Proceedings of Informing Science & IT Education Conference (InSITE) 2009

Regaining the ‘Object’ of Learning Objects

Namdar Mogharreban and Dave Guggenheim
Southern lllinois University, Carbondale, lllinois, USA

namdar@cs.siu.edu; dguggen@siu.edu

Abstract

Learning objects were to bring a seismic shift to the field of computer-based instruction
by introducing transportability and reusability. Supposedly outfitted with the concepts
taken from object-oriented (OO) design, learning objects have long promised dramatic
savings of time and money in course and curricula development. However, they have
failed to deliver the return on investment that seems a natural extension of their existence,
in large part because the conceptual mechanisms adopted by OO design for transportabil-
ity and reusability are lacking in learning objects.

Object-oriented software development, first discovered in the 1960s, had ushered in a
new era of programmatic coding and design by the 1990s. Instead of thinking in terms of
“verbs,” or the processes that act upon information, developers could directly conceive of
“nouns,” or the objects that define the world around us, and provide these objects with
real-world attributes. These transportable and reusable objects would then possess a li-
brary of ready-to-use actions that provide both a rich feature set as well as isolation for
the user from implementation complexity. Software languages designed with support for
such concepts as classes, methods, instantiation, overloading, overriding, inheritance,
polymorphism, and encapsulation, achieved this tectonic shift in computer engineering
and resulted in dramatic improvements in reliability, reusability, and cost.

In response to this shortcoming, we have proposed a new entity - the learning pod
(Mogharreban & Guggenheim, 2008). The learning pod is our conception of the Learn-
ing Object. Engineered with the original concepts behind object-oriented development,
the proposed conception uses OO technology to create an experientially seamless inter-
connection between disparate learning variables and delivers on the promise of sharing
and reuse. The proposed learning object is construed as a class in OOP. A class may be
considered as a blueprint, a schematic for replicating an object. Using a class begins with
instantiating a new object based on that blueprint. Instantiation is the process by which a
new copy of an object is created for use by invoking a constructor. This “instance” of a

N v ——— class referred to as an object has all
Material published as part of this publication, either on-line or ; s :
in print, is copyrighted by the Informing Science Institute. the p I'OPGI"[IGS Of_the Orlglnal’ and 1
Permission to make digital or paper copy of part or all of these immediately available for applica-
works for personal or classroom use is granted without fee tion.

provided that the copies are not made or distributed for profit

or commercial advantage AND that copies 1) bear this notice

in full and 2) give the full citation on the first page. It is per- IntrOd u CtIOI‘I
missible to abstract these works so long as credit is given. To « . . .
copy in all other cases or to republish or to post on a server or In 1994, the term learmng Ob.] ects

to redistribute to lists requires specific permission and payment ~ made its first appearance in the title
of a fee. Contact Publisher@InformingScience.org to request of Wayne Hodgins CedMA WOI‘kil’lg

redistribution permission.

mailto:namdar@cs.siu.edu�
mailto:dguggen@siu.edu�
mailto:Publisher@InformingScience.org�

Regaining the ‘Object’ of Learning Objects

group, “Learning Architectures, APIs and Learning Objects” (Polsani, 2003). This refer-
ence is ostensibly made toward object-oriented programming, a paradigm of software en-
gineering where software programs are built using modules that are interoperable, reus-
able, and easier to maintain than their monolithic counterparts. In a similar fashion, an
academic course can be broken up into computer-mediated instructional units that pos-
sess these same qualities — portability, adaptability, reusability, and ease of maintenance.

Object-oriented software programming, first conceived by Kristen Nygaard and Ole-
Johan Dabhl in the 1960s (Campbell-Kelly, 2002), achieves these qualities by introducing
and manipulating the concepts of classes, methods, instantiation, overloading, overriding,
inheritance, polymorphism, and encapsulation. (Korson & McGregor, 1990).

Following the Object Orientation paradigm we have proposed a new entity - the learning
pod (Mogharreban & Guggenhiem, 2008). Designed as an object-oriented structure with
the capabilities offered by instantiation, encapsulation, inheritance, and polymorphism,
the learning pod consists of learning variables and several software modules — Theme
Builder, Styler, Learner, and Evaluator - that drive their learner-dependent selection, po-
sitioning, and reuse. These engines, when combined with feedback mechanisms, create a
structure that is highly reusable, from the entire course down to a single digital element of
instruction.

A learning pod contains learning variables (LVs) which are context-free digital elements,
whether text, audio, video, animation, etc., that become part of a learning pod only when
applied within a context of learning. The context of learning is defined by the “Theme
Builder” of the learning pod. A pod is a collection of learning variables connected with
sound pedagogical principles by way of software engines driving metadata, sequencing,
personalization, and reusability in the form of encoded functional and aesthetic informa-
tion. Most importantly, the learning pod utilizes available technology, albeit state-of-the-
art, to accomplish its tasks.

The proposed learning pod is construed as a class in OOP. A class may be considered as
a blueprint, a schematic for replicating an object. Using a class begins with instantiating a
new object based on that blueprint. Instantiation is the process by which a new copy of
an object is created for use by invoking a constructor. This “instance” of a class referred
to as an object has all the properties of the original, and is immediately available for ap-
plication. For example, an abstract data type (class) called Employee may contain the
information and actions associated with a person engaged for hire. Name, contact infor-
mation, hire date, pay period, base pay rate, vacation allowance, and other relevant data is
contained within the class Employee, and when a new object is instantiated (a new em-
ployee is hired), this information would be gathered and input as part of the constructor
process.

Within classes, methods are built-in actions that may be taken on an object, and construc-
tors are the first method called when instantiating a new object. What makes a construc-
tor different from an ordinary subroutine is the fact that they are frequently overloaded.
Constructor overloading provides an extra degree of flexibility by allowing objects to be
instantiated with varying degrees of input details. For example, the class Employee may
have several constructors:

70

Mogharreban & Guggenheim

1. Name and address only

2. Name, address, and hiring information

3. All of the above, plus scanned résumé

4. All of the above, plus physical test results

Each of these constructors will create a new object titled “Employee,” and each is to be
used depending on the information available at the time of processing. Other methods
contained within the class Employee may include affecting a departmental transfer, mark-
ing a change in supervisor, entering a probationary review, placing on suspension, noting
vacation status, etc.

In the field of learning objects, this would equate to the simple process of duplicating a
learning object and entering the learner-centric information necessary to activate its use.
At the lowest level of object orientation, a LO-based course is an instance of a learning
pod which could be copied and used exactly as it was originally intentioned.

Extending instantiation is the prospect of inheritance. Instantiating an object from a
class, and then adding user-defined data fields and/or methods over and above those al-
ready built-in is the essence of inheritance and a basic component of reusability. An ex-
ample would be a company that wishes to use the object class Employee, but has differ-
ent policies and procedures than those inherent in the base class. It could create fields and
methods as an addition to the class Employee without having to rewrite the class or alter
the basic blueprint. A key facet of inheritance is method overriding, or the ability to re-
place certain built-in actions with custom methods without disrupting any details not spe-
cifically addressed. Under the umbrella of inheritance, learning objects could be instanti-
ated and then adapted - learning elements, sequencing, and/or testing — for a particular
purpose or requirement.

Polymorphism (Greek for “many forms”) may be expressed in a number of ways, but the
most relevant to this discussion is the use of inheritance and method overriding to achieve
new uses for an object. A popular example is a class of geometric objects with a method
to calculate surface area. Regardless of whether the object is a rectangle, square, circle, or
triangle, the area method will correctly calculate the answer because of its polymorphic
capabilities that allow it to “recognize” different shapes. A corollary with learning objects
would be to copy a LP-based course and then shift its focus to an ancillary topic by intro-
ducing new learning elements with their concomitant sequencing and testing schemas.
For example, a history lesson could be shifted from a character perspective to one of
commerce or geography, retaining as much material as possible in the conversion to save
development time and cost. Of course, the learning variables that comprise a unit of in-
struction, whether textual, visual, or audible, are inherently polymorphic and must be
kept context-free through careful meta-tagging in order to promote the widest possible
uses.

Encapsulation, also known as information hiding, is an OO technique that hides underly-
ing complexity or private information, or both, from the user. A favorite real-world ex-
ample is the vending machine, in which a user knows the operational parameters (put
money in, press selection, take item), but does not need to understand the mechanical en-
gineering that accommodated their purchase. Similarly, in a paradigm of learning objects,

71

Regaining the ‘Object’ of Learning Objects

the instructional designer need not be concerned with the coding details of learning ele-
ments placement, learning style interpretation, page sequencing or performance testing.
Encapsulation would occlude this complexity from view, and allow the designer to focus
on the course instead of its construction and execution details.

A Return to Object Orientation

The single most-cited advantage of OO design principles is the ability to build transport-
able, reusable, and adaptable software components (Pancake, 1995). Because a single
hour of online instruction can take up to 300 hours to develop (Kapp, 2003), reusability is
also the core return on investment (ROI) message offered by learning object promoters,
from the earliest days to the present (Churchill, 2005, 2007; Downes, 2003; du Plessis,
2005; Garcia-Barriocanal et al., 2007; Hodgins, 2000; Liber, 2005; Liu et al., 2005; Pol-
sani, 2003; Wiley 2000). Yet, after 12 years of successive evolution, learning objects are
still primarily a collection of stand-alone modules that rarely interconnect outside of
strictly controlled regimes, such as those imposed by corporate and military training
guidelines.

The engineered reusability of a learning pod begins with importing or creating learning
elements in the form of digital, context-free audio, video, text, or interactive components
that may be affixed to a browser-based presentation layer or web page. By remaining
context-free at this level, the learning variable is inherently reusable. These learning vari-
ables do have metadata, but only that which defines the structural specifications of the
object instead of imposing, accidentally or otherwise, restrictions on its potential use.

In addition to the metadata, each learning variable has associated keywords, which in-
clude language of origin, copyright owner, type of object (text, audio clip, etc.), statement
of purpose, and potential applications. The statement of purpose describes the content,
such as a speech classified as “speech.” But potential applications for that speech may
include speech communications, history, management style, biography, etc. Encompass-
ing the metatags that allow selection, and indexed keywords that promote the broadest
possible use, a software engine could search, select, and place learning objects on a pres-
entation layer using either manual or automated processes, or both.

The Theme Module (Class, Instantiation, and Inheritance)

The Theme is a collection of search criteria, metatags, design data, and keywords about
the contents and structure of the unit of instruction contained within the learning pod that
allow the pod to be found and instantiated. (See Figure 1.) Conforming to the principles
of object-oriented design, the Theme presents a layer of abstraction (encapsulation) that
provides external contact as the aim of a search or as the export agent for the contents and
design of the learning pod. Primarily, Theme contains the overarching topic that de-
scribes the mission and content of the learning pod, appropriate grade level or back-
ground, and packaged page layout, individual learning object title, type and placement,
sequencing, and aesthetic information provided by the Styler. Populated with this infor-
mation, the Theme has enough data to export a blueprint of the baseline learning pod
(prior to Learner adaptation), allowing a receiver to reconstruct the unit of coursework as
a clone of the original — the essence of instantiation. Once instantiated, a learning object
can be extended through inheritance, overloading, and overriding.

72

Mogharreban & Guggenheim

External
query

</

Learner module
Evaluation
module

Metatags,
generic . keywords,
* statistics topic

Detailed
design
package

Theme Module

The Styler

Figure 1 — The Theme module

Linking with the Learner module, Theme has to potential to contain additional generic
information extracted from learning episodes (personal data removed), such as mean
score by grade level, 5-number summary of scores (minimum, 1% quartile, median, 3"
quartile, maximum), pass/fail ratios — even student satisfaction ratings if desired. This
will provide a qualitative measurement of the learning pod to the outside world for in-
spection prior to its reuse.

The Styler (Overriding, Polymorphism, and Encapsulation)

The Styler is an internally-focused multi-use software engine that performs the following
tasks (See Figure 2.):

1. Determination of learning style

2. Learning object selection based on learner cognitive style

3. Presentation-layer authoring tool

4. Sequencing of instructional and assessment pages

5. Packaging and export of design information separate from content

73

Regaining the ‘Object’ of Learning Objects

learning objects
page layout
aesthetics
sequencing
assessments

.
™ .
-
Blueprint
packaging
Page layout ——
engine

The Styler

From Learner Module

Learning Style
Information

Toffrom Theme Builder

Detailed design
package

Dynamic
learning
object
selector

Assessment
pages

Learning
object
repository

export
learning
pod to
server

Ewvaluation module

Figure 2 — The Styler module

Finding and selecting appropriate learning variables for a unit of study is potentially an
automated process using fuzzy-logic determination combined with keyword analysis. The
instructional designer would input the desired topic and characteristics into a structured
query-driven search engine designed to retrieve digital learning elements based on fuzzy-
logic metatags, and the result would be the population of a local library with learning
variables meeting the criteria.

Another function of the Styler is to generate pre-assessment, instructional, and assess-
ment pages using drag-and-drop technology via standard page layout software interface.
Realization of a learning pod authoring system, though, mandates that aesthetic design
data both sensory and immersive, be encapsulated apart from the content using purpose-
built style sheets. This isolation of form and function calls for a new specification linked
to XSL visual design data. In addition to metadata, a lesser degree of abstraction is neces-
sary to catalog the aesthetics of a presentation-layer web page. Design principles such as
layout, font, color schemes, frame placement, button style, white space, movement, and
object relationships on a ‘page’ are essential aspects of sound instructional design, yet
these components are not codified among the technical standards available for specific
reuse. It has been suggested that each learning object developer create multiple styles us-
ing XSL/XML style sheets, in the hopes that one of those will aesthetically match a mod-
ule developed by another course designer (Polsani, 2003). Rather than invite probabilistic
determination in deciding whether learning objects are reusable, we propose a means of
achieving compatibility between disparate learning pages and pods that relies on the elec-
tronic exchange of stylistic attributes with both manual and automatic reactions. The lo-
cation of learning varaibles on a page will be automatically generated and kept in a data
file as standard page layout information (object metatags & title and x-y coordinates
along with x-y pixel size information). This geometric mapping, the sequence of pages,
and other aesthetic information will be codified and transmitted to the Theme module as
the blueprint of the learning pod. In this way, the Styler and Theme modules work to-
gether to achieve encapsulation and inheritance of the learning pod.

In addition to designing and building single or multiple pages of pre-assessment, instruc-
tion or assessment, the Styler sequences the pages using a page-sorter view according to

74

Mogharreban & Guggenheim

the pedagogical principles applied by each individual instructor/designer. Sequencing
may be accomplished on a page-by-page basis or by using an instructional algo-
rithm/template such as those proposed by Component Display Theory (Merrill, 1994),
Elaboration Theory (Reigeluth, Merrill, & Wilson, 1978; Reigeluth, Merrill, Wilson, &
Spiller, 1979), Instructional Transaction Theory (Merrill, 1999), or the collection offered
by Kaur et al. (2007). Using web pages as the basis for the presentation layer not only
offers the greatest flexibility in learning object selection (text, audio, animation, full-
motion video, interactive applets, etc.), it makes the job of sequencing using a page-sorter
view rather simple. Standards such as IMS Global’s Common Cartridge Format (IMS
Global, 2007) and ADL’s SCORM (ADL, 2006) will find applicability only when adapt-
ing learning pods to third-party Learning Management Systems (LMS) because learning
pods and their contents are inherently interchangeable, adaptable, and reusable using only
the generic standards for XHTML within HTML 4 as specified by the W3C (1999).

Beyond the baseline layout and sequence, adaptive sequencing of instructional pages,
driven by an understanding of the learner’s prior knowledge and skill set, is integral to
the learning pod. Work done by Garcia-Valdez et al. (2007), Brusilovsky & Vassileva
(2003), Brusilovsky & Peylo (2003), and Weber & Brusilovsky (2001) establish the
means by which artificial intelligence techniques may be used to define a learner-centric
path through coursework.

Regardless of whether the pages are assembled ad-hoc, divined through an algorithm, or
prepared using a template, a page-sorter view with color-coded page margins indicating
basic instruction sequence, intermediate assessments, and progression thresholds will be
available to the designer. Furthering the object-oriented design principle of polymor-
phism, imported pages or sequences of pages may be used as-is, redesigned with altered
or new learning variables, and/or rearranged according to the teacher’s pedagogical prin-
ciples. In all cases, the imported pages will adopt the aesthetic parameters of the destina-
tion instructional program. When sequencing selection is complete, the system will gen-
erate a data file of the pages, objects, and all other visual, auditory and kinesthetic infor-
mation.

Finally, the Styler has the ability to catalog what type of learning varaible occupies the
page or portion thereof and to make dynamic substitutions or additions based on the
learner’s cognitive style. Several methods for capturing learning styles and using that in-
formation to drive learning object selection have been proposed (Garcia, et al., 2007;
Garcia-Valdez et al., 2007; Kaur et al., 2005; Mustaro & Silviera, 2006; Santally & Sen-
teni, 2005; Wolf, 2002). Whether the learning style is discerned from analyzing responses
to a questionnaire, like the 118-question survey proposed by Wolf (2002) in the iWeaver
project, or if it is detected in real-time during the course of instruction by providing alter-
native content models to be rated by the learner and corroborated by learner responses,
the relevant information from which the Styler will base its placement decisions comes
from the Learner module.

The Learner Module (User-centric Polymorphism)

Information about the learner, such as grade level, prior knowledge, course histories, and
learning style(s) is kept in a secure, password-protected and encrypted data file capable of
being contained on a smart card. Interacting on a two-way channel with the Styler and

75

Regaining the ‘Object’ of Learning Objects

Evaluation modules, the Learner Module contains derived learning style data and pre-
assessment test scores (so as to establish a prior knowledgebase before engaging in the
main instructional unit), with the caveat that the learning style may dynamically drive
learning object selection, and prior knowledge may then drive sequencing and progres-
sion. (See Figure 3.) When the student has completed a section of instruction, assessment
results are returned to the Learner module from Evaluation and stored in a secure envi-
ronment. When a course has been finished, a blueprint of their coursework, including
learning objects, layout, sequencing, assessments and scores, is saved to the Learner data
file. Using this information, it would be possible to reconstruct a static reproduction of
the exact instruction he or she received, thereby offering reuse at an individual level.

With regard to learning styles, each time the learner interacts with a learning pod, avail-
able data is captured and kept in this secure environment. By maintaining a long-term
history, the Learner has the ability to catalog learning styles based on topic, content, time
of day, or any other available parameter with an associated value.

Pre-assessment

results
Assessment
results

Learning style
determinant

/ The Learner

Personal data
History &
stats

Figure 3 — The Learner Module

Evaluation (Overloading, Overriding, Polymorphism)

Every course of instruction must include some means of assessing the learner's perform-
ance at three general waypoints: 1) prior to engaging with the coursework to establish
prior knowledge, 2) performance hurdles offered during the course of instruction, and 3)
post-instruction qualification. Assessments and evaluations are conducted by the Evalua-
tion module, a discrete program within the learning pod that is tightly integrated with the
Styler and Learner modules. (See Figure 4.) When sequencing pages of instruction with
the Styler during the design and build phase, the designer will denote those pages re-
served for assessment purposes. Templates defining assessment types (multiple choice,
fill-in-the-blank, matching, essay response) and any relevant learning objects are se-
lected, placed on a page, and populated with questions, answers, and when revealed with
an incorrect answer, page locations where the correct answer is discussed.

76

Mogharreban & Guggenheim

hJ

Intermediate
scoring & action

Pre-assessment
scoring & action

Post-course
scoring & action

Pre-assessment
results

Intermediate Post-course
results results

\\Eval uation

Yy¥vrn
Learner module

Figure 4 — Evaluation module

Logical rules-based expressions are programmed into the Evaluation module that in-
structs the Styler as to sequencing actions based on assessment results. For example:

Rule 1: If Assessment A > 80%, and Assessment B >= 50%, then unlock
Page X (which in turn unlocks a new sectional study path).

Rule 2: If Assessment A < 80% and Assessment B is >= 50%, then return
to Page Y, but skip over the section beginning with Page Z.

Results of assessments are provided to the Learner data file for long-term secure storage
and future student-learning pod interaction as prerequisite information.

Another use for assessment data is to generate scoring statistics that reflect the intended
use and quality of the learning pod. Transferring generic student grade level and scoring
information from the Evaluation module to the Theme Builder for statistical processing
and presentation to a query response adds a valuable indicator for future reuse in various
situations and groups.

Conclusions

True hierarchal reusability - from a course to a section and from a page to a single learn-
ing variable — has been designed into the learning pod. Constructed in a paradigm of ob-
ject-oriented programming and using off-the-shelf technology, the learning pod applies
those concepts to the field of learning objects by promoting maximum reuse without
placing limitations on aesthetic choice and academic freedom. A learning object is an
instance of a learning pod which is “customized” for the learner by way of the methods
and the data about the content and the user pass on to it during instantiation.

77

Regaining the ‘Object’ of Learning Objects

References

ADL. (2006). SCORM 2004 (3" ed.). Retrieved August 30, 2007, from
http://www.adlnet.gov/scorm/index.aspx

Bloom, B. S. (1956). Taxonomy of educational objectives, Handbook I: The cognitive domain. New Y ork:
David McKay Co.

Brusilovsky, P. & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. International
Journal of Artificial Intelligence in Education, 13, 156-169. Retrieved September 11, 2007 from
http://aied.inf.ed.ac.uk/

Brusilovsky, P., & Vassileva, J. (2003). Course sequencing techniques for large-scale web-based education.
International Journal of Continuing Engineering Education and Lifelong Learning, 13(1/2).

Campbell-Kelly, M. (2002, August 23). Obituary — Kristen Nygaard. The Independent. London. Retrieved
January 20, 2008 from http://findarticles.com/p/articles/mi_qn4158/is 20020823/ai_n12639248

Churchill, D. (2005). Learning object: An interactive representation and a mediating tool in a learning ac-
tivity. Educational Media International, 42(4), 333-349.

Churchill, D. (2007). Towards a useful classification of learning objects. Education Tech Research Devel-
opment, 55,479-497.

Cisco Systems. (2001). Reusable learning object strategy.: Designing information and learning objects
through concept, fact, procedure, process, and principle template. San Jose, CA: Cisco Systems, Inc.

Cochrane, T. (2005). Interactive quicktime: Developing and evaluating multimedia learning objects to en-
hance both face-to-face and distance e-learning environments. Interdisciplinary Journal of Knowledge
and Learning Objects, 1(1), 33-54. Retrieved from http://ijello.org/Volumel/v1p033-054Cochrane.pdf

Downes, S. (2003). Design and reusability of learning objects in an academic context: A new economy of
education? USDLA Journal: A Refereed Journal of the United States Distance Learning Association,
17(1). Retrieved September 11, 2007 from
http://www.usdla.org/html/journal/JANO3 _Issue/article01.html

du Plessis, J. (2005). Learning objects: Using language structures to understand the transition from affor-
dance systems to intelligent systems. Interdisciplinary Journal of Knowledge and Learning Objects,
1(1), 55-67. Retrieved from http://ijello.org/Volumel/v1p055-066duPlessis.pdf

Garcia-Barriocanal, E., Sicilia, M., & Lytras, M. (2007). Evaluating pedagogical classification frameworks
for learning objects: A case study. Computers in Human Behavior, 23, 2641-2655.

Garcia, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for
detecting students’ learning styles. Computers & Education, 49, 794-808.

Garcia-Valdez, M., Licea, G., Castillo, O., & Alanis, A. (2007). Simple sequencing and selection of learn-
ing objects using fuzzy inference. Proceedings of the North American Fuzzy Information Processing
Society, NAFIPS *07 Annual Meeting, 628-632.

Griffiths, J., Stubbs, G., & Watkins, M. (2007). From course notes to granules: A guide to deriving learning
object components. Computers in Human Behavior, 23, 2696-2720.

Hodgins, H. W. (2000). The future of learning objects. In D. A. Wiley (Ed.), The instructional use of learn-
ing objects: Online version. Retrieved August 21, 2007, from
http://reusability.org/read/chapters/hodgins.doc

Hodgins, W., & Conner, M. (2000). Everything you ever wanted to know about learning standards but were
afraid to ask. Learning in the New Economy e-Magazine (LiNE Zine), Fall. Retrieved September 11,
2007, from http://www.linezine.com/2.1/features/wheyewtkls.htm

IEEE. (2001). WG12: Learning object metadata. Retrieved September 4, 2007, from
http://ltsc.ieee.org/wgl2/.

78

http://www.adlnet.gov/scorm/index.aspx�
http://aied.inf.ed.ac.uk/�
http://findarticles.com/p/articles/mi_qn4158/is_20020823/ai_n12639248�
http://ijello.org/Volume1/v1p033-054Cochrane.pdf�
http://www.usdla.org/html/journal/JAN03_Issue/article01.html�
http://ijello.org/Volume1/v1p055-066duPlessis.pdf�
http://reusability.org/read/chapters/hodgins.doc�
http://www.linezine.com/2.1/features/wheyewtkls.htm�
http://ltsc.ieee.org/wg12/�

Mogharreban & Guggenheim

IMS Global Learning Consortium, Inc. (2003). IMS learning design information model. Retrieved October
25,2007, from the World WideWeb:
http://www.imsglobal.org/learningdesign/Idv1p0/imsld infov1p0.html

IMS Global Learning Consortium, Inc. (2003). IMS common cartridge format. IMS Global Learning Con-
sortium, Inc. Simple Sequencing.

Landauer, T. K., & Ainslie, K. L. (1975). Exams and use as preservatives of course acquired knowledge.
Journal of Educational Research, 69, 99-104.

Liber, O. (2005). Learning objects: Conditions for viability. Journal of Computer Assisted Learning, 21,
366-373.

Liu, J., Huang, B., & Chao, M. (2005). The design of learning object authoring tool based on SCORM.
Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies. Re-
trieved August 30, 2007 from
http://ieeexplore.ieee.org/iel5/10084/32317/01508815.pdf?arnumber=1508815.

Kapp, K. M. (2003). How long does it take? Estimation methods for developing e-learning. ASTD Learning
Circuits. Retrieved November 6, 2007 from http://www.learningcircuits.org/2003/jul2003/kapp.htm

Kaur, A., Dunning, J., Bhattacharya, S., & Ahmed, A. (2005). Re-purposeable learning objects based on
teaching and learning styles. Encyclopedia of Multimedia and Technology. London, Melbourne, New
York: Idea Group Publishing. Retrieved October 20, 2007 from

www.indiana.edu/~geosci/people/faculty/dunning/pdf/encyc.pdf
Korson, T., & McGregor, J. D. (1990). Understanding object-oriented: A unifying paradigm. Communica-
tions of the ACM, 33(9), 40-60.

McGreal, R. (2004). Learning objects: A practical definition. International Journal of Instructional Tech-
nology and Distance Learning, 1(9), 21-32.

Merrill, M. D. (1999). Instructional transaction theory (ITT): Instructional design based on knowledge ob-
jects. In C. M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instruc-
tional theory (pp. 397- 424). Mahwah: Lawrence Erlbaum Associates.

Merrill, M. D. (2000). Knowledge objects and mental models. In D. A. Wiley (Ed.), The instructional use
of learning objects. Retrieved August 21, 2007 from http://reusability.org/read/chapters/merrill.doc

Merrill, M. D., & ID2 Research Team. (1993). Instructional transaction theory: Knowledge Relationships
among processes, entities, and activities. Educational Technology. XXXIII(4), 5.

Mogharreban, N., & Guggenheim, D. (2008). A new paradigm for reusability of learning objects. Infer-
disciplinary Journal of E-Learning and Learning Objects, 4, 303-315. Retrieved from
http://ijello.org/Volume4/IJELLOv4p303-315Mogh477.pdf

Mustaro, P. N., & Silviera, I. F. (2006). Learning objects: Adaptive retrieval through learning styles. Inter-
disciplinary Journal of Knowledge and Learning Objects, 2, 35-46. Retrieved from
http://ijello.org/Volume2/v2p035-046Mustaro.pdf

Pancake, C. M. (1995). The promise and the cost of object technology — A five year forecast. Communica-
tions of the ACM, 38(10).

Polsani, P. R. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4), Ar-
ticle No. 164. Retrieved August 21, 2007, from http://jodi.tamu.edu/Articles/v03/i04/Polsani

Santally, M. L., & Senteni, A. (2005). A learning object approach to personalized web-based instruction.
European Journal of Distance Learning (EuroDL). Retrieved October 20, 2007 from
http://www.eurodl.org/materials/contrib/2005/Santally.htm

W3C. (2002) XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition). A Reformula-
tion of HTML 4 in XML 1.0. W3C Recommendation 26 January 2000, revised 1 August 2002. Re-
trieved October 20, 2007 from the World Wide Web at: http://www.w3.org/TR/xhtml1/

79

http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html�
http://ieeexplore.ieee.org/iel5/10084/32317/01508815.pdf?arnumber=1508815�
http://www.learningcircuits.org/2003/jul2003/kapp.htm�
http://www.indiana.edu/~geosci/people/faculty/dunning/pdf/encyc.pdf�
http://reusability.org/read/chapters/merrill.doc�
http://ijello.org/Volume4/IJELLOv4p303-315Mogh477.pdf�
http://ijello.org/Volume2/v2p035-046Mustaro.pdf�
http://jodi.tamu.edu/Articles/v03/i04/Polsani�
http://www.eurodl.org/materials/contrib/2005/Santally.htm�
http://www.w3.org/TR/xhtml1/�

Regaining the ‘Object’ of Learning Objects

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for web-based instruction.
International Journal of Artificial Intelligence in Education, 12,351-384.

Wiley, D. A. (1999). The Post-LEGO learning object. Retrieved September 6, 2007, from
http://wiley.byu.edu/post-lego/post-lego.pdf

Wiley, D. A. (2000). Connecting learning objects to instructional design theory: A definition, a metaphor,
and a taxonomy. In D. A. Wiley (Ed.), The instructional use of learning objects. Retrieved August 21,
2007, from http://reusability.org/read/chapters/wiley.doc.

Wiley, D., & Edwards, E. (2002). Online self-organizing social systems: The decentralized future of online
learning. Retrieved October 25, 2007 from http://wiley.ed.usu.edu/docs/ososs.pdf.

Wolf, C. (2002). iWeaver: Towards an interactive web-based adaptive learning environment to address
individual learning styles. Furopean Journal of Distance Learning (EuroDL). Retrieved October 10,
2007 from http://www.eurodl.org/materials/contrib/2002/2HTML/iWeaver

Biographies
Dr. Namdar Mogharreban received his PhD in Computer
Based Education in 1989. Since then he has been involved in
various aspects of teaching and training in information systems
and technology. Currently he is an associate professor at South-
ern Illinois University in the Department of Computer Science.
The focus of his research has been end user computing, comput-
ing in special population, intelligent tutoring systems and data
analysis. He teaches courses in Information Systems Design,
Human and Computer Interface as well as programming lan-
guages.

80

http://wiley.byu.edu/post-lego/post-lego.pdf�
http://reusability.org/read/chapters/wiley.doc�
http://wiley.ed.usu.edu/docs/ososs.pdf�
http://www.eurodl.org/materials/contrib/2002/2HTML/iWeaver�

Mogharreban & Guggenheim

David Guggenheim. Prior to returning to a university setting
and engaging in learning objects research, Dave Guggenheim
was responsible for overall product vision, strategic product
planning, market-driven product development, and the resulting
launch and sale of a broad range of software products directed
toward the telecommunications industry. Most recently, as vice
president of global marketing and product management, he over-
saw worldwide marketing and product management functions for
Ushacomm, an Indian provider of operations support systems,
with headquarters in London and Kolkata. Dave has over 20
years of industry experience, including achievements in product development, product
marketing, market entry, and global software product launches, which have resulted in
awards for technical innovation and overall product excellence.

81

	Regaining the ‘Object’ of Learning Objects
	Namdar Mogharreban and Dave GuggenheimSouthern Illinois University, Carbondale, Illinois, USA
	namdar@cs.siu.edu; dguggen@siu.edu

	Abstract
	Introduction
	A Return to Object Orientation
	The Theme Module (Class, Instantiation, and Inheritance)
	The Styler (Overriding, Polymorphism, and Encapsulation)
	The Learner Module (User-centric Polymorphism)
	Evaluation (Overloading, Overriding, Polymorphism)

	Conclusions
	References
	Biographies

