
Proceedings of Informing Science & IT Education Conference (InSITE) 2010

Teaching Operating Systems Scheduling
Shimon Cohen

MLA Academic Learning Center, Israel

shamon51@gmail.com

Abstract
The Operating System is a very complex program that runs on our computer (probably the most
complex …). It is difficult to comprehend the diversity of its operations, let alone – teach it. Sec-
ond/Third year students with beginner programming skills are overwhelmed by the OS size and
its multiple tasks.

This paper is focused on how-to better teach the operation of the OS Scheduler that manages the
user’s processes. The scheduler tasks are: create the process, load it into memory, allocate CPU
time-slices for its execution, handle keyboard clicks and menu selection, swap the process in and
out of memory, and instructs the devices to satisfy IO requests.

The question is: “how can we give the students hands-on experience on the scheduler operation?
“ Obviously, a few slides and a state-machine diagram, is not enough.

The answer consists of: explanation (slides), simulation and an exercise.

The simulation package includes two simulators (two levels of complexity) each running user-
designed scenarios. The 1st simulator (A) is a simple Round-Robin scheduler that is easy to fol-
low. The 2nd simulator (B) comes much closer to a real OS scheduler (with all its complexity); as
such it is very difficult for the student to understand, unless they play with Simulator-A first.

The exercise goal is to write a “scheduler” that allocates the “CPU” time among ten “Processes”
each doing a “long” task. The exercise can be accomplished by 2nd-3rd year students.

Keywords: Operating System, Simulator, Teaching

Introduction

Operating System
The computer is inherently a parallel machine; it consists of several CPUs, Memory units, IO
Controllers. Each component is in fact a basic-computer (my definition) with a CPU, logic (pro-
gram), some memory and IO connectors. For example: a Disk-Controller is made of a CPU

(called Controller), programmable logic
usually stored in EEPROM, memory for
data buffers and IO connectors that en-
ables it to control the spinning disk,
move the read/write head and communi-
cate with other devices or the mother
board. Today these components are fab-
ricated on one chip (the so called “com-
puter on a chip”)

On top of the computer parallel/real-
time hardware architecture, there are

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact 0HPublisher@InformingScience.org to re-
quest redistribution permission.

mailto:shamon51@gmail.com�

Teaching Operating Systems Scheduling

610

multiple software processes that compete on the use of the computer resources (components). The
goal of the Operating System (OS) scheduler is to divide/allocate/arbitrate the use of these re-
sources in the most efficient possible way.

The CPU is the only component that can execute programs; as such it must “wear two hats”: (1)
executing the multiple users programs, (2) managing the computer using the OS programs (Ker-
nel). To do that, the CPU is constantly doing “context switch” among all its “obligations”.

IO controllers are also required to do multiple tasks. For example: a Disk controller is instructed
to look for several blocks, on different tracks, for several processes. Or, the network controller
must send/receive different packets for multiple browser windows.

Problem / Question / Answer
The students have a problem grasping the full complexity of the computer operations. Being
2nd/3rd year students, they write simple programs (C, C++) that run, presumably alone, on the
computer without parallelism or threads. The students are not fully aware of the computer real-
time nature, and the BIG roll and many services provided by the operating system. They struggle
with the idea that the CPU is very fast but also very “dumb”, and that it needs very detailed in-
structions on how and what to execute.

As for the lecturer: presenting slides, writing on the board and being a better lecturer are the first
necessary step, BUT usually the students quickly “lose contact” with the material. There are too
many new ideas / concepts and they fail to “see” through it.

The question is how we can let them “see inside” the Scheduler and “feel” the operation of the
OS, CPU, and IO Controllers.

The answer is: lecture (in two steps), a pair of simulators (in increasing levels of complexity) and
an exercise in writing a small “scheduler”. I suggest the following time line:

1. Introduction to OS, Interrupts, Processes States

2. Show the 1st simulator

3. Explain System Calls, Timing and Scheduling

4. Show the 2nd simulator

5. Present the Exercise

Introduction to the OS and the Scheduler
This paper is not about Operating Systems; it is about how to teach OS (in particular the Sched-
uler). In order to run (and understand …) the two simulators, and do the exercise, the lecturer
must cover the following topics:

• Computer architecture: CPU, Clock, BUS, Memory, IO controllers

• CPU: very
*1 quick (speed of light) very

*
 simple: four arithmetic operations

• Interrupts and System Calls

• Process structure, running, terminating, and Process Control Block (PCB)

• Resource, IO devices, and Resource Control Block (RCB)

1 Very, very very

 Cohen

 611

• Process States (seven): new, ready, run, blocked, suspend ready/blocked, exit

• Scheduling, Timing, Round-Robin algorithm, Queues

• OS tasks:

o Process creation (linker “load module”)

o Process loading (loader memory, DLLs)

o Process context-switch in/out of the CPU

o Instructing IO devices

o Handling devices interrupts

o Suspending a Process out of memory

o Reloading suspended process into memory

o Process termination and cleanup

Simulators (two levels)
The 1st level simulator is a simple scheduler that manages several processes. The processes may
need the CPU or service from one of four different IO devices. The simulator shows how the
processes are kept in the READY and four IO queues. The scheduler allocates the CPU time
among them using the “Round Robin” algorithm. Processes that need service from IO devices are
BLOCKED in the IO queues and are serviced according to the First-Come-First-Serve method.

The 2nd level simulator is an elaborate “scheduler” that shows the details of the OS execution,
how it loads a process from the disk to memory, performs context switching, schedules IO de-
vices, communicates with IO devices, handles interrupts, receives blocks, swaps process out of
memory (suspend state), swaps them in later and finally “finish” the process. The 2nd simulator
shows how the IO controller are working in parallel with the |CPU.

 Exercise
We define ten vectors (length=1000), and fill them with one thousand random numbers. There are
10 processes that should sort the ten vectors using Bubble sort.

Bubble sort consists of repeated rounds on the vector; adjacent elements are compared and
swapped if not in order. The algorithm counts the number of swaps in each round, and if the
number is zero then it means that the vector is sorted. Using 1000 elements vector with random
numbers results on the average with about 120 rounds (although in the worst case scenario it
might be 999)

The goal of the project is to write an OS that creates 10 processes (doing bubble sort) and sched-
ules the CPU (execution) among them. Using the Round-Robin algorithm, the OS allocates one
sort-round per process to simulate “time-slice”.

To simulate using IO we define the following situation: when the process makes more than 500
swaps on the vector it “wants” to “print” it status. In this case the process is taken out of the CPU-
queue and placed in the PRINT-queue. When a process is in the first place in the PRINT-queue
then it can “print” but it takes 20 time-cycles.

Teaching Operating Systems Scheduling

612

Simulators
This section describes the two simulators that run on top of EXCEL.

Simulator A
CPU IO1 IO2 IO3 IO4 P1 P2 P3 P4 P5 P6 P7 P8 P9

Clock 20
Work 5 1 1 1 0 2 3 1 2 1 2 1 2 1
IDLE 0 14 15 11 20 17 17 19 17 18 18 18 18 18
CPU 20 3 3 1 3 2 2 2 2 2
IO 6 5 9 0 3 6 0 0 0 6 0 5 0
FINISH 0 0 0 0 0 0 0 0 0

0

P3 1 P6 2 P8 3 P1 4 CPU 3 CPU 2 CPU 2 CPU 3 CPU 4 CPU 2 CPU 6 CPU 2 CPU 3

P5 2 P4 2 IO3 7 IO3 6 IO1 7 IO1 2 IO1 2 IO1 8 IO2 9 IO2 8 IO4 8

P7 4 CPU 2 CPU 4 CPU 3 IO3 8 CPU 1 CPU 1 CPU 1 CPU 2 CPU 2

P9 1 IO2 7 IO2 7 IO2 7 IO2 7 IO2 7 IO2 7 IO1 7 IO4 7 IO2 7

P2 3 CPU 1 CPU 1 CPU 1 CPU 1 CPU 1 CPU 1 CPU 1 CPU 1 CPU 1

IO3 9 IO3 9 IO3 9 IO3 9 IO3 9 IO3 9 IO3 9 IO3 8 IO3 9

CPU 2 CPU 2 CPU 2 CPU 2 CPU 2 CPU 2 CPU 2 CPU 2 CPU 2

Simulator A - by Shimon Cohen
Queues

RESETCYCLE

Line 1 header with names: one CPU, four IO and nine Processes

Line 2 The clock (Yellow) and two buttons:

• RESET – to start (or restart) the simulation

• CYCLE – execute one time-cycle

The area below the “Simulator A …” banner

• 1st column – Processes in the “READY” queue, each in need of CPU cycles, the first P3
needs 1 Cycle, the second P5 needs 2 more cycles , …

• Columns 2-5 – show processes waiting for IO service, P6 is serviced by IO1 needs 2
more cycles to finish. Process P4 waits in the queue (needs 2 cycles)..

• Columns 6-16 – show the scenarios of 1-9 processes

o CPU <n> - needs <n> cycles of CPU

o IO<a> <n> - needs IO<a> service for <n> cycles

Line “CPU” number of CPU cycles allocated to each process

Line “IO” number of IO cycles allocated to each process

Line “IDLE” number of “idle” cycles of each process

Line “FINISH” clock-time when process finished its scenario

Line “WORK”

• 1st column “CPU” – which process is serviced (Round Robin)

 Cohen

 613

• 2-5 columns – “1” busy servicing 1st process in queue, “0” – idle

• 6-15 columns – number of item in the scenario (item color is red)

How to use Simulator A

• Setup the processes scenarios – you may leave some of the scenarios empty.

• Click on the “RESET” button

• Click the “CYCLE” button to “execute” one cycle

• Repeat the previous step (“CYCLE” click) until all processes reach the FINISH line.

How to view the screen of Simulator A

• In the beginning all processes need the CPU all in the “CPU” queue. Each process gets
one CPU-Cycle (Round Robin)

• When a process finishes using the CPU it needs IO service, the scheduler moves it to the ap-
propriate IO queue.

• In the IO queue only the 1st process is serviced, the other wait in line.

• The log (below) is produced automatically by the simulator

o 1st column – clock

o 2nd column- time needed for the task

o 3rd column - Description

Teaching Operating Systems Scheduling

614

17 7 P1 = >>> start IO3
17 4 P2 = $$$ T=4 K=5 put in Q=> CPU
17 0 P2 = <<< finish IO3
17 2 P4 = $$$ T=2 K=2 put in Q IO1
17 0 P4 = <<< finish CPU
16 7 P1 = $$$ T=7 K=2 put in Q IO3

16 0 P1 = <<< finish CPU

15 8 P8 = >>> start IO2

15 8 P8 = $$$ T=8 K=1 put in Q IO2

15 0 P8 = <<< finish CPU

14 8 P6 = >>> start IO1

14 8 P6 = $$$ T=8 K=1 put in Q IO1

14 0 P6 = <<< finish CPU

11 6 P2 = >>> start IO3

11 6 P2 = $$$ T=6 K=1 put in Q IO3

11 0 P2 = <<< finish CPU

0 3 P9 = $$$ T=3 K=9 put in Q=> CPU

0 2 P8 = $$$ T=2 K=8 put in Q=> CPU

0 6 P7 = $$$ T=6 K=7 put in Q=> CPU

0 2 P6 = $$$ T=2 K=6 put in Q=> CPU

0 4 P5 = $$$ T=4 K=5 put in Q=> CPU

0 3 P4 = $$$ T=3 K=4 put in Q=> CPU

0 2 P3 = $$$ T=2 K=3 put in Q=> CPU

0 2 P2 = $$$ T=2 K=2 put in Q=> CPU

0 3 P1 = $$$ T=3 K=1 put in Q=> CPU
Simulator A – demonstrate ?

• How the processes are waiting in the different queues.

• How one CPU is multiplexing its time among the processes using the Round-Robin algo-
rithm.

• How each IO controller serves the 1st process in its queue.

• How processes are moved between the queues by the scheduler.

• NOTE: Operating System tasks (time) are not counted/simulated in Simulator A

• Simulator B is doing the elaborate job of counting and showing the OS tasks.

 Cohen

 615

Simulator B
The simulator screen is divided into the following sections:

• PCBs – [top-left] shows the status, service and other parameters of the nine Processes Control
Blocks.

• CPU – [top-right] CPU status and the scenario used (see “Data 7”)

o The scenario itself is shown below

• RCBs – [bottom-right] four (4) Resource Control Block, each RCB shows the status of an IO
controller.

• Script – [bottom-left] shows the scenarios used in the simulation.

Simulator B main Screen
Data 7

ID 1 2 3 4 5 6 7 8 9 Clock 395 100
Status Run S-Block Block S-Block S-Block S-Ready S-Block Block S-Ready Status RUN
Service None Wait IO Start IO Wait IO Wait IO None Wait IO Start IO None PCB 1
Swap Type None None None None None None None None None Memory 1000
Priority 2 2 2 2 2 2 2 2 2 Free 100
Memory Size 200 300 400 200 300 400 200 300 400 Run 106 27%
In Memory Yes No Yes No No No No Yes No Kernel 279 71%
Q Number 395 175 359 154 204 94 233 281 124 IDLE 10 3%
Top Script 7 6 6 6 6 5 6 6 5

Request
Request CPU IO IO IO IO CPU IO IO CPU
Request IO 0 2 3 4 1 0 3 4 0
Request Parameter 70 4 4 4 4 30 4 4 30 RCB 1 RCB 2
Request Left 69 1 4 2 4 30 2 4 30 Status WORK Status WORK

Time Per Block 50 Per Block 60
Start Time 10 30 50 10 30 50 10 30 50 PCB 5 PCB 2
End Time 0 0 0 0 0 0 0 0 0 Total T 230 Total T 197
CPU Use 11 15 30 10 15 0 10 15 0 Wait 23 Wait 21
IO Use 200 197 0 213 30 0 142 0 0 Time 20 Time 43
KB Wait 0 0 0 0 0 0 0 0 0
Cur Start 395 378 359 342 365 94 393 281 124 RCB 3 RCB 4
Cur Time 30 0 2 0 0 0 0 2 0 Status WORK Status WORK
KB Time 0 0 0 0 0 0 0 0 0 Per Block 70 Per Block 80
Live Time PCB 7 PCB 4
CPU % Total T 142 Total T 213

Script Wait 18 Wait 26
Previous O1 4 C 15 C 30 C 10 C 15 S 50 C 10 C 15 S 50 Time 68 Time 27
Current C 70 O2 4 O3 4 O4 4 O1 4 C 30 O3 4 O4 4 C 30
Next C 20 C 90 C 70 C 20 O2 4 C 70 C 20 K 200

P C B s C P UCYCLE RESET

Line “ID” PCB numbers

Line “Status” RUN, READY, BLOCKED S-BLOCK (Suspend=Block) …

Line “Service” Process is waiting for OS service: Wait-IO, Start-IO …

Line “Swap Type” used when the processes is swap out to a suspend state

Line “Memory Size” How much memory is needed

Line (4 lines) “Request” Parameters for the current service request

Line “Time” Cycles used in various tasks

Line “Cur Start” Clock when current task started

Line “Cur Time” (in red) cycles needed to complete current task

RCBs (four gray squares on the right)

• RCB <number>

• Status: Work, IDLE

Teaching Operating Systems Scheduling

616

• Per Block: Time needed to access one block on the disk

• PCB: working for PCB

• Total T: total time working

• Wait: time waiting for OS to handle interrupts

• TIME: Time remains to access the current block

Simulator B Scenario
The scenario instructions are:

• M <size> - size of process in memory

• P <n> - Process priority

• S <cycles> - when to start the process

• C <cycles> - CPU cycles needed at this stage

• O<n> <cycles> - need <cycles> service from IO number <n>

$ P1 $ P2 $ P3 $ P4 $ P5 $ P6 $ P7 $ P8 $ P9
M 200 M 300 M 400 M 200 M 300 M 400 M 200 M 300 M 400
P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2
S 10 S 30 S 50 S 10 S 30 S 50 S 10 S 30 S 50
C 10 C 15 C 30 C 10 C 15 C 30 C 10 C 15 C 30
O1 4 O2 4 O3 4 O4 4 O1 4 O2 4 O3 4 O4 4 K 200
C 70 C 20 C 90 C 70 C 20 C 90 C 70 C 20 C 90
How to use Simulator B

• Setup the scenario in a different sheet (in this example “DATA7”)

• Enter the number “7” in the blue cell (top-right)

• Click the “RESET” button to initialize the simulator

• Click the “CYCLE” Clock is running (one or more cycles) until the next event.

How to view the screen of Simulator A

• Watch what happens with the processes in the first three PCBs lines: “Status”, “Service” and
“Swap Type”, and the how time of current task “CUR Time” in red is changing.

• Watch the CPU counters on the right

• Watch the RCBs statuses as they work for different PCBs

Simulator B – demonstrate ?

• How the OS is using the CPU in order to service the pCBs, there are various services each
need the sole attention of the CPU.

• How the RCBs (IO controller) works in parallel to the CPU

 Cohen

 617

Simulator B parameters
The tables below show various numbers used to control the simulation. For example: if the OS
needs to start an IO operation (line 7 “Start IO”) it takes 2 simulator cycles.

Time
None None 0
Create Create Process 10
Close Close Process 8
Start KB Start KB 1
Wait KB Suspend if KB > 70
INT KB Handle KB 1
Start IO Start IO Operation 2
Wait IO Suspend if IO > 1
INT IO Handle IO Interrupt 4
Priority Priority Change 3
Memory Memory Change 5

None None 0
Load IN Load Into Memory 6
L OUT Load OUT of memory 9
S-IN Swap Into CPU 2
S-OUT Swap OUT of CPU 2

Service

Swap

Teaching Operating Systems Scheduling

618

Simulator B – Log File
Detailed Log File:

395 30 CPU doing P1 Status=Run T=30

395 30 P1 $ Status is = Run

393 2 CPU doing P1 Status=Ready Swap=S-IN T=2

393 2 P1 * Swap Request is = S-IN

393 70 IO3 handles a Block for P7

393 0 P7 = Service IO Next R3 Blocks=2 of 4

389 4 CPU doing P7 Status=S-Block Service=INT IO T=4

389 0 P1 $ Status is = Ready

387 2 CPU doing P1 Status=Run Swap=S-OUT T=2

387 2 P1 * Swap Request is = S-OUT

387 4 P7 = Service Request is = INT IO

387 0 IO3 Interrupt for P7 !!!

386 30 CPU doing P1 Status=Run T=30

386 30 P1 $ Status is = Run

384 2 CPU doing P1 Status=Ready Swap=S-IN T=2

384 2 P1 * Swap Request is = S-IN

384 0 P1 $ Status is = Ready

378 6 CPU doing P1 Status=S-Ready Swap=Load IN T=6

378 6 P1 * Swap Request is = Load IN

378 60 IO2 handles a Block for P2

378 0 P2 = Service IO Next R2 Blocks=1 of 4

374 4 CPU doing P2 Status=S-Block Service=INT IO T=4

373 4 P2 = Service Request is = INT IO

373 0 IO2 Interrupt for P2 !!!

365 9 CPU doing P5 Status=Block Service=Wait IO Swap=L OUT T=9

365 9 P5 * Swap Request is = L OUT

Conclusion
Undergraduate students find it difficult to comprehend the concepts of the operating systems.
There are many new ideas, buzz-words, multiple tasks and “strange” algorithms. Using the pro-
posed method (see below) shows that the students experience and reaction to the course was
changed from “dull” / “too complicated” to “interesting” and “challenging”. The use of the simu-
lators coupled with the exercise resulted in much better understanding of the scheduler (as tested
in the mid-term)

 Cohen

 619

1. Introduction to OS, Interrupts, Processes States

2. Show the simulator A

3. Explain System Calls, Timing and Scheduling

4. Show the simulator B

5. Exercise

References
Dietel, H. M. (1992). Operating systems (2nd ed.). Reading, MA: Addison-Wesley.

Finkel, R.A. (1988). An operating systems vade mecum", 2nd ed. Prentice-Hall, Englewood Cliffs, NJ,.

Goscinski, A. (1991). Distributed operating systems: The logical design.

Hartley, S. J. (1994). Operating systems programming.

Krakowiak, S. (1988). Principles of operating systems. MIT Press.

Lane, M. G., & Mooney, J. D. (1988). A practical approach to operating systems. Boyd and Fraser.

Milenkovic, M. (1992). Operating systems: Concept and design (2nd ed.). McGraw-Hill.

Silberschatz, A., & Galvin, P.B. (1994). Operating system concepts (4th ed.). Reading, MA: Addison-
Wesley.

Tanenbaum, A. S. (1987). Operating systems: Design and implementation.

Tanenbaum, A. S. (1992). Modern operating systems. Englewood Cliffs, NJ: Prentice-Hall.

Tel, G. (2000). Introduction to distributed algorithms.

Biography
Shimon Cohen has been working in the Israeli Hi-Tech Industry for
the last 30 years, including projects in areas of: Databases, Parallel
computing, Artificial Intelligence, E-Learning, Geo-Graphical infor-
mation, Cellular Communication. Teaching Operating Systems, Object
Oriented Programming, Artificial Intelligence, and other Computer
Science courses.

