
Issues in Informing Science and Information Technology Volume 7, 2010

On Integrating Architecture Design into
Engineering Agile Software Systems

Sita Ramakrishnan
Clayton School of IT, Faculty of IT,

Monash University, Australia

sita.ramakrishnan@infotech.monash.edu.au

Abstract
Agile software system development approaches have become popular since the late 1990s. Agile
method has been increasingly adopted by big players in software industry such as IBM, Micro-
soft, Nokia and Philips with a view to improving quality and productivity. Such quality im-
provement goals must be measured during system development to validate the approach, and
there is a need for more qualitative and quantitative studies in Agile development methods. Lit-
erature study shows that mainly XP approaches have been explored in empirical studies with re-
ports on students’ perceptions of XP in university case studies or with software development pro-
fessionals. Management-oriented approaches, such as Scrum, and scaling up of the method using
Agile architectures still require more detailed empirical study and evaluation. In this paper, we
report on the evolution of our approach from Agile/XP, Agile/feature-driven, Agile /Scrum to
Agile architecture/Scrum in the final year software engineering student project unit, and students’
and supervisors’ perceptions on quality and productivity from 35 student team projects sourced
from the industry over eight years.

Keywords: Agile architecture, Scrum, Agile methods and techniques

Introduction
The ACM/IEEE Computer Science/Software Enginnering curriculum (2003) lists agile concepts
and practices such as test-driven development, refactoring etc as core topics to be included in
software engineering courses. European Agile researchers such as Abrahamsson are working to-
wards a IEEE standard on Agile methodology – IEEE 1648 (Abrahamsson, 2009). The impor-
tance of linking architecture with quality goals is well researched and practiced in building large
complex domain-specific software systems and these researchers view scalability of Agile ap-
proaches without any focus on architectural issues is not viable. Architectural design at various
levels of abstraction in conjunction with user stories in an Agile method under Scrum tactics can

be used to address the quality criteria as
well as log time taken for story points,
tasks and defects. However, the advo-
cates of Agile approaches are wary of
the value of big upfront architectural
design and evaluation to the customers
of the system. Researchers in software
engineering method and architecture
field are of the view that re-factoring on
a large scale may impact on quality with

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and pay-
ment of a fee. Contact Publisher@InformingScience.org to
request redistribution permission.

mailto:sita.ramakrishnan@infotech.monash.edu.au�
mailto:Publisher@InformingScience.org�

On Integrating Architecture Design into Engineering Agile Software Systems

10

increased defects. Although technical, project management, communication and cultural issues
are being addressed in the Agile development research and practice, more empirical research
needs to be conducted into developing solid body of knowledge for integrating architectural de-
sign into Agile development.

We have been using Agile methods in the final year software engineering project unit since 2002
(see Tables 1-4). Our recent focus has been on instilling the importance of architecture design in
agile development. Although a number of empirical studies exist that explore the benefits of XP
approaches, empirical methods exploring the benefits of including architectural design in agile
methods are still immature. In the next section, we look at a study which reports on better out-
comes by using a specific combination of Agile methods and techniques (Parsons, Ryu, & Lal,
2007), and on recent Agile work on Scrum, Agile architecture and empirical studies (Abra-
hamsson, 2009; Abrahamsson, Warsta, Siponen, & Ronkainen, 2003; Ambler, 2007, 2009;
Buglione & Abran, 2007; Dyba & Dingsoyr, 2008, 2009a, 2009b; Erdogmus, 2009; Evans, 2006;
Hadar & Silberman, 2008; Hoffmeister et al., 2007; Kitchenhaum et al., 2002; Knoernschild,
2009; Korhonen, 2009; Lange, Chaudron, & Muskens, 2006; Margaria & Steffen, 2009; McMa-
hon, 2006; Meier, 2009; Nord & Tomayko, 2006; Phillippus, 2009; Rajlich, 2006; Schwaber &
Beedle, 2002; Sjoberg, Dyba, & Jorgensen, 2007). We also look at previous studies on students’
and academics’ perception on Agile practices (Hughes & Bowyer, 2006, 2007; Katira, Williams,
& Osborne, 2005; Melnik & Maurer, 2004, 2005; Meneely & Williams, 2009; Muller, Link,
Sand, & Mahlpohl, 2004). In the third section, we present an overview of our study and a qualita-
tive analysis of the 35 Agile projects conducted by the various student teams involved in the
study over eight years. We conclude with some summary findings.

Agile Methods in Practice –
Combination of Techniques within an Agile Method

Agile software development methods have been gaining support with industry practitioners and
researchers since late 1990s, with claims of improved quality and productivity outcomes. A num-
ber of Agile methods are used in software development with various Agile techniques. Parsons et
al. (2007) report in their research into Agile methods in practice that practitioners seem to use a
combination of techniques within an Agile method. They explore some of the techniques used
within Agile methods to assess their benefits within an Agile process. They claim that the best
way to adopt Agile methods is to use it in combination with other Agile methods, and that it is
effective to combine XP and Scrum. They show that five of the core techniques of XP method:
collaborative working, code refactoring, code regression testing, pair programming and test dri-
ven design, should be adopted to achieve the maximum benefits of XP. They conclude that suc-
cessful adoption of an Agile approach requires not only selecting an Agile method but also ap-
propriate techniques in combination to achieve the best integrated quality process and productiv-
ity improvements in system development, and report that practitioners seem to use a combination
of techniques within an Agile method.

Although Agile manifesto is prescriptive about the practices they include, Agile method adoption
has progressed through the use of a number of approaches, such as XP, Scrum, feature driven de-
velopment etc., in combination and techniques within these methods in a piecemeal manner. Such
adaptation and tailoring of Agile methods to suit the various development and organisational
needs have been reported in the literature by XP, Scrum, software engineering (SE) and other Ag-
ile researchers and practitioners (Abrahamsson et al., 2003; Ambler 2004; Beck & Andres, 2004;
Buglione & Abran, 2007; McMahon, 2006; Parsons et al. , 2007).

 Ramakrishnan

 11

However, most development teams (especially including Agile software capstone final year SE
projects) may not have the knowledge and skills required to pick and choose between various
Agile methods and techniques to be used in combination to suit a project (Parsons et al. 2007).
The usual practice is to adopt the Agile method which is most convenient and evaluate / reflect
and tailor it for improved outcomes. This tailored approach has been adopted in our SE capstone
projects over the last eight years and has meant that we have evolved our Agile method to include
specific techniques to address various limitations. Since Agile method practitioners are selecting
and adapting from a combination of Agile methods and techniques, it is important to consider
which methods and techniques in combination provide the best outcomes. We need to check for
and evaluate any gaps in techniques that might impact software process improvements, quality
and cost. We have been informed by the lessons learnt in running 1 year long Agile projects since
2002-2009 (Ramakrishnan, 2009), empirical evaluations (Melnik & Maurer, 2003, 2005; Me-
neely &Williams, 2009; Parsons et al. 2007) and by Agile methods in computer science education
(Hughes & Bowyer, 2006, 2007; Katira et al. 2005; Muller et al. 2004). The fourth section pre-
sents a qualitative analysis of the 35 Agile projects conducted by the various student teams that
have been used to assess Agile methods’ claim of software development improvements.

Previous Studies on Students’ Perception and
Researchers’ Evidence on Agile Practices

In Melnik & Maurer (2003), the authors reported on their experience in introducing Agile meth-
ods in 4 different academic programs in 2 institutions. They produced a qualitative analysis of
students’ perceptions on XP in general and 3 core practices of pair programming, project plan-
ning with planning game and test-driven development (TDD). They wanted feedback on whether
students enjoyed Agile practice, problems encountered, test-driven development and how XP im-
proved their learning. 85% of their students felt that XP teams produced better quality code with
pair programming and TDD, and benefited greatly by good communication and collaboration
between team members. They also reported that although the concept of TDD was not used con-
sistently by the teams as the other core XP practices listed, they realized the importance of testing
and the value of finding bugs early. They emphasised the differences between real-world and stu-
dent Agile projects: Real XP teams worked at a steady pace and did not have spikes in delivering
value to clients, but students are dictated by other competing assignment deadlines in other
courses/units.

The ACM/IEEE Computer Science/Software Engineering curriculum lists Agile concepts and
practices such as refactoring and TDD as essential topics in SE curricula. Melnik & Maurer,
(2005) provide a detailed quantitative analysis of students’ perceptions about Agile practices
through data collected over 3 academic years from 5 different academic levels (diploma, postdip-
loma, junior, senior, grad) in 2 institutions with similar questions as in their 2003 work. They re-
ported that the students in general were enthusiastic about core Agile practices. Qualitative analy-
sis again revealed that experience in Agile team work helped them in developing communication
& collaboration and adaptability skills. With 240 respondents out of 693 invitations (35% re-
sponse rate), they reported that 78% believed that XP improved productivity of small teams, and
76% felt that XP improved code quality. Pair programming was liked by a large number of re-
spondents and they felt that code inspection in pairs is more efficient than traditional debugging.
They found that this was a statistically significant result in their study and contrary to industry
perceptions.

Parson et al. (2007) looked at the impact of Agile methods and techniques on outcomes in Agile
projects and provided empirical evidence that showed that Agile methods improve quality, satis-
faction and productivity without a significant increase in cost. Their aim was to assist developers

On Integrating Architecture Design into Engineering Agile Software Systems

12

to derive a methodology from the various methods and techniques. They reported that Agile me-
thods were used in combination with a number of different techniques. They provided statistical
analysis that showed that choosing a specific combination of techniques in an Agile method re-
sulted in better outcomes. They also reported that the Agile adoption rate was influenced by the
extent to which certain core techniques were integrated. The data set used in their paper was from
Ambler (2008) survey with 4235 respondents from March 2006. In exploring the relationships
between outcomes and Agile methods and techniques, Parsons et al. (2007) treated outcomes as
dependent variables and the methods and techniques as independent variables. They found that
there was a lack of correlation between an Agile methodology and the techniques actually used
with that method. Their respondents reported that they used the following 12 Agile techniques:
active stakeholder participation, Agile model driven development, code refactoring, code regres-
sion testing, collocation, common coding guidelines, continuous integration, database refactoring,
database regression testing, pair programming, single sourcing and test driven design. Their sur-
vey found that XP & feature driven development (FDD), and XP & Scrum were the most popular
pairs of Agile methods. Other pairs were FDD & Scrum. Agile unified process & FDD etc with-
out XP. The data analysis showed that XP/Scrum combination was better for productivity and
quality although the cost or satisfaction was the same in all the various Agile method pairs ana-
lysed. The result was plausible as XP focused on technology related best practices of program-
mers and Scrum dealt with project management and process metrics issues (Buglione & Abran,
2007). Their data analysis of the 12 Agile techniques used in the survey showed that the most
effective techniques are: co-location and pair programming, which produced higher benefits of
quality, productivity and satisfaction. They also found that from a sample size of 420 using XP,
only 8 were using all the techniques. They analysed the data set of XP users to identify the asso-
ciation between the techniques used and the outcomes, and reported on the importance of the out-
comes for these techniques in terms of 3 measures: productivity, quality and satisfaction. They
found that code refactoring was the most important technique on all 3 measures. Test driven de-
velopment showed up as the most satisfying. Collaboration showed up as improving productivity
and quality concerns. Pair programming improved productivity and code regression testing im-
proved quality. They also looked at the correlation between the number of XP techniques used
and the outcomes from using the XP/Agile method and found that the cost factor was independent
of the number of Agile techniques used. However, the 3 performance meaures/outcomes showed
that the performance improved with the increase in the number of Agile techniques used. This
finding is in line with what has been evident in our final year software engineering capstone pro-
jects.

Agility and Architecture
Agile software systems must be engineered to address quality and productivity concerns. How-
ever, incorrect interpretation of the lean documentation approach of Agile development leads to
inadequate levels of architectural design information (Hadar & Silberman, 2008). There is an
emerging consensus about the importance of a research theme to address architecture-centric is-
sues in Agile software development (Babar, 2009a, 2009b; Babar & Abrahamsson, 2009; Babar,
Pikkarainen, & Ihme, 2008) and for integrating architectural design techniques in Agile methods
(Hadar & Silberman, 2008).

Booch (2007a) states “that best projects use a system’s architecture as a primary artefact for gov-
ernance.” A system’s architecture is very relevant to the various players such as analysts, design-
ers, testers and program managers. An analyst uses the emerging architecture to move from prob-
lem space to solution space. The design decision considers various competing objectives and con-
straints and makes tactical decisions on the evolving architecture. Designers delve into architec-
tural design to explore the functional, non-functional features in the iterative, incremental space

 Ramakrishnan

 13

of development. This enables the designers and end users to explore issues and discuss more spe-
cific questions on functionality, performance, re-factoring etc. that would not have been possible
earlier. Proven architectural patterns should be used in appropriate contexts in future applications
to improve their quality and productivity. Analysts use a system’s architecture to check the con-
nections between its various components. Similarly, testers can use a system’s architecture to
conduct system tests. Project managers use a system’s architecture to control its incremental re-
leases, manage risks and run tests to check the quality of its implementation and its conformance
to user requirement (Booch, 2007b).

Architecture provides a foundation or a blue print from which systems are built. It is an important
aspect of Agile software development and is critical for building scalable Agile software systems
(Ambler, 2002, 2007, 2009). Scalability should address complexity, team size, distributed teams,
compliance requirement etc. In a co-located XP setting for a small project with pair program-
ming, collective ownership and good communication, free-form white board drawings of archi-
tecture may suffice. On larger scale multi-site projects, architectural models benefit developers by
building a common vision and ownership through architecture models and documentations. In-
stead of building a big design up front (BDUF), Agile model driven development (Ambler, 2009)
evolves in an iterative fashion, where the goal of iteration 0 is to identify the technical directions
and risks and elicit an architectural vision for the project. The next iterations result in architecture
model incremented with more details. The role of an architecture owner is to work collabora-
tively with the team members to evolve the architecture. Just like the product owner in Scrum is
responsible for the team’s requirements, architecture owner is responsible for the team’s architec-
ture. In an Agile architecture process, a core team could develop an initial architecture and evolve
the architecture by updating the (whiteboard) models as required as the project progresses. These
models are discussed with the development teams for resolving any issues. As the requirements
come from project stakeholders, their active participation is essential for identifying architectural
requirements. Business, technical and operational stakeholders bring their expertise into the deci-
sion making. In Agile modelling, there can be no prescriptive set of architecture models that are
suitable for a project. It is appropriate to include architecture views which are relevant for the sys-
tem being built. One should also try to use appropriate architectural patterns. Some of these pat-
terns are: Model-view-controller, layers, and broker. Architecture models show system’s depend-
encies, and UML deployment diagrams, UML activity diagrams, data-flow diagrams etc are use-
ful for identifying dependencies. Although software (product) is the primary goal, architecture
documentation is necessary in Agile systems for effective communication for distributed teams
and for complex systems. The architecture documentation should contain key architecture re-
quirements, explain critical aspects of the architecture, possibly using a navigation diagram, and
an explanation of key decisions/trade-offs in design. XP notion of architecture spikes or architec-
tural prototypes in Rational Unified Process (RUP) is used to show that an architectural iteration
works by checking if it works as expected (Ambler, 2009).

Margaria & Steffen (2009) propose extreme model-driven development (XMDD) as a new devel-
opment paradigm and teaching direction in the computer science curriculum. It is aimed at con-
tinual involvement from the customer throughout the systems life cycle. They argue that the tradi-
tional development process is no longer applicable in this world of heterogenous, distributed or-
ganisational systems which must adapt to changing requirements. They argue for a curriculum
which addresses this need with a model-driven, light-weight development paradigm which sup-
ports collaboration and cooperation and puts the user/customer process in the center of the devel-
opment process and the domain/application expert in charge of evolution. This paradigm shift to
Agile software development is similar to the views expressed in Rajlich (2006), Dingsoyr, Dyba,
& Abrahamsson. (2008) and ITEA AGILE project (Abrahamsson, 2009).

On Integrating Architecture Design into Engineering Agile Software Systems

14

Agile adoption rate is increasing and according to Ambler (2008), over 69% of analysed organi-
sations are using Agile practices on their projects. Software process improvement strategies based
on CMMI (capability maturity model integrated) are seen as heavy software development proc-
esses with heavy-weight plans and documentation imposed by plan driven method with compli-
ance criteria imposed by CMMI but also as an indicator of organisational maturity. How does one
address the needs of CMMI compliant organisation to go Agile or when the clients of the Agile
organisation require a level of CMMI compliance. Diaz, Garbajosa, and CalvoManzano (2009)
provide an experience report by mapping CMMI (capability maturity model integrated) level 2 to
Scrum practices. They show how Scrum techniques of Agile method can be used to identify a set
of practices to achieve a certain level of CMMI capability level 2 and help with CMMI compli-
ance issues for small to medium enterprises with a lightweight and flexible CMMI with
Scrum/Agile. Ambler (2009) discusses an Agile process maturity model (APMM) with level 1
Agile process such as Scrum and Agile modelling that address a part of the development life cy-
cle and suited for small, co-located teams, level 2 process covering the full Agile system devel-
opment cycle with a risk and value driven strategy, and level 3 process where scaling factors such
as distributed teams, team size and compliance to regulation are considered. Ambler states that
APMM and CMMI are complementary but address different strategies. Lean methods that ad-
dress scalability are likely to be the way forward for Agile software development (Ambler, 2009).

The Agile literature was a bit silent on the impact of architecture design as can be seen from the
papers discussed above in the previous section. Exclusive use of Scrum approach can result in
focus on functionality and features alone without regard for architecture/design quality and result
in performance and product quality issues.

There is a growing interest in bridging the gap between Agile and architecture approaches. How-
ever, the role of the architect and architecture-related issues in Agile development still needs to be
better understood and integrated with Agile method for ensuring that the Agile development
process scales up to distributed large team projects. The 3 main design activities of architectural
analysis, architectural synthesis, and architecture evaluation in architecture methods do not pro-
ceed sequentially but the architecture grows progressively over time (Hofmeister et al., 2007).
This is so because the analysis, finding solution and evaluation for all concerns cannot be done
simultaneously, as the inputs of goals, constraints etc are better understood as architecture design
progresses. To drive the design process, architects keep a backlog of needs, issues, problems to be
addressed and ideas to do it (Hofmeister et al., 2007). The backlog drives the workflow, and helps
the architect in deciding what to do next. The backlog is frequently prioritized based on mile-
stones to be met, risks to be mitigated, team schedule etc. Once the backlog item is picked by the
architects, they do architectural synthesis incrementally, and the current existing design decisions
get integrated with this. Thus the backlog constantly changes and sets the objectives for a particu-
lar iteration of architectural synthesis. This cycle of adding to a backlog, re-prioritizing, resolving
or removing an item can happen in varying periods of hours or days. The backlog is similar to
Scrum (Schwaber & Beedle, 2002). The backlog guides the activities through 3 kinds of activi-
ties, and assigns objectives for each iteration through a synthesis activity. The architect should
also ensure that each iteration of each activity is done after setting objectives for that step.

Agile researchers and practitioners have reported on the need for creating a research agenda for
studying architecture-centric challenges in Agile software development (Babar, 2009a, 2009b;
Babar & Abrahamsson, 2009; Babar et al., 2008),and have set up http://www.acube-
community.org to include research progress in this area. Babar (2009b) has reported that the most
commonly occurring architecture-related challenges that Agile teams experience are: 1) incorrect
prioritization of user stories without considering technical aspects: if interdependencies among
user stories are not discovered early, considerable refactoring may be required impacting the
whole software structure. This may be addressed by involving the Agile architect (aka solution

http://www.acube-community.org/�
http://www.acube-community.org/�

 Ramakrishnan

 15

architect) in more management roles and being a Scrum master and also by creating a new role of
implementation architect responsible for technical aspects such as getting the user stories imple-
mented. Both architects and developers should be involved in prioritizing user stories in a team
session; 2) not considering alternate design choices and evaluating their decision; 3) not focussing
on quality attributes during design decisions; and 4) lack of skills, untried technologies and de-
velopment in a new domain.

Agile architecture method is based on the concept of a common architecture unlike RAD and Ag-
ile supports contract first through TDD and designing to interfaces, which helps avoid integration
issues. More recently, Agile architecture (spike) seems to be slowly getting adopted within the
Agile community. A spike is used for experimentation by developers to learn just enough with
unknown elements in a user story such as new technology, and enables them to estimate that user
story (Phillipus, 2009). When a user story on the product backlog contains unknown elements
that are hard to estimate, the item should be split into a spike to tease out these elements and a
user story for implementing the functionality. This split allows the product owner to rank the re-
search higher and ahead of implementation of the functionality. The spike is time-boxed and the
research part of a user story is explicitly addressed and time-capping the spike will help in keep-
ing the project on schedule.

The concept of spike is used with an architectural issue. The architectural spike is called Sprint 0
and corresponds to exploration phase in an XP project and preliminary architecture modelling.
The aim of the architecture spike is to consider subsystems/components, dependencies and con-
straints. It is also important to include quality attributes in this process, and Sprint 0 is a good
spot to specify the essential product quality requirements (Meier, 2009).

An Agile architecture method presented by Meier (2009) is a structured approach for developing
candidate architectures and is an iterative and incremental approach for building quality architec-
ture and design. Meier’s method recommends the use of normal requirement gathering input in-
formation such as use cases and usage scenarios, functional and non-functional, technology &
deployment requirements, and constraints, and produces as output: architecturally significant use
cases, architectural hot spots, candidate architectures and architecture spikes. It considers factors
that impact on architecture in a step-wise process. The Agile architecture method has 5 steps for
designing an architecture: 1) identify architecture objectives, 2) use key scenarios to flesh out the
design for critical parts and evaluate the resulting candidate architecture, 3) develop an applica-
tion overview by focussing on the application type, deployment architecture, architecture & de-
sign patterns and technologies to be used to link the architecture/design to the implementation
requirement, 4) identify key design decisions based on quality attributes, and 5) create a candi-
date architecture or architecture spike and evaluate it against key scenarios, quality attributes and
deployment constraints. The method offers a sound approach for creating candidate architectures
using design patterns etc., identifying relevant spikes and deployment constraints. Meier’s me-
thod helps to identify key engineering decisions against prioritized user stories during iteration.
The key decisions are about exception management, data access etc. and on quality attributes
such as performance, reliability, security etc. The Agile architectural process is an iterative, in-
cremental approach and more detail is added to the design in each iteration. This method can be
used to explore technical goals, risks and architectural spikes. This method can be used to model
an application and draw incremental iterations of the architectural detail using design, implemen-
tation and deployment patterns as appropriate in a free-form notation on whiteboards or using
drawing tools.

Agile research studies (Korhonen, 2009; Parsons et al., 2007) suggest that Agile techniques, such
as pair programming, automated tests, and continuous integration, help reduce the number of
faults and improve productivity. However, they also conclude that the faults need to be handled
formally. When adopting Agile methods, consideration must be given to distributed development,

On Integrating Architecture Design into Engineering Agile Software Systems

16

tools, and progress reporting. As these are treated separately, Korhonen (2009) suggests that fur-
ther research is needed with case studies to assess the defect management requirements in Agile
development. According to Agile process definition (Schwaber & Beedle, 2002), quality and
hence fault-fixing, is the first priority, In practice, implementation of features is seen as more im-
portant during the sprint than fixing minor bugs, so that bugs are transferred to the next sprint.
Although project manager and quality manager (QM) require faults to be reported to show pro-
gress status visible, Scrum team members avoid this task (Korhonen, 2009). It is useful for QM to
introduce guidelines on what faults should be reported.

Overview of Our Study and Qualitative Analysis of
the 35 Agile Projects Over Eight Years

The objective of this study is to ascertain students’ and supervisors’ perceptions on Agile meth-
ods and if they have changed over the eight years of operation at Monash University. The study
focuses on Agile software engineering practices coming from extreme programming (XP) as well
as Agile/feature-driven, Agile/Scrum, and Agile architecture.

Analysis of the data collected during the course of the project (over 2 semesters) on Agile meth-
ods, are from the 2 SWEBOK (Software engineering body of knowledge) interviews per project
team member, 4 incremental software releases per team, and weekly Scrum meetings. Agile
methods and techniques were covered during the lecture seminar series.

When quizzed about agile approaches with open-ended questions such as:

1) Did they benefit and enjoy the project unit and why?

2) Did they like Agile or prefer the Spiral or other approaches they were familiar with?

3) Reflections on what worked and what did not, and why?

4) Answers to specific questions on coding standards, XP, pair programming, collective own-
ership, collaboration/communication, test driven development, Scrum tech-
niques/spikes/sprints, software configuration management, defect management, software
configuration management, SVN/Trac, integration testing, Agile architecture, quality &
productivity.

The overwhelming response to question #1 from students in 2002-2009 has been very positive in
terms of relevance, interest and work (industry) integrated learning, and for question #3 the re-
sponses gave the following: things that worked were pair programming, coding standards, incre-
mental releases, collaboration & communication; under things that did not work some teams ex-
pressed a view that pair programming worked but took more time as 2 people were involved or
because the students’ calibre were different. Most started with test-driven development but some
reverted back to code then test or test later on when time pressures came into play. What has
been evident during 2002-2009 is that even within one year’s team with what may be seem as a
prescribed subset of Agile method/techniques, teams may embrace only some techniques. They
try to explain away the reason as being due to: time table clashes with other team members for
not using pair programming consistently, non use of defect management tools due to the size or
nature of the language used in the project, Agile being more applicable in industry where mem-
bers do not have competing assignment requirements and other classes etc.

In 2002-2004, there was also a heavy emphasis on requirement engineering with acceptance test-
ing and architecture and design models upfront, with XP with pair programming, code standards,
incremental releases and test driven development. Hence, the response for #2 & #4 was spiral and
XP implementation techniques. In 2002, 100% of the team members had positive responses re-

 Ramakrishnan

 17

garding pair programming and attributed it to improved quality & productivity. They also em-
braced the other XP techniques (see Table 1). In 2003, 2 exceptionally bright teams, and another
team put in practice all the prescribed XP techniques in Table 1 (60% adoption). In 2004, 4 out
of 6 teams (66.6%) were positive about and practiced pair programming and other techniques
listed in Table 2.

In 2005, 100% (5/5 teams) practiced pair programming and other Agile techniques listed in Table
2. However, MUSE (Monash University Software Engineering) portal task time tracker service
was not uniformly used by the teams. They were not using the online task tracker consistently to
record the time taken to do various tasks in a release.

In 2006, 100% of the students practiced the Agile techniques listed in Table 3 except refactoring
and CVS/SVN. Only one team re-factored their code. The version control system, Subversion
(SVN) was used by 1 team and 2 teams used the older Concurrent version system (CVS).

In 2007, 100% of the teams used Agile techniques listed in Table 4. Since 2007, student teams
have access to a server for SVN and they use it enthusiastically to manage their code assets. In
2008-2009, all teams followed Agile/feature-driven approach with Scrum tactics. However, one
team member in 2008 re-factored the code and moved away from Agile/Scrum and team mem-
bers half way through the project to deliver “quality product” as he put it. This sort of hijacking is
possible in a student team project when the other team members do not speak up in a group set-
ting. They only owned up during individual SWEBOK interviews.

On Integrating Architecture Design into Engineering Agile Software Systems

18

Table 1: Bachelor of Software Engineering Studio (Capstone) projects: 2002-2003

Clients
(Melbourne based)

Year Teams of Project title Technologies
used

Jack Verdins, IBM 2002 4 Demo of IBM’s

Websphere devel-
opment platform

WebSphere Appli-
cation Studio De-
veloper 4.0, Web-
Sphere Application
Server, WS tech-
nology

Columbia Australia Pty Ltd, SME

2002 4 E-Commerce ap-
plication – stock
mgmt

Tomcat (JSP/
Servlet Server),
Java IDE (JBuilder
4+), SQL DB

South Port Engineering, SME 2002 4 ClearView, Visual
Sales data analysis

Java, MS-SQL

Web Strategy, SME 2002 4 Ecommerce system
- Legal Wills –
online payments,
customer record
mgmt

IIS, JMailer, Vis-
ual Studio .NET,
MS Access 2000,
Crystal reports

Rotary 2003 4 Rotary water
wheel

PHP, CSS, Post-
gresSQL, CSS

Cosmic Zone, SME 2003 4 Marketing, online
sales site

PHP, MySQL,

Go for IT! Global networks, SME 2003 4 Interactive website
for online purchase
& workshops for
victims of crime

PHP, MySQL,
CSS

Faculty of Medicine, Monash Uni 2003 4 Virtual surgical
museum (Online
interactive learning
tool)

PHP, MSSQL,
Javascript

South Port Engineering, SME 2003 4 Platform inde-
pendent browser
based sign control-
ler

ASP.NET, C#,
Visual C++, MS
Access, Ndoc

Source: http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf
http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/ (for more details)

SE method & techniques: to cover SWEBOK, IEE Std for SRS, QA/testing - 2002-current,
2002 -2003- XP - pair programming, test driven development, incremental releases, col-
laboration/communication, , collective code ownership, project coding standards, architec-
ture

http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf�
http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/�

 Ramakrishnan

 19

Table 2: Bachelor of Software Engineering Studio (Capstone) projects: 2004-2005

Clients
(Melbourne based)

Year Teams
of

Project title Technologies
used

Tomato Source, SME 2004 4 Quick Bill – web

based billing system
PHP, MySQL

7seals@com, SME

2004 4 Stock ordering sys-
tem

J2EE, PDA

Digital Bridge, SME 2004 4 J2EE apps for web-
site support & pro-
ject management

J2EE

Rotary 2004 4 Rotary water (contd
from 2003)

PHP, CSS, Post-
gresSQL

Peter Harding Pty Ltd 2004 4 Java/Eclipse tool for
practicing Russian

Faculty of Arts, Music, Monash

2004 4 Working with
sound system for
the web

Everyday interactive networks

2005 4 Confidential Java, Eclipse, Mer-
cury QTP,
JUnit

Confidential

2005 4 Billing system PHP, MySQL, XML,
SSL, test/csv

Confidential 2005 4 Confidential
OpalTree System Pty Ltd 2005 4 Javaweb for CA-

DRia)
J2EE web services,

Sun’s Java webstart
technology

NCS Pearson Pty Ltd 2005 4 Coaching college

student admin, test
marking & report-
ing system

ASP.NET/SQL
server, Optical mark
reader, OPSCAN
scanners

Source: http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf

(for more details on the unit and projects)

http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/ (for more details)

SE method/techniques: to cover SWEBOK, IEE Std for SRS, QA/testing - 2002-current,
(2004): XP - pair programming, test driven development, collaboration/communication,
collective code ownership, project coding standards, automated testing, , MUSE Portal –
task time tracker service with release dates for incremental releases, CVS, architecture

http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf�
http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/�

On Integrating Architecture Design into Engineering Agile Software Systems

20

Table 3: Bachelor of Software Engineering Studio (Capstone) projects: 2006

Clients
(Melbourne based)

Year Teams of Project title Technologies
used

Faculty of Medicine, Monash

2006 4 Medical Imaging
research DB

Open microscopy
environment (OME),
OME image server

Faculty of Medicine, Monash

2006 4 Graphical framework
for medical visuali-
zation & segmenta-
tion

Open source tools –
itk, vtk (C++ librar-
ies): VTK –
visualization toolkit,
itk – image registra-
tion & segmentation
toolkit

7@seals.com 2006 4 Migrate J2EEapps to

portal apps
Rational application
developer, MySQL
Apache Pluto 1.0,
Portlet, JEE

7@seals.com 2006 4 Single sign on Rational application

developer, Microsoft
active directory on
MS Server, Kerberos
server on Linux box

Confidential

Victorian partnership for
advanced computing

2006 4

2006 4

Interactive mood
engine (iME)

Web services man-
agement interface

Agents

Web services

Faculty of IT 2006 4 Health Portal Open source search
engine, Postgres
metadata DB, java
driven interface,
webcrawler

Source: http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf

(for more details on the unit and projects)

http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/ (For more details)

SE method & techniques: to cover SWEBOK, IEE Std for SRS, QA/testing, 2002-current,
2006- Agile - pair programming/ XP, test driven development, collective code ownership,
project coding standards, refactoring, Agile & configuration management, track defects,
planning game, incremental releases, automated testing, CVS /SVN, collabora-
tion/communication, architecture

http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf�
http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/�

 Ramakrishnan

 21

Table 4: Bachelor of Software Engineering Studio (Capstone) projects: 2007-2009

Clients
(Melbourne based)

Year Teams of Project title Technologies
used

Bluetounge entertainment,
Gaming software company

2007 4 Performance data
tracking DB

C#, SQL server
backend, csv files

Confidential

2007 4 Project Eden (for
managing client’s
time)

PHP, MySQL

V-SME 2007 4 Web based service
desk

Web 2.0, ITIL
framework, LAMP –
Linux Apache
MySQL PhP, Java-
script, CSS, Ajax,
XML, XHTML, Ja-
va, automted testing

Tolls Corporate IT –
Mobility product team

2008 4 Knowledge base DB C#, SQL server

Bluetounge Entertainment
Pty Ltd

V-SME

2008 4

2008 4

Performance review
tool

Intranet documenta-
tion system

PHP, MySQL

Web 2.0 + Ajax,
MySQL, Ruby on
Rails

Consultant (V-SME) 2009 3 AusVita –online

info/service provider
for international stu-
dents

Ruby on Rails, Ajax,
SQLite2, SVN, RSS

ANZ 2009 3 Online finance tools Flex, MySQL, PHP,
CSS

Source: http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf

http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/

SE method & techniques: to cover SWEBOK, IEE Std for SRS, QA/testing - 2002-current,
2007-2009- Agile - pair programming/ XP, test driven development, collective code owner-
ship, project coding standards, incremental releases, automated testing , refactoring, Agile
& configuration management, collaboration /communication, planning game, architecture,
Agile/Scrum/scaling Agile –architecture spikes, UML, SVN/Trac - track defects

Prior to 2009, student teams produced architecture/detailed design diagrams but they were not
linked to the releases. In 2009, students practiced the Agile techniques listed in Table 4 including
architecture spikes and sprints etc. However, the architecture sprints were not done for initial re-

http://www.csse.monash.edu.au/~sitar/BSE-FinalyearCapstoneProjects-2002-2009.pdf�
http://www.csse.monash.edu.au/~sitar/CSE4002/CSE4002-and-alumni/�

On Integrating Architecture Design into Engineering Agile Software Systems

22

leases and only taken up when they realised the impact it would have on their assessment marks.
They did realise the benefits of architecture/design sprints when faced with integration issues and
elaborated on architecture/design views/drawings for the following software releases. Both teams
were initially focussed on the new technology option for web 2.0 and rich internet application
that they had chosen – Ruby/Rails and Adobe/Flex and said that the technology supported model
view controller (MVC) pattern for their design. As stated by Buschman (2009) in the article about
pragmatic architect, the students had to be reminded about the various perspectives and the ab-
straction levels that an architect needs to concerned with. One of the teams had to produce 3
components for an On-line financial calculator application with Flex. Initially, they split the tasks
between the team members without taking into account the dependency relations that existed be-
tween the components owing to planned reuse, and decided to allocate one component per team
member. An architecture sprint with a diagram showing links between various component items
was used by this team to realise this problem and take steps to overcome avoidable sched-
ule/estimate overruns. Each member was allocated a part of each component development. This
team could have also better handled the crosscutting issue of security by working on an architec-
ture spike initially to understand the technology better. Both teams in 2009 were initially reluc-
tant to use the integrated software configuration management and project management system,
Trac, for defect management and said that with a test driven approach, they fixed any errors de-
tected on the spot and did not see the need for a separate defect management process. The notion
of ownership of errors/faults and allocation of resources/time spent for it has always been some-
thing student teams have been rather reluctant to do and have wanted to roll the task into devel-
opment time in progress reports.

Summary and Conclusions
This research has explored previous studies on students’ perceptions of Agile methods and has
shown how the Agile method adoption is a case of partial adoption of various techniques from an
Agile method. The studies have shown that it is better to blend multiple Agile methods which are
complementary, and that it is important to use a minimum number of techniques to achieve the
best project outcome. Our eight year experiences introducing Agile methods in the final year
software engineering projects indicate that students are very enthusiastic about learning Agile
practices and comment that it will be very useful in the industry setting as well. Qualitative analy-
sis show that experience of working in Agile teams promotes the development of technical (soft-
ware architecture/design, construction through pair programming, test driven approach, configu-
ration management), managerial/documenting (planning game, user stories, defect management,
progress reports) and professional skills (collaboration, communication, cooperation, collective
ownership, adaptation). Agile purists and eminent SE researchers are joining forces in adopting
Agile architectures in Agile software development, and it is important to build an empirical body
of knowledge to integrate architecture-centric approaches in Agile method. We have reported on
some findings from our 2009 projects on Agile architectures in Agile development.

 Ramakrishnan

 23

References
ACM/IEEE Computing Curriculum. (2003) Software engineering. Joint IEEE Computer Society/ACM

Task Force on Computing Curriculum, July 2003.

Abrahamsson, P. (2009). Agile methodology – Achieving a radical improvement in software engineering,
Scaling-up to high performance businesses. M-ITEA 2 Magazine, April 2009, no. 3.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions on agile methods: A
comparative analysis. Proceedings of the 25th International Conference on Software Engineering, May
2003, pp. 244-254.

Ambler, S. (2002). Agile modeling: Effective practices for extreme programming and the unified process.
Wiley-Computer publishing, John-Wiley & Sons, Inc.

Ambler, S. (2004). The object primer (3rd ed.). Agile Model Driven Development, Cambridge University
Press.

Ambler, S. (2007). Agile software development at scale. In B. Meyer, J. R. Nawrocki, & B. Walter (Eds.),
In Proceedings of CEE-SET 2007, LNCS 5082, IFIP International Federation for Information Process-
ing, pp. 1–12.

Ambler, S. (2008). Ambysoft: Agile adoption survey. Available at:
http://www.ambysoft.com/surveys/agileFebruary2008.html

Ambler, S. (2009). Agile architecture: Strategies for scaling agile development. Available at
http://www.agilemodeling.com/essays/agileArchitecture.htm

Babar, M. A. (2009a). Designing and evaluating architectures in Agile way. Available at
http://www.acube-community.org/wikis/images/7/74/TalkAtVTT-WikiVersion.pdf

Babar, M. A. (2009b). Going Agile? Beware of architecture-related changes and challenges. Available at
http://www.acubecommunity.org/wikis/index.php/Architecturecentric_Methods_and_Agile_Approach
es

Babar, M. A., & Abrahamsson, P. (2009). Architecture-centric methods and agile approaches. In P. Abra-
hamsson, M. Marchesi, & F. Maurer (Eds.), XP 2009, Lecture notes in business information process-
ing (LNBIP) 31, Springer-Verlag, Berlin Heidelberg, pp. 232-233.

Babar, M. A., Pikkarainen, M., & Ihme, T. (2008). Identifying and understanding architecture-centric is-
sues in agile software development. Flexi Newsletter, Jan, pp. 10-11. Available at
http://www.acubecommunity.org/wikis/

Beck, K., & Andres, C. (2004). Extreme programming explained. Addison-Wesley,

Booch, G. (2007a). The irrelevance of architecture. IEEE Software, 24(3), 10-11.

Booch, G. (2007b). The economics of architecture-first. IEEE Software, 24(5), 18-20.

Buglione, L.,& Abran, A. (2007). Improving estimations in Agile projects: Issues and avenues. Proceed-
ings of Software Measurement European Forum (SMEF), pp. 265-274.

Buschmann, F. (2009). Introducing the pragmatic architect.IEEE Software, 26(5) 10-11.

Diaz, J., Garbajosa, J., & CalvoManzano, J. A. (2009). Mapping CMMI Level 2 to Scrum practices: An
experience report. In Proceedings of 16th European Conference, EuroSPI 2009, CCIS42, Springer-
Verlag, Berlin, Heidelberg, pp. 93-104.

Dingsoyr, T., Dyba, T., & Abrahamsson, P. (2008). A preliminary roadmap for empirical research on agile
software development. Proceedings of Agile 2008, Washington, DC, USA, IEEE Computer Society,
Los Alamitos, pp. 83-94.

http://www.ambysoft.com/surveys/agileFebruary2008.html�
http://www.agilemodeling.com/essays/agileArchitecture.htm�
http://www.acube-community.org/wikis/images/7/74/TalkAtVTT-WikiVersion.pdf�
http://www.acubecommunity.org/wikis/index.php/Architecturecentric_Methods_and_Agile_Approaches�
http://www.acubecommunity.org/wikis/index.php/Architecturecentric_Methods_and_Agile_Approaches�
http://www.acubecommunity.org/wikis/�

On Integrating Architecture Design into Engineering Agile Software Systems

24

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of agile software development: A systematic review.
Information and Software Technology, 50 (9-10), 833-859.

Dyba, T., & Dingsoyr, T. (2009a). IEEE Software voice of evidence: Empirical studies of agile software
development. IEEE Software Web Extra, Sep/Oct 2009.

Dyba, T., & Dingsoyr, T. (2009b). What do we know about agile software development? IEEE Software,
Sept 2009.

Erdogmus, H. (2009). Architecture meets agility. IEEE Software, 26(5), 2-4.

Evans, S. (2006). Agile architecture approaches. Available at:
http://blogs.conchango.com/simonevans/archive/2006/02/03/Agile-Architecture-Approaches

Hadar, E., & Silberman, G. M. (2008). Agile architecture methodology: Long term strategy interleaved
with short term tactics. Proceedings of Object oriented systems languages and applications
(OOPSLA’08), 19 Oct 2008, Nashville, Tennessee, USA, ACM publication, pp.641-651.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P. (2007). A general model of
software architecture design derived from five industrial approaches. The Journal of Systems and Soft-
ware, 80, 106-126.

Hughes, J., & Bowyer, J. (2006). Incorporating test driven development and continuous integration into
the software engineering curriculum. Retrieved from
http://www.imamu.edu.sa/DContent/IT_Topics/Incorporating%20Test%20Driven%20Development.d
oc

Hughes, J., & Bowyer, J. (2007). Agile methods in computer science education, A case study of an
pproach for teaching and learning about agile methods, In HE Academy of Information & Computer
Science.

Katira, N., Williams, L., & Osborne, J. (2005) Towards increasing the compatibility of student pair pro-
grammers. 27th International Conference of Software Engineering (Missouri, May 2005).

Kitchenhaum, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K. E., &
Rosenberg, J. (2002). Preliminary guidelines for empirical rsearch in software engineering. IEEE
Transactions on Software Engineering, 28(8), pp.721-734.

Knoernschild, K. (2009). Agile architecture. Available at: http://techdistrict.kirkk.com/2009/05/06/agile-
architecture

Korhonen, K. (2009). Migrating defect management from Waterfall to Agile software development in a
large scale multi-site organisation: A case study. In XP 2009, LNBIP 31, pp. 73-82, Springer-Verlag
Berlin Heidelberg.

Lange, C., Chaudron, M., & Muskens, J. (2006). In practice: UML software architecture and design de-
scription. IEEE Software, 23(2), 40-46.

Margaria, T., & Steffen, B. (2009). Agile IT: Thinking in user-centric models. Proceedings of Third Inter-
national Symposium, ISoLA 2008, Porto Sani, Greece, CCIS 17, Springer-Verlag, Berlin, Heidelberg,
pp. 490-502.

McMahon, P. E. (2006). Lessons learned using agile methods on large defense contracts. Systems & Soft-
ware Technology Conference, CrossTalk, The Journal of Defense Software Engineering, May 2006,
pp. 25- 30. Available at www.stsc.hill.af.mil

Melnik, G., & Maurer, F. (2003). Introducing Agile methods in learning environments: Lessons learned.
Proceedings XP/Agile Universe 2003, LNCS 2753, pp.172-184, Springer-Verlag Berlin Heidelberg.

Melnik, G., & Maurer, F. (2005). A cross-program investigation of students’ perceptions of agile methods.
Proceedings of International Conference Software Engineering (ICSE2005), St Louis, Missouri, USA,
ACM.

http://blogs.conchango.com/simonevans/archive/2006/02/03/Agile-Architecture-Approaches�
http://www.imamu.edu.sa/DContent/IT_Topics/Incorporating Test Driven Development.doc�
http://www.imamu.edu.sa/DContent/IT_Topics/Incorporating Test Driven Development.doc�
http://techdistrict.kirkk.com/2009/05/06/agile-architecture�
http://techdistrict.kirkk.com/2009/05/06/agile-architecture�
http://www.stsc.hill.af.mil/�

 Ramakrishnan

 25

Meier, J. D. (2009). Agile architecture method. Available at http://shapingsoftware.com/2009/03/02/agile-
architecture-method/

Meneely, A., & Williams, L. (2009). On preparing students for distributed software development with a
synchronous, collaborative development platform. Proceedings SIFCSE 2009, March 2009, Chatta-
nooga, TN, USA.

Muller, M. M., Link, J., Sand, R., & Mahlpohl, G. (2004). Extreme programming in curriculum: Experi-
ences from academia and industry. International Conference on Extreme Programming and Agile
Processes in Software Engineering, Garmisch-Partenkirchen, Germany, June 2004.

Nord, R. L., & Tomayko, J.E. (2006). Software architecture-centric methods and agile development. IEEE
Software, 23(2), pp. 47-53.

Parsons, D., Ryu, H., & Lal, R. (2007). The impact of methods and techniques on outcomes from agile
software development projects. IFIP International Federation for Information Processing, vol 23, Or-
ganizational Dynamics of technology-based innovation: Diversifying the research agenda,
eds.McMaster, T., Wastell, D., Ferneley, E., and DeGross (Boston: Springer), pp.235-249.

Philippus, E. (2009). Architecture spikes. Available at www.agilearchitecting.com/

Rajlich, V. (2006). Changing the paradigm of software engineering, Communications of ACM, 49(8), 67-
70.

Ramakrishnan, S. (2009). Innovation and scaling up Agile software engineering projects, Issues in Inform-
ing Science and Technology, Volume 6, 557-574. Available at http://iisit.org/Vol6/IISITv6p557-
574Ramakrishnan573.pdf

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper Saddle River: Pren-
tice-Hall.

Sjoberg, D., Dyba, T., & Jorgensen, M. (2007). The future of empirical methods in software engineering
research. Future of Software Engineering (FOSE’07), IEEE 2007, pp.358-378.

Biography
Sita Ramakrishnan is a senior academic in the Clayton School of IT,
Faculty of IT, Monash University, Australia. She holds a PhD in Vali-
dating Interoperable Distributed Software and Systems. She has active
research interests in modeling and validation of distributed software
components, component-based and service-oriented architectures and
testing, web technologies in education, teaching and learning. She has
published refereed papers in International Journals & Conferences on
software engineering on quality, reuse, software metrics, evaluation,
testing and SE Education. She has been an organizing and Program

committee member of a number of International conferences and reviewed a number of confer-
ence and journal articles. She has played a leading role in the curriculum development of Bache-
lor of Software Engineering course at Monash University. She is Director of Software Engineer-
ing degree program in the Faculty. She managed the process of formal accreditation of the soft-
ware engineering course program by the Institution of Engineers of Australia and Australian
Computer Society.

http://shapingsoftware.com/2009/03/02/agile-architecture-method/�
http://shapingsoftware.com/2009/03/02/agile-architecture-method/�
http://www.agilearchitecting.com/�
http://iisit.org/Vol6/IISITv6p557-574Ramakrishnan573.pdf�
http://iisit.org/Vol6/IISITv6p557-574Ramakrishnan573.pdf�

	Word Bookmarks
	PointTmp
	Conference
	OLE_LINK1
	OLE_LINK2

