraction
In object-oriented programming, we are able to create abstract object classes and their instances,
and specify properties and methods or operations. In the RDGC implementation of Pong, the
learner can be shown e.g., that Paddle is an object class with properties of width and length and
methods relating to movement direction and movement velocity. The specific paddles used in the
game are instances of the class Paddle, a fact that would be intuitively obvious to the learner but
can be explicated as a labeled concept by the instructor.

 243

Rapid Digital Game Creation

Inheritance
Inheritance allows classes to inherit commonly used state and behavior from other classes. For
example, in the Pong game, the general Paddle object class can be shown to be used to create
specialized classes representing various kinds of paddles such as LongPaddle, MediumPaddle,
ShortPaddle, and each subclass would inherit the properties and methods from the superclass
Paddle.

Polymorphism
Polymorphism as an O-O concept allows an operation to take more than one form and hence can
allow an object to show different behaviors in different situations. As a programming lan-
guage concept, polymorphism allows values of different data types to be handled using a uni-
form interface. For example, in the Pong game, the Move method for a Paddle or a Ball can be
shown to be implemented in different ways depending upon the level and complexity of the
game.

Encapsulation
Encapsulation is a language mechanism for restricting access to some of the object's
components in an OOP. In the Pong game, encapsulation can be explained e.g., in terms
of how the methods of an object are hidden from other objects. For example, the move-
ment of a Paddle instance is not known to the Ball instance.

Discussion and Future Research
The use of game design in the curriculum is not new. Many studies have reported largely positive
effects of game design in terms of attitudes, learning, creativity, holding the student’s interest,
retention, and other parameters and the empirical evidence for this approach is growing. In this
paper, we have examined the use of RDGC in learning Object-Oriented concepts. We believe the
learning process using RDGC facilitates the learning of the abstract concepts of Object-Oriented
programming and modeling prior to actually programming in an OOP. While we have presented
some evidence, our study is limited by its exploratory nature.

We do not view RDGC as an alternative to teaching a formal programming language such as Ja-
va. But we do see it providing advantage in the understanding of programming constructs if the
instructor explains the constructs in terms of the steps taken by the student in the creation of his
game. Therefore, we see RDGC and other formal programming languages complement one an-
other. It can help flatten the steep learning curve needed to learn O-O computer programming.
Moreover, based on our experience, RDGC can also be used in systems courses for object-
modeling purposes as the game characters and props can serve as virtual-world objects for model-
ing.

We believe RDGC is a general pedagogical approach with wide ranging applications though there
is a need for studies to test this assertion in different domains. It can also be used to teach do-
main-specific knowledge when students build games in specific domains. Recent studies (Lenhart
et al., 2008) on the social impact of games show that electronic games cut across societal bounda-
ries and provide a framework that is understood by diverse groups. Learning outcomes improve
when students have a context for learning that is framed within their own experience (Bransford,
Brown, & Cocking, 2000). The target audience of high-school and college-age students identifies
with, and is strongly rooted in, the culture of games. Seymour and Hewitt’s classic study (Sey-
mour & Hewitt 1994) highlighted the adverse impact unfamiliar college culture has on retention
and success in STEM programs. Since students from all backgrounds understand games, they

244

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Object_(computer_science)

Dalal, Kak, & Sohoni

have broad and deep experience to draw from in game creation, contextualizing design. Since the
appeal of games transcends gender, age, and race, introducing RDGC can potentially increase
computing enrollment among groups historically known to be under-represented in those disci-
plines.

Games encourage interaction and community building, even between individuals with different
levels of expertise. Support networks spring up rapidly around popular games through on-line
forums and other social networks. (Gee, 2004). These forums serve as effective informal learning
environments that allow players of different ages and experience to rapidly become more profi-
cient. Games thus spontaneously form structures similar to learning communities, which have
significant positive impact on retention (Hotchkiss, Moore, & Pitts, 2006; Tinto, 1998).

Learning O-O as a facet of learning computational thinking has implications not only for skills in
computing but also for other fields of study and in general problem-solving, although this area
requires further research.

Our exploration raises several research issues for pedagogy related to RDGC. Although there is
some documented evidence, there is need for rigorous empirical studies to understand how good
the learning of O-O concepts is when this approach is used. There is also a need for effective
pedagogic models and best practices for the use of this approach in the classroom. Other issues
that emerge include research into the use of pre-built template games for imparting domain-
specific knowledge and O-O skills. We need to explore the types of games that appeal to different
kinds of users in order to facilitate the building of an effective RDGC pedagogic framework.

Conclusion
A large body of research from multiple fields demonstrates the power of digital games in learn-
ing. In this paper, we have focused on learning that occurs from making rapid games using rapid
game generation software. Computing education needs more innovative ways of instruction. We
believe that rapid digital game creation has the potential to be an effective pedagogical model in
IS and computing courses. Based on our exploration, RDGC holds promise as an important part
of what may be called a “games first” approach to introductory programming (Leutenegger &
Edgington, 2007). We have cited some empirical work done in this field but there is a need for
more systematic studies of the relationships between different aspects of learning and RDGC-
based pedagogies.

RDGC is also a useful pedagogic tool for other academic areas and not just content areas that re-
quire computer programming. Game construction and game playing provides more flexibility
since it uses a variety of objects and scenarios in an interactive environment. Curriculum design-
ers must consider the inclusion of RDGC in a variety of courses as O-O thinking has value out-
side of computing. Providing students with pre-designed games templates and guiding them to
build computer games rapidly constitutes a creative approach for increasing interest in the com-
puting disciplines.

Acknowledgements
We thank Praveen Kuruvada and Daniel Asamoah for their assistance during an earlier phase of
this work.

References
Babcock, P., & Marks, M. (2010). Leisure College USA: The decline in student study time. American En-

terprise Institute.

Bayliss, J. D., & Strout, S. (2006). Games as a “Flavor” of CS1. SIGCSE'06, Houston, Texas, USA.

 245

Rapid Digital Game Creation

Bransford, J. D., Brown. A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and
school. Washington, DC: National Academy Press.

Conway, M. J. (1997). Alice: Easy-to-learn 3D scripting for novices. University of Virginia.

Cooper, S., Dann, W., & Pausch, R. (2003) Teaching objects first in introductory computer science.
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education, Reno, NV,
February, 191-195.

Dalal, N., Dalal, P., Kak, S., Antonenko, P., & Stansberry, S. (2009). Rapid digital game creation for
broadening participation in computing and fostering crucial thinking skills. International Journal of
Social and Humanistic Computing, 1(2), 123-136.

Davies, S. (2008). The effects of emphasizing computational thinking in an introductory programming
course. Saratoga Springs, NY.

Ferdig, R., & Boyer, J. (2007). Can game development impact academic achievement? T.H.E. Journal.
[Online]. Available: http://www.thejournal.com/articles/21483

Gee, J. (2004). Situated language and learning. New York, Routledge.

Gee, J. (2007). What video games have to teach us about learning and literacy. New York: Palgrave Mac-
millan.

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8), 27.

Habgood, L., & Overmars, M. (2006). The game maker’s apprentice: Game development for beginners.
Berkeley, CA: Apress.

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

Hotchkiss, J. L., R. E. Moore, & Pitts,. M. (2006). Freshman learning communities, college performance,
and retention. Education Economics. 14(2), 197-210.

Lenhart, A., Kahne, J., Middaugh, E., Macgill, A., Evans, C., & Vitak, J. (2008). Teens, video games, and
civics. Washington, D.C.: Pew Internet & American Life Project.

Leutenegger, S., & Edgington, J. (2007). A games first approach to teaching introductory programming.
SIGCSE ’07: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education,
pp. 115–118, New York, NY, USA, 2007. ACM Press

Lu, J., & Fletcher, G. (2009). Thinking about computational thinking. SIGCSE’ 09.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. SIGCSE Bulletin, 39(1),
223-227.

Moreno-Ger, P., Burgos, D., Martinez-Ortiz, I., Sierra, J. L., & Fernandez-Manjon, B. (2008). Educational
game design for online education. Computers in Human Behavior, 24(6), 2530-2540.

Parberry, I., Kazemzadeh, M. B., & Roden, T. (2006). The art and science of game programming.
SIGCSE'06, Houston, Texas, USA.

Papanastasiou, E. C., & Ferdig, R. E. (2006). Computer use and mathematical literacy: An analysis of ex-
isting and potential relationships. Journal of Computers in Mathematics and Science Teaching, 25(4),
361-371.

Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York: Basic Books.

Seymour, E., & Hewitt, N. (1994). Talking about leaving: Factors contributing to high attrition rates
among science, mathematics, and engineering undergraduate majors. Boulder, CO: Bureau of Socio-
logical Research, University of Colorado.

Silveira, I., Araújo, C., Veiga, J., Naito, L., & Comotti, L. (2011). Building computer games as effective
learning tools for digital natives – and similars. Issues in Informing Science and Information Technol-
ogy, 8, 77-92.

246

http://www.thejournal.com/articles/21483

Dalal, Kak, & Sohoni

 247

Solomon, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23, 1-19.

Tinto, V. (1998). Colleges as communities: Taking research on student persistence seriously. Review of
Higher Education 21(2), 167-177.

Topi, H., Valacich, J. S., Kaiser, K., Nunamaker, Jr., J. F., Sipior, J. C., de Vreede, G. J., & Wright, R. T.
(2010). IS 2010: Curriculum guidelines for undergraduate degree programs in information systems.
Communications of the Association for Information Systems, 26. Article 18. Available at:
http://aisel.aisnet.org/cais/vol26/iss1/18

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3).

Wright, J. (2007). Thinking object-oriented. Retrieved November 20, 2011 from
http://jacwright.com/19/thinking-object-oriented

Biographies
Nikunj Dalal is Professor of Management Science and Information
Systems in the Spears School of Business at Oklahoma State Univer-
sity in Stillwater. His research interests include learning, wisdom com-
puting, rapid computer game creation, philosophical issues in informa-
tion systems, modeling, and Web perception.

Subhash Kak is Regents Professor and Head of Computer Science
Department at Oklahoma State University in Stillwater. His technical
research is in the fields of information theory, neural networks, and
quantum information. He has also written on history of science and on
art. Amongst his awards include British Council Fellow (1976), Sci-
ence Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNESCO Tokten Award (1986), Goyal Prize
(1998), National Fellow of the Indian Institute of Advanced Study
(2001), and Distinguished Alumnus of IIT Delhi (2002).

-

(2010).

Sohum Sohoni, is an Assistant professor in the School of Electrical
and Computer Engineering at Oklahoma State University. His research
expertise is in engineering education and computer engineering. His
most recent work in engineering education is in the research and de-
velopment of a learning platform that enables students to connect con-
cepts they learn in different courses through a material anchor. In com
puter engineering research, he is looking at security issues in cloud
computing. He received the CEAT Halliburton Excellent Young
Teacher Award (2009) and the Regents Distinguished Teaching Award

http://aisel.aisnet.org/cais/vol26/iss1/18
http://jacwright.com/19/thinking-object-oriented

	Rapid Digital Game Creation for Learning Object-Oriented Concepts
	Nikunj Dalal (Management Science and Information Systems),Subhash Kak (Computer Science), andSohum Sohoni (Computer Engineering)Oklahoma State University, Stillwater, OK, USA
	nik@okstate.edu; subhash.kak@okstate.edu; sohum.sohoni@okstate.edu

	Abstract
	Introduction
	Rapid Digital Game Creation
	Creating a Game in Game Maker

	Theoretical Basis of Rapid Digital Game Creation-Based Learning
	RDGC and Object-Oriented Concepts
	RDGC for O-O Learning And Teaching
	Abstraction
	Inheritance
	Polymorphism
	Encapsulation

	Discussion and Future Research
	Conclusion
	Acknowledgements
	References
	Biographies

