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Abstract  
The expected utility theory is the approach to measurement and utilization of qualitative, concep-
tual information. The subject of this paper is creation of stochastic algorithms for evaluation of 
expert utility or value functions that give possibilities for development of value-driven decision 
support on the base of stochastic programming. An expert-computer dialogue is modeled and it 
realizes machine learning based on the Decision-maker’s preferences.  

Keywords: Expected utility, value, machine learning, preferences, stochastic programming. 

Introduction 
People preferences contain characteristics of uncertainty. The appearance of this uncertainty has 
subjective and probabilistic nature. This makes difficult the mathematical incorporation of human 
preferences in complex systems. The necessity of a merger of empirical knowledge with mathe-
matical exactness causes troubles. Possible approach for solution of these problems is the stochas-
tic approximation (Aizerman, Braverman, & Rozonoer, 1970; Pavlov, 1989, 2005). The uncer-
tainty of the subjective preferences could be viewed as a noise which can be eliminated as typical 
for the stochastic approximation procedures. A main requirement of the stochastic assessment is 
the analytical presentation of the qualitative nature of the human’s preferences and notions (Aiz-
erman et al., 1970; Keeney & Raiffa, 1976; Raiffa, 1968; Vapnik, 1982). 

This article deals with stochastic algorithms for evaluation of Decision-maker’s (DM’s) expected 
utility and value functions on the basis of expressed DM’s preferences.   

Value function and value evaluation 
We begin with the simplest case, the construction of value functions (Fishburn, 1970; Keeney & 
Raiffa, 1976). Let X be the set of alternatives (X⊆Rm). A “value” function is a function u*(.) for 

which it is fulfilled (Keeney & Raiffa, 
1976): 
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   ((x, y)∈X2, x⎬y) ⇔ (u*(x)>u*(y)).  (1) 

The DM’s preferences over X are ex-
pressed by (⎬). The real expert value 
function is denoted by u*(.).  Let Au* 
and Bu* are the sets Au*={(x,y)∈R2m/ 
(u*(x))>u*(y)}, Bu*={(x, y)∈R2m/ 
(u*(x))<u*(y)}. If there is a function 
F(x,y) of the form F(x,y)=f(x)-f(y), 
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positive over Au* and negative over Bu*, then the function f(x) is a value function equivalent to the 
empirical DM’s function value u*(.).  In the deterministic case it is true that Au*∩Bu*=∅ (Aizer-
man, Braverman, & Rozonoer, 1970; Pavlov, 2005). The following recurrent procedure evaluate 
the function F(x,y)=f(x)-f(y):  

       )).y,(xy),K((x,
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The function K((x,y),(xn+1,yn+1)) is a symmetric one with regard to the variables (x,y). The follow-
ing is fulfilled for K((.,.),(.,.)): 

  K((x,y),(xn+1,yn+1))=Φ(xn+1,x)+Φ(y,yn+1).                                                                                    (3) 

The function Φ(x,y) fulfils: 

  Φ(x,y)=Φ(y,x), Φ(x,x)>Φ(x,y)>0, for ∀(x,y)∈R2m, max⎟Φ(x,x)⏐<C, C∈R.                            (4) 

A possible choice of the function Φ(x,y) is (Aizerman, Braverman, E. & Rozonoer, 1970): 
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We need the following definition. A “learning sequence” is a finite sequence of points (x,y)∈R2m, 
((x,y)1, (x,y)2,…, (x,y)k,…,(x,y)n,….) for which the DM’s preferences are expressed “a priori”- 
((u*(x))>u*(y)) or (u*(x))<u*(y)). Any point (x,y)∈R2m of the “learning sequence”  for which it 
is fulfilled (sign(Fn(x,y))≠sign(u*(x)-u*(y))) is named “learning point”. Then the following 
proposition is true.  

Proposition 1: If the function Fn(x,y) is constructed by the recurrent procedure (1) and (x,y) is a 
“learning point” for Fn(x,y) then (y,x) is a “learning point” for Fn+1(x,y) in the next (n+1)th step. It 
is true that F2k(x,y)= f2k(x) - f2k(y) at each (2k)th step (F0(x,y)=0). 

The proof is by recurrence. It is supposed that the “learning sequence” is uniformly distributed. It 
is well known that the procedure (1) finishes for a finite number of steps (k) if (Au*∩Bu*=∅) and 
((u*(x))-u*(y))>ε, ε∈R, ε>0) (Novikoff’s theorem) (Aizerman, Braverman, & Rozonoer, 1970). 
The function F2k(x,y)=f2k(x)-f2k(y) is positive over Au* and the function f2k(x) is an approximation 
of the expert value, because the procedure (1) recognizes the ”learning sequence”. The algorithm 
has the following explicit form: 

− nnnn 1

      (6)                                    

The following theorem determines a stopping rule for this algorithm (Aizerman, Braverman, & 
Rozonoer, 1970). 

Theorem 1: The value function u(.) constructed with procedure (1) recognizes correctly (1-
β)100% of the set Au*∪Bu* (Au*∩Bu*=∅)  with probability grater then (1-δ), if after the  ith mis-
take ,  the next (L0+i) points are recognized 

correctly ( ). The learning points  

are uniformly distributed. The number L0 fulfils the condition: 

(*(( usign

(sign

 L
l0 ≥
−

ln( . )
ln( )

β δ
β

.                                                                                                                              (7)                                        

The convergence of the procedure (6) is discussed in (Aizerman, Braverman, & Rozonoer, 1970). 

404 



 Pavlov 

It is well known that the value function is determined in the ordinal scale. Such an approximation 
un(.) of the DM’s value u*(.) permits analytical determination of the extremal points (the most 
preferred DM’s alternatives). The probabilistic case (Au*∩Bu*≠∅) is discussed in Aizerman, 
Braverman, and Rozonoer (1970) and Pavlov (1989, 2005).  

Expected Utility Evaluation 
More difficult is the utility evaluation. Let X be a set of alternatives and P is a subset of discrete 
probability distributions over X. A utility function is any function u(.) for which it is fulfilled 
(Fishburn, 1970): 

      ( p⎬q , (p,q)∈P2 )⇔((∫u(.)dp > ∫u(.)dq), p∈P, q∈P).                                                           (8) 

According Von Neumann and Morgenstern the above formula means that the mathematical ex-
pectation of u(.) is a quantitative measure concerning the expert’s preferences for probability dis-
tributions P over X (Fishburn, 1970; Keeney & Raiffa, 1976; Raiffa, 1968). The DM’s prefer-
ences over P, including those over X, (X⊆P) are expressed by(⎬). The "indifference" relation (≈) 
is defined by ((x≈y) ⇔ ¬( (x⎬y)∨(x⎨y) )). It is well known that the existence of an utility func-
tion u(.) over X determines the "preference" relation (⎬) as a negatively transitive and asymmetric 
one (Fishburn, 1970): 

Proposition 2: If (⎬) is negatively transitive relation the "indifference" relation (≈) is transitive. 

Consequence: If the relation (⎬) is negatively transitive and reflexive the "indifference" relation 
(≈) is an "equivalence". 

Every discrete probability distribution over X is called a "lottery". We mark the lottery as 
<x,y,α>, where α is the probability of the appearance of the alternative x and (1-α) - the probabil-
ity of the alternative y. The most used approach in assessment of the utility uses the following 
comparisons: (z≈<x,y,α>) , where (x⎬z⎬y) , α∈[0,1] , (x,y,z)∈X3 (Farquhar, 1984; Keeney & 
Raiffa, 1976; Raiffa, 1968).  The weak points of these approaches are the so called “certainty ef-
fect” and “probability distortion” identified by Kahneman and Tversky (Cohen, & Jaffray, 1988; 
Mengov, 2010). The determination of the best alternative x and the worst alternative y on condi-
tion that (x⎬z⎬y) where z is the analyzed alternative is not easy. The transitivity violations the "in-
difference" relation leads to the declinations in the assessments (Cohen, & Jaffray, 1988). They 
explain the DM behaviour observed in the famous Allais Paradox that arises from the “independ-
ence” axiom (Fishburn, 1970): 

   (p⎬q , 0<α<1,(p,q,r) ∈P3) ⇒ ((αp+(1-α)r) ⎬ (αq+(1-α)r)) .                                                  (9) 

Starting from the properties of the preference relation (⎬) and indifference relation (≈) we propose 
the next stochastic approximation procedure for evaluation of the utility function u(.). It is as-
sumed that (X⊆P), ((q,p)∈P2 ⇒ (αq + (1-α)p)∈P , for ∀α ∈[0,1]) and that the utility function 
u(.) exists. We define two sets: Au*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)} and 
Bu*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)}, where u*(.) is the DM’s empirical utility. The utility 
function u(.) over X is determined with the accuracy of the affine transformation (interval scale), 
according to the following proposition (Fishburn, 1970): 

Proposition 3: If (x∈Χ, ((p(x)=1) ⇒ (p∈P))) and ((q, p)∈P2 ⇒ (αp+(1-α)q)∈P, α∈[0,1]) are 
realized, then u(.) is defined with precision up to the affine transformation (u1(.)≈u2(.))⇔ 
(u1(.)=au2(.)+b , a>0∧b∈R). 

The first condition can be interpreted as an expert’s opportunity to imagine every single alterna-
tive, the second condition - as an expert’s opportunity to report on the probability uncertainty of 
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the results. This proposition allows decomposition of the multiattribute utility in to more simple 
functions (Keeney & Raiffa, 1976).  

The following proposition is in the foundation of the proposed stochastic approximation proce-
dures (Pavlov, 2005): 

Proposition 4: We denote Au={(α,x, y, z)/(αu(x)+(1-α)u(y))>u(z)}. If Au1=Au2 than 
u1(.)=au2(.)+b, a>0. 

Proposition 4 presents a possible approach to utility evaluation (approximation of the set Au* ) 
(Aizerman, Braverman, & Rozonoer, 1970; Pavlov, 2005). The expert utilities could be evaluated 
by “pattern recognition” of Au* with a computer learning procedure using the DM’s preferences 
(Aizerman, Braverman, & Rozonoer, 1970). The proposed machine learning is a probabilistic 
pattern recognition (Au*∩Bu*≠∅) and the utility evaluation is a stochastic approximation with 
noise (uncertainty) elimination. Key element is the proposition 4.  

The following presents the evaluation procedure: 

The DM compares the "lottery" <x,y,α> with the simple alternative z, z∈Z  ("better-⎬, 
f(x,y,z,α)=1”, "worse-⎨, f(x,y,z,α)=-1” or "can’t answer or equivalent- ∼ , f(x,y,z,α)=0”,  f(.) 
denotes the qualitative DM answer ). This determines a learning point ((x,y,z,α), f(x,y,z,α)). The 
stochastic algorithm constructs the utility polynomial approximation ∑ Φ= ii xcxu )()(

i
 (Aizerman, 

Braverman, & Rozonoer, 1970; Pavlov, 2005):  
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In the formula the following notations (based on Au) are used: t=(x,y,z,α), 
ψi(t)=ψi(x,y,z,α)=αΦi(x)+(1-α)Φi(y)-Φi(z), where (Φi(x)) is a family of polynomials. The line 

above y cn t= ( , ( )Ψ ) means: (y = 1), if (y>1), (y = −1) if (y<-1) and (y y= ) if                         

(-1<y<1). The ci
n take part in the decomposition  and 

 is a scalar product.  
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n
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The mathematical procedure describes the following assessment process:  

The DM relates the “learning point” (x,y,z,α)) to the set Au* with probability D1(x,y,z,α) or to the 
set Bu* with probability D2(x,y,z,α). The probabilities D1(x,y,z,α) and D2(x,y,z,α) are mathematical 
expectation of f(.) over Au* and Bu* respectively, (D1(x,y,z,α)=M(f/x,y,z,α)) if (M(f/x,y,z,α)>0), 
(D2(x,y,z,α)=(-)M(f/ x,y,z,α)) if (M(f/x,y,z,α)<0). Let D'(x,y,z,α) is the random value: 
D'(x,y,z,α)=D1(x,y,z,α) if (M(f/x,y,z,α)>0); D'(x,y,z,α)=(-D2(x,y,z,α)) if (M(f/x,y,z,α)<0); 
D'(x,y,z,α)=0 if (M(f/x,y,z,α)=0). We approximate D'(x,y,z,α) by a function of the type : 

∑G(x,y,z,α)=(αg(x)+(1-α)g(y)-g(z)), where =
i

ii xcxg )()( Φ .                                                         (11) 

The coefficients ci
n take part in the polynomial approximation of G(x,y,z,α): 
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The function Gn(x,y,z,α) is positive over Au* and negative over Bu* depending on the degree of 
approximation of D'(x,y,z,α). The approximation of the utility function u(.) is the function 
gn(x). The stochastic procedure has the following explicate form: 
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The stochastic convergence of the procedure is described and is analyzed in (Aizerman, 
Braverman, & Rozonoer, 1970). The following theorem determines the convergence (Pavlov, 
2005): 

Theorem 2: We denote by (t1,...,tn,..) a sequence of independent random vectors t=(x,y,z,α) with 
one and the same distribution F. We suppose that the sequence of random values (ξ1,ξ2,.,ξn,..) sat-
isfies the conditions:      M(ξn/(x,y,z,α),cn-1)=0, M((ξn)2/( x,y,z,α),cn-1)<d, d∈R. It is supposed that 
the Euclidian norm of Ψ(t)  is limited by a constant, ),,,(,,0, αzyxttfor =∀>θ,)(t ∈<Ψ θθ R . 
The convergence follows from procedure (10):  

n
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In the theorem above p.p. denotes “almost sure” and M denotes mathematical expectation. The 
functions S(t) in the limits of the integral belong to L2 (defined by the probability measure F) and 
have the presentation described by formula (11). The integral J  fulfills: 

dFD'))dv)dF(D'v((
(t)nG

(t)D'

2))()((
2
1 ttGt n −≥− ∫∫ ∫

Assessment of the Empirical Risk an

The empirical risk regarding Vapnik can be assessed with the function ),,,(

.    

The proof is based on the “extremal approach” of the “potential function method” (Aizerman, 
Braverman, & Rozonoer, 1970). The learning points ((x,y,z,α), f(x,y,z,α)) are set with a pseudo 
random sequence.  

The proposed procedure and its modifications are machine learning. The DM is comparatively 
fast in learning to operate with the procedure: a session with 128 questions (learning points) takes 
approximately 45 minutes and requires only qualitative answers “yes”, “no” or “equivalent ”. 

d Modeling  
of the Dialog DM-Computer 

αzyxGn  (Vapnik, 

1982). The utility function approximation ∑
=

Φ=
n

i
ii

nn xcxg
1

)()(  is randomized between 0 and 1 
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(proposition 3) and this causes the value )),,,(( αzyxGabs n  to be limited by 1. The degre
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The dialogue between the expert and the computer was modelled, the expert 
by a model function, t e solid line in Figure 1 and Figure 2 (Pavlov, 2005).  

is 

n in Terzieva, Pavlov, and Andreev (2007). 

u*∩Bu*≠∅). 

h

 

 

 

 

 

 

 

 

      Figure 1: Evaluation, 128 “learning points”      

 the modelling an additive noise determines the 
 modelled with the seesaw lines in Figure 1 and F

-random Lpτ sequence.   

Our approach permits assessment of the dependence 
urpose, we search for an polynomial approxim

  Figure 2: Evaluation, 512 “learning points” 

uncertainty in DM’s answers. Finally the expert 
igure 2. The learning points (x,y,z,α) are set 

of the utility function on probability. For th
ation with procedure (10) of the kind u(x,α), 

In
is
with a pseudo

p
α∈[0,1], x∈X following Kahneman and Tversky (theory of prospects) (Mengov, 2010). The ex-

plicit formula of the utility function u(x) in this case is ∫=
1

0

),()( αα dxuxu . Example of such 

evaluated utility function u(x,α) is show
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Example of Application 
s with respect to an exa

 learners is 
s developed 

on the basis of the presented n an environment that con-
sists of Visual Studio, Visua hics are performed in the 

tisfaction is the objective of the teacher during an examination are the 

Example of application is assessment of student’s preference m form 
(Terzieva, Pavlov, & Andreev 2007). The estimation of the preferences of a group of
performed by a decision support system for estimation of individual’s utility function

 mathematical formulations and methods i
l Basic 6.0. The final calculations and grap

MATLAB environment. 

The objective of this example is the evaluation of the student’s preferences for the form and style 
of the exam. The examination (A) -form concerns the way of knowledge expression by a student: 
“test” or “free expression”. The examination (B) - style regards student’s exam: “oral” and “writ-
ten” (Terzieva, Pavlov, & Andreev 2007). The possible criteria for the estimation of the prefer-
ences of students which sa
followings: (A)-“% test in relation to the entire examination material” (0% to 100%), illustrated 
in Figure 3; (B)-“% time for written exam in relation to the whole time that is necessary for this 
exam” (0% to 100%), illustrated in Figure 4 (Terzieva, Pavlov, & Andreev 2007). The seesaw 
lines in Figure 3 and Figure 4 recognize correctly more then 95% of the answers.  

                   
                Figure 3: Utility f1 (x)                                              Figure 4: Utility f2 (x) 

Since the teacher accepts that the factors (A) and (B) are mutual independent in relation to “util-
ity”, the utility function has the following expression (Keeney, & Raiffa, 1976): 

U(a,b)=K1*f1(a)+K2*f2(b)+(1-K1-K2)*  (a,b∈[0,100]%).                                                                      
 and f2(.). 

(f1(a)*f2(b)),
The determination of the coefficients K1 and K2 depends on the determination of f1(.)
This utility function is presented by the Figure 5 and Figure 6 (Terzieva, Pavlov, & Andreev 
2007).  

              
        Figure 5: Teacher Utility                                     Figure 6: Partition of student’s group 
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The Figure 6 illustrates the lines of identical preferences that show a way for partition the group 
of students in subgroups in accordance with their identical preferences. We can determine to 
which subgroup belongs a student through the construction of his f1(.) and f2(.). They are a source 
for the determination of аmax and bmax and U(аmax,bmax)  that shows the position of the student in 
the space presented by Figure  6, i.e. the subgroup to which the student belongs. 

Applications and discussions was carred out in Bulgarian Academy of Sciences in a continuous 
succession in the area of the Decision support systems and Control theory (Pavlov, 1989, 2000, 
2005). 

Conclusions 
high-

(the 

e 
on is machine-learning based on DM’s preferences. 

• The suggested approach can b on of the prescriptive decision mak-
ing approach.  

s of Von Neumann. In the paper is revealed the existence of a mathematical expecta-

-

 машин). Moscow: Nauka. 

aking under risk. Journal of Experimental Psychology: Human Perceptions and Per-

Mengov G. (2010). Decision making unde земане на решения при риск и 
неопределеност). Sofia, Bulgaria: Pu 45”. 

nd 
lgarian Academy of Sciences. Retrieved from 

The experiments confirm the applicability of the approach. The following points should be 
lighted: 

• After explaining the term "lottery", DM is relatively quick in learning the suggested 
methods according his/her qualification level.  

• The recurrent nature of the procedures facilitates their computer implementations 
questions are similar and require only qualitative answers).  

• This method permits practical use of expert information, value or utility functions and th
evaluati

e regarded as a realizati

The utility function is an abstraction presented in the limits of the normative approach, the axio-
matic system
tion measured in the interval scale on the base of the DM’s preferences (proposition 4 - If 
Au1=Au2 than u1(.)=au2(.)+b, a>0). This mathematical expectation could be interpreted as an ap
proximation of the expected utility function.    
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