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Abstract 
The eXecute Only Memory (XOM) used for protecting systems from unauthorized foreign codes 
does not completely protect workstations against attackers tampering with the memory using code 
encryption and integrity verification methods. To address this problem, an architectural technique 
called Runtime Monitoring of Malicious Code in a Network (RUNMAC) was designed to detect 
program flow anomalies associated with such malicious codes. This was achieved by verifying 
program code at the hash block (similar to basic block) level by pre-computing the hash functions 
that generates Hashed Message Authentication Codes (HMAC) for each hash block verifiable 
during program execution in memory. To achieve protection against automated attack tools, El-
liptic Curve (EC) based Multi-signcryption was used to generate the 128-bit HMAC needed to 
protect network workstations against memory replay attacks. Furthermore, a 16-entry read buffer  
was used to eliminate and correct all XOM related problems with computation latency of 20 cy-
cles. RUNMAC was implemented on Java Development Kit under the platform of ASP.Net 
framework. To evaluate the performance impact of RUNMAC as against XOM, five integer 
benchmark simulations were carried out by adjusting memory values on RUNMAC and XOM. 
The result showed that encryption unit in XOM degrades performance by increasing the memory 
access latency. The performance result showed that RUNMAC used average of 6.4s to detect un-
authorized foreign codes as against 11.0s that is common with XOM on the benchmark programs, 
which was reduced to less than 5s by increasing the hash size of the instruction cache. With the 
evaluated results, RUNMAC demonstrated an improved precision through several program test 
codes. This showed that RUNMAC can detect flow anomalies that are common with XOM archi-
tecture and protect against unauthorized codes using a new layer of defence concurrently with 
existing security tools. 

Keywords: Intrusion Detection System, 
Active Network, Hash function, Encryp-
tion 

Introduction 
Intrusion detection systems have existed 
for a very long time.  In the natural 
world, we have night watchmen and 
guard dogs. In this case, they serve two 
purposes: they provide a means of iden-
tifying that something bad was happen-
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ing and they provided a deterrent to the penetrator. Burglar alarms could also be seen as a form of 
an intrusion detection system. If the alarm system detects an event that it is programmed to no-
tice, the alarm sounds and it could even give a notice to the police.  

All these examples share a single, principal aim: detect any attempt to penetrate the security pe-
rimeter of the item (car, house etc.) being secured. If we translate the concept of the alarm system 
to the computer-networking world, we have an Intrusion Detection System (IDS). An Intrusion 
Detection System is the generic term given to any hardware, software, or combination of the two 
that monitors a system or network of systems looking for suspicious activity.  

A host-based intrusion detection system (HIDS) monitors a process’ execution to identify poten-
tially malicious behaviour. In a model-based anomaly HIDS or behaviour-based HIDS (Debar et 
al., 1999), deviations from a pre-computed model of expected behaviour indicate possible intru-
sion attempts. An execution monitor verifies a stream of events, often system calls, generated by 
the executing process. The monitor rejects event streams deviating from the model. The ability of 
the system to detect attacks with few or zero false alarms relies entirely upon the precision of the 
model. 

The increasing complexity of modern computer systems has also contributed to the increase in 
computer security vulnerabilities. The most dangerous type of vulnerabilities allows an attacker 
to cause program flow anomalies during program execution, leading to arbitrary code execution 
on the victim computer (SANS, 2006). Many of the most disruptive network worms recently en-
countered (e.g. Blaster, Slammer, Code Red, Nimda) have exploited such vulnerabilities (Kien-
zle, 2003; SANS, 2006). Malicious code of this kind can propagate very fast and cause severe 
network disruption and data loss even before it can be identified (Kienzle, 2003). For example, 
the Slammer network worm (released January 2003) infected more than 90% of all the vulnerable 
systems in under 10 minutes, before any meaningful human response was possible (Kienzle, 
2003; Moore et al., 2003).  

A number of research ideas in the area of network programming can be grouped under the general 
heading of “active networks” (Collier, 1998). The term active networks arises from the work of 
Tennenhouse’s group in MIT (Tennenhouse, 1996), and the associated ARPA-funded research 
programme. Security and authentication are major concerns because the level of code penetration 
in the network is potentially wider (Collier, 1998). 

Security threats related to unauthorized code include: viruses (excluding macro viruses); Trojan 
horses; spyware and adware (programs that monitor system activity such as browsing habits and 
display unsolicited ads); and backdoor programs used in Distributed Denial of Service (DDoS) 
attacks. Clearly, a reliable mechanism to detect and prevent unauthorized code execution will 
contribute significantly to computer security. 

In this paper, we describe an architectural technique, which we call Runtime Monitoring of Mali-
cious Codes in a Network (RUNMAC) built around Fiskiran (2004) to monitor program execu-
tion and to detect flow anomalies that may be linked to malicious code execution. The key idea in 
RUNMAC is the real-time verification of program code at the hash block (similar to a basic 
block) level. Therefore, RUNMAC can detect program flow anomalies that occur during execu-
tion such as buffer overrun attacks commonly used by network and email worms. 

Related Works 
Several intrusion detection systems have been proposed and implemented. Most of them derive 
from the statistical intrusion detection model of Dorothy Denning (1987). Some of them, for ex-
ample NIDX (Bauer, 1988), Haystack (Smaha, 1988), IDES (Lunt et al., 1989), MIDAS (Sebring 
et al., 1988), Wisdom and Sense (Liepins, 1989) and CMDS (Proctor, 1994) use the audit trail 
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generated by a C2 or higher rated computer, for input. Others, for example NICE (Maccabe & 
Heady, 1990) and NSM (Heberlein et al, 1991) try to analyze intrusions by analyzing network 
connections and the flow of information in a network. Others still, such as DIDS (Snapp, 1991) 
have expanded the scope of detection by distributing anomaly detection across a heterogeneous 
network and centrally analyzing partial results of these distributed sources to detect potential in-
trusions that may be missed by the individual analysis of each source. 

Among non-statistical approaches to intrusion detection is the work by (Teng, 1990) that analyzes 
individual user audit trails and attempts to infer the sequential relationships between events; and 
the neural net modelling of behaviour by (Fox et al., 1990). 

Ko et al. (1994) distinguished their work by trying to limit the damage caused by errors in privi-
leged programs while others are trying to limit the damage caused by a Trojan horse or virus. The 
work monitors the execution of privilege programs to detect flaws in the implementation of the 
programs from their source code using slicing, dataflow coverage metrics, and symbolic evalua-
tion techniques. The system failed to address other system components in active networks like 
DNS, NFS, and routers which are taking care in the system proposed. 

According to Fiskiran (2004) subsequent studies expanding on detecting malicious code are pre-
sented in (Gassend, 2003; Lie, 2000, 2003; Maude, 1984; Suh, 2003; Yang, 2003). We focus on 
the eXecute Only Memory (XOM) and the memory integrity verification architectures described 
in Lie (2000) and Gassend (2003). In the XOM architecture, software is distributed in encrypted 
form by the vendor and decrypted during execution on the target processor using a secret key. 
The encryption/decryption unit is between the cache and the main memory. Because the memory 
is untrusted, integrity verification is also required. This is done by tagging each memory block 
with a keyed hash (HMAC) (Lie, 2000; Menezes, 1996). One of the shortcomings of XOM is that 
it does not completely protect against an attacker tampering with memory (in particular against 
replay attacks) (Menezes, 1996). To address this problem, the memory hashing (MH) scheme in 
Gassend (2003) was proposed. While XOM and MH architectures provide important security 
functions, they have several shortcomings that limit their usefulness. First, XOM only protects 
encrypted code whereas most of today’s software is unencrypted and a significant fraction is open 
source. Second, XOM does not protect shared library code, which always exists in plaintext form, 
whereas virtually all modern applications rely on shared code. Third, neither XOM nor MH fully 
protects untrusted I/O channels, such as network interfaces. Fourth, none reliably detects flow 
anomalies that happen during program execution, which is typical of malicious code activity.  

There are also host-based and network-based Intrusion Detection (ID) tools to detect anomalous 
system and network activity. Examples include Stames (2000) and Zou (2003). In general, ID 
tools can only identify intrusions with a delay (Kemmerer, 2002), which is often significant. 
Therefore, their usefulness is limited against fast-propagating malicious code. A close study is 
done by Lie et al. (2000) which we intend to address by adding new layer of Elliptic Curve (EC) 
based Multi-signcryption and code mobility in the areas of security, authentication, and resource 
discovery as regard active networks. 

RUNMAC Model Design 
RUNMAC verifies program execution at the basic block (hash block) level. We define a hash 
block as “a sequence of instructions with a single entry point, single exit point, and no internal 
flow control instructions, such as branch, call, and return instructions”. While this is generally 
identical to the definition of a basic block, we prefer to define a hash block explicitly since the 
basic block definition occasionally excludes the “single entry point” requirement. 

RUNMAC involves computing an HMAC (keyed hash) for each hash block of a program when it 
is first installed on the host computer. The HMACs are then appended to the program as illus-
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trated in figure 1. A new instruction, hash_ptr (hash pointer), is added to the expansion slot. Each 
hash block begins with a hash_ptr instruction, whose immediate operand points to the corre-
sponding HMAC in the program appendix. This facilitates finding the HMAC of a given hash 
block during execution. Since the generation of the HMACs and the insertion of hash_ptr instruc-
tions can be performed directly on executable code, recompilation and compiler modifications are 
not necessary. This makes RUNMAC suitable for protecting proprietary and legacy code, where 
source code is not available. 

The key used to generate the HMACs is called the RUNMAC key, which is randomly assigned to 
each processor and is required for software installation. HMACs can be generated using a hash 
algorithm or a symmetric-key cipher. In this paper, we use the Elliptic Curve (EC) based Multi-
signcryption scheme with 128-bit keys because it has a minimal memory utilization and very fast 
in hardware implementations (Ajayi, 2009). We set the default HMAC size equal to the AES 
block size, which is 128 bits. To compute the HMAC of a hash block, we first parse the instruc-
tions into 128-bit blocks (i.e. groups of four if the instruction size is 32-bits). Zero padding is 
used if a block contains uneven number of instructions. 

Each block is then encrypted with AES using the RUNMAC key. Finally, the encrypted blocks 
are XOR’ed together to generate a 128-bit HMAC. Using AES in the ECB mode is acceptable 
because the hash block size is usually small (Menezes, 1996). Therefore, we believe that the secu-
rity of this scheme is not less than other 128-bit hash algorithms. 

There are many hardware designs for fast AES implementation. One example is described in Kuo 
(2001), which can perform AES encryption in 10 cycles, with an effective pipelined latency of 1 
cycle. The area of this design is reported as 173,000 gates. Better performance (or smaller area) 
can be realized for RUNMAC by exploiting the fact that the RUNMAC key is fixed for each 
processor. In this dissertation, we will assume using an AES unit with a 20-cycle absolute latency 
and a 1-cycle effective pipelined latency.  

 

            Program  Code       Program appendix containing  HMACs 

 

            Hash Block 13                                               HMAC  of  hash_block_12 

 

 

             Statements                                                    HMAC  of  hash_block _13 

 

 

             Hash  Block  14                                             HMAC  of hash_block _14 

 
Operand of the leading hash-pointer instruction points to starting address of the corresponding HMAC 

Figure 1:   Program Code on RUNMAC 

RUNMAC Architecture 
The data path for RUNMAC architecture is illustrated in Figure 2. The HMAC Compute Logic 
(HCL) reads instructions in 128-bit blocks and computes the HMAC corresponding to the current 
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hash block. HCL is connected to the pipeline control and processes an instruction block only after 
all the instructions in the block are committed. This simplifies the handling of instructions that are 
speculatively issued and instructions issued in branch delay slot(s), when these may be condition-
ally nullified. HCL also interfaces to the cache to save (restore) its internal state on context 
switches and interrupts. 

Concurrent to the HMAC computation, the stored HMAC of the current hash block is read from 
the memory and stored in the first-in-first-out (FIFO) hash read buffer. This buffer is necessary 
because the HMAC computation latency is longer than the HMAC lookup latency. The address of 
the HMAC corresponding to the current hash block can be computed simply by scaling the oper-
and of the leading hash_ptr instruction, and then adding this value to the starting address of the 
HMAC appendix. 

When the HMAC computation is finished, it is compared to the stored HMAC, and an exception 
is raised if the values mismatch. 

 

Figure 2:   RUNMAC Data Path Architecture 

RUNMAC Algorithm 
HMAC is a hash based MAC algorithm defined in RFC 2104. It can use any hash function such 
as SHA1 which we called H. HMAC also requires a user supplied secret key, which is a string of 
bytes of any length.  

The hash algorithm H has two important properties which were fed into the algorithm. The first is 
the hash size, L. For example MD5 has a hash size of 128 bits (16 bytes). The second quantity is 
slightly less obvious - it is the block size B of the iterated hash. In general B is greater than L.  

 
HMAC 

Compute 
Logic 

 

Cache 

 

Main Memory 

≠? 

Hash 
Read 
Buffer 

Exception 

I-fetch Unit/Load – Store Pipe



Runtime Monitoring of Malicious Code 

358 

Normalizing the Key Length  
The first stage of the algorithm is to convert the key to be exactly B bytes long. If the key length 
is less than B bytes, this is done by adding zero bytes to the end of the key, to form K of exactly 
B bytes.  

However, if the key has more than B bytes to start with, first hash it using H. Then pad the hash 
value with zeros to make K (again, exactly B bytes).  

Creating the Inner and Outer Keys  
Now create 2 variants of K, by a simple XOR procedure:  

The inner key, Ki is formed from K by XORing each byte with memory address 0x36.  

The outer key, Ko is formed from K by XORing each byte with memory address 0x5C.  

Calculating the MAC  
We use the notation H(x) to represent the hash of byte sequence x. We use H(x, y) to represent 
the hash of the concatenation of byte sequence x followed by y. Then the MAC of message m is:  

H(Ko, H(Ki, m)) 

In other words concatenate the inner key with the message, and calculate the hash. Then concate-
nate the outer key with the hash value and calculate the hash of that.  

This method creates a MAC of length L (the hash size of H). It is possible to create a shorter 
MAC, if required, by truncating the MAC to t bits. To do this simply use the leftmost t bits and 
discards the remainder. The HMAC specification recommends that t should not be less than half 
of L, and in any case should never be less than 80, otherwise the MAC might not be secure.  

Choosing a Key  
The initial key can be any byte sequence of any length. Ideally it should be a random sequence, 
generated by a cryptographically strong random number generator. For the sake of security, it 
should not be less than L bytes. However, there is probably not a great deal to be gained by mak-
ing the key larger than L, and certainly there is no point making it larger than B because then it 
will simply be hashed back down to L bytes.  

If you are using password or passphrase, the situation is different because an L character pass-
word is much less random. There is an advantage in using larger passwords, even phrases which 
are larger than B (even though this will be hashed down to L bytes, a longer the pass phrase will 
create more randomness in the final L bytes). Of course in practical terms a password of 32 char-
acters or more can start to become cumbersome.  

Key Derivation 
Most algorithms which permit user selected keys (such as symmetric encryption and MACs) re-
quire a binary key, typically 128 bits or more. This equates to a hexadecimal string of at least 32 
characters. Most of us would struggle to remember such a key, or indeed to type it in accurately.  

Generally most of us prefer using a password rather than a long binary key. The process of con-
verting the password into a binary key is known as Key Derivation.  

There are several ways to derive a key from a password, the most common being hash functions 
and psuedo-random number generators.  
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Iterative Hash Functions 
Most common hash algorithms are block based, and rely on a compression function C. The com-
pression function has a block size B, and an output size L (which also corresponds to the hash 
size).  

The compression function looks like this:  

z = C(x, y) 

Here x is a quantity of length B bits, y is a quantity of length L bits, and the result z contains L 
bits. C is generally quite a complex function for which any small change in x or y creates a large 
change in z. It is called a compression function simply because it reduces a larger quantity of bits 
(B+L) to a smaller quantity, L bits (it has nothing to do with ZIP compression, you certainly can-
not reverse the function to find a and b from x).  

To calculate the hash of a message, the message is divided into n blocks m0 to mn-1, each of size B 
bits. If necessary the data is padded to form complete blocks (more below). The compression 
function is applied iteratively:  

h0 = C(m0, IV)  

hi = C(mi, hi-1)  

hn-1 = C(mn-1, hn-2)  

The initial value IV is a fixed value (it is algorithm specific) - it is L bits long. The hash value is 
the final output hn-1. 

 

 

Figure 3:  RUNMAC Algorithm Structure 

In order to calculate the hash for a stream of bits of arbitrary size, the data must be padded to an 
exact multiple of the block size. Padding is algorithm specific. The most common scheme if fairly 
simple – append a single 1 bit, a number of 0 bits, followed by the size of the unpadded message 
in bits (as a 64 bit integer), such that the padded message is an exact multiple of B bits. This 
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scheme protects against the cases where very similar messages of slightly different length might 
have the same hash. 

Security Approach 
RUNMAC can detect flow anomalies that occur during program execution. Most of the research 
work into security is concentrating on the malicious issue, by advancing techniques that isolate 
the execution of malicious code from the rest of the system. However isolating on its own is only 
a first step for security. A security framework must furnish further properties. It is important that 
an agent that visits a trustworthy host must be able to authenticate the information that it fur-
nishes.  

The core of the security approach is called EC Multi-signcryption scheme that provides integrity 
for the stored HMAC. The EC Multi-signcryption scheme is a cryptographic method that fulfils 
both the functions of secure encryption and digital multi-signature for multi-users in a network. 
The RUNMAC architecture using the EC Multisigncryption provides memory integrity verifica-
tion and program code confidentiality. In our opinion, the exciting future work on this research is 
to take advantage of the mobility nature of active networks to make RUNMAC to provide mem-
ory integrity and program code confidentiality using secured agents. 

Discussion 
We presented a novel approach to intrusion detection by verifying program code at the hash block 
level to stop progressing intrusion at early stages. In addition, the RUNMAC monitor instructions 
whose behaviour is typically exploited by malicious code.  Below we discuss our work and com-
pare it with other approaches. 

Comparison with Code Encryption and Integrity Checking –  
XOM Architecture 
The line of research that most closely parallels this work is the code encryption and integrity veri-
fication methods proposed for Digital Rights Management. The work focused on the eXecute 
Only Memory (XOM) described in (Lie, 2003). In the XOM architecture, software is distributed 
in encrypted form by the vendor and decrypted during execution on the target processor using a 
secret key. 

One of the shortcomings of XOM is that it does not completely protect against an attacker tam-
pering with memory (in particular against replay attacks) which the work addressed. While XOM 
architectures provide important security functions, they have several shortcomings that limit their 
usefulness. First, XOM only protects encrypted code whereas most of today’s software is unen-
crypted and a significant fraction is open source. Second, XOM does not protect shared library 
code, which always exists in plaintext form, whereas virtually all modern applications rely on 
shared code. Third, XOM does not fully protect untrusted I/O channels, such as network inter-
faces. Fourth, the architecture does not reliably detect flow anomalies that happen during program 
execution, which is typical of malicious code activity that RUNMAC addresses. Finally, the exe-
cution time of RUNMAC is less than that of XOM in performing intrusion activities. 

Comparison to Misuse Detection 
In misuse detection, the goal is to identify actions (or misuse signatures) that represent intrusive 
activities and to check for occurrences of these actions in the audit trails. Misuse signatures are 
described by expert-system rules, state-transition diagrams, and patterns in Petri networks. 

The specification-based approach can be thought of as the dual of misuse detection. 
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A misuse signature describes undesired behaviour in a system while a trace policy describes the 
desirable behaviour of a subject. In particular, our approach focuses on the desirable behaviour of 
unauthorized foreign code on the victim computer. On way to specify the desirable behaviour of a 
program is to enumerate the operations the program needs to perform in order to accomplish its 
function. 

A misuse detector matches a signature with the whole system trace to identify intrusions while an 
analyzer in a specification-based execution monitor parses the trace of a subject to determine 
whether the subject conforms to a trace policy. Although matching of different signatures can be 
distributed over multiple hosts, each misuse detector requires the whole system trace. In a distrib-
uted system with many hosts, the whole system trace would be huge and cannot be processed by a 
misuse detector in real time. In our approach, the RUNMAC detect program flow anomalies by 
verifying the code at the hash block level which can be done in real time. 

In misuse detection, signatures are mostly driven by previous attacks or known vulnerabilities. 
Although possible, it is not intuitive to encode a policy as misuse signatures. Our approach is 
more policy-oriented; a trace policy for a subject is specified based on the functionality of the 
subject and the system security policy. Therefore, it can succeed in catching attacks that exploit 
unknown vulnerabilities in programs.  

Comparison to Type Enforcement 
In the type-enforcement approach (Badger, 1995), accesses to objects by a subject are restricted 
by a type-enforcement policy based on the domain of the subject and the type of the object. Each 
subject is running in a domain and each object is assigned to a fixed type when it is created. 

The Domain and Type Enforcement (DTE) approach (Badger, 1995) applies type enforcement to 
a Unix system. It takes the process hierarchy and the file hierarchy of current systems into con-
sideration. The type enforcement policy is specified in a DTE language. Each domain is associ-
ated with one or more entrance programs, when executed by a subject/process switches, will 
move the subject/process to that domain. In effect, the type enforcement policy restricts the ac-
cess of a process based on the program it is executing. 

The DTE approach is similar to our approach as it further restricts the accesses of a program. In 
general, a DTE policy can be specified by a set of trace policies in our approach. A trace policy 
can specify the valid accesses of a program, but also the valid ordering of the accesses. Therefore, 
a trace policy is more expressive than a DTE policy regarding the specification of the behaviour 
of a program. 

One difference between DTE and our approach is that DTE is a preventive approach. 

Operations performed by a program during execution that violate the DTE policy are denied by 
the DTE subsystem, while ours is a detection approach that raises a warning when a violation oc-
curs. Nevertheless, one can incorporate our parsing mechanism into a reference monitor that pro-
hibits any operations that are not accepted by the parser (i.e., those operations that are in violation 
of a trace policy). 

Performance 
To evaluate the performance impact of the RUNMAC architecture, simulations were carried out 
and the results verified as described in the subsequent section.  
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Code Size 
The RUNMAC architecture increases the program size due to the hash_ptr instructions and the 
appended HMACs. Figure 4 shows the total storage overhead when 32-bit, 64-bit, 128-bit 
HMACs are used. The total overhead is increasing in the order for 32-bit, 64-bit, and 128-bit 
HMACs respectively. While that of the 128-bit HMACs is high, the total size increase on a sys-
tem may be limited by using RUNMAC only on vulnerable applications, such as webservers and 
mailservers that maintain continuous network connections. For resource-constrained environ-
ments, smaller 32-bit HMACs may be preferred to limit the total overhead size. 

 

 

Figure 4: Code Size 

Efficiency Analysis 
We evaluated RUNMAC as against XOM using five integer benchmark simulations by adjusting 
the memory values. The result showed that performance of RUNMAC averages 6.4s as against 
11.0s in detecting unauthorized foreign codes (as shown in figure 5). By increasing the hash size 
of the instruction cache, the average time was reduced to less than 5s which suggested that 
RUNMAC demonstrated an improved precision and can detect flow anomalies in a very short 
time.  
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Figure 5: Integer Benchmark Simulation Results 

Conclusions 
The approach has been to develop an architectural technique, which is called an Execution Moni-
toring of Remote Intrusions, to detect program/data flow anomalies associated with unauthorized 
code execution on computer workstations. The approach is based on a model that verifies pro-
gram code or data at the hash block level. By verifying at such level, it can monitor instructions 
whose behaviour is typically exploited by malicious code, such as branch, call, return instruc-
tions. While it is not a one-size-fits-all solution against all such malicious code, it can contribute 
significantly to network security if it is employed as a new layer of defence concurrently with 
existing security tools. 
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