
Proceedings of the Informing Science & IT Education Conference (InSITE) 2008

Web Based Data Capture for Clinical Research

Stephen Smith
Datapoint Technologies,

Erwinna, PA, USA

stephen@datapoint-echnologies.com

Samuel Sambasivam
Computer Science

Department, Azusa Pacific
University, Azusa, CA, USA

ssambasivam@apu.edu

Abstract
Electronic Data Capture (EDC) is increasingly being used in the pharmaceutical, biotech and medical
device industries to gather research data worldwide from doctors, hospitals and universities participat-
ing in clinical trials. In this highly regulated environment, all systems and software must be thor-
oughly tested and validated, a task that is burdensome in terms of time and cost.

Starting with database structures that are designed to be copied easily, this paper proposes a simple
framework that allows for rapid development and minimal testing. The framework includes tools for
building modules, for copying modules from one trial to the next, and tools to validate that the mod-
ules are the same as modules that have been fully tested previously. A proof-of-concept prototype has
been built to demonstrate certain tools and techniques that can be used when designing and building a
simplified EDC interface.

Keywords: electonic data capture, object orientation, prototyping, clinical research

Introduction
Electronic Data Capture (EDC) is increasingly being used in the pharmaceutical, biotechnology and
medical device industries to gather research data worldwide from doctors, hospitals and universities
participating in clinical trials.

“Over the past fifteen to twenty years, many different forms of site-based capture of clinical trial data
have been developed. Data collection technology that has been applied to improve clinical trial data
collection is generally referred to as electronic data capture (EDC)” (Kush et al., 2003)

The Clinical Data Interchange Standards Consortium (CDISC) defines an electronic clinical trial
(eCT) as:

“Clinical Trial in which primarily electronic processes are used to plan, collect (acquire), access,
exchange and archive data required for
conduct, management, analysis and report-
ing of the trial” (CDISC, 2006).

This paper hopes to explore the technolo-
gies, designs and best practices for web-
based data capture of clinical research data.
The project proposes a lightweight frame-
work for deploying EDC-based clinical tri-
als quickly by leveraging the use of pre-
validated and reliable "modules".

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Web Based Data Capture

48

Starting with database structures that are designed to be copied, a simple, less fully- featured ap-
proach should allow for rapid development and minimal testing. It is recognized that in this scenario,
much of the intelligence for managing and cleaning the data would be missing but could be built in
after the go-live date. I suggest that this is a more efficient and logical approach when, in most cases,
sponsors of clinical trials want to start collecting data as soon as possible after the study design has
been finalized.

Scope
This project is primarily a software design and engineering effort, a framework has been built for
constructing web-based data collection forms. This building tool itself is web-based, the framework
includes tools for building modules, for copying modules from one trial to the next, and tools to vali-
date that the modules are the same (or not) as modules that have been fully tested previously. In this
way, validation of the components used for each trial will involve identifying and testing only the
delta from previously tested modules. This proof-of-concept prototype was built to demonstrate cer-
tain tools and techniques that can be used when designing and building a simplified EDC interface.

In addition to the building tool, the system for serving up the data entry forms was constructed to
show how clinical research forms, or CRFs, might look on the web. Both the building tool and the
data entry system is available on the publicly available World Wide Web so that interested parties
will effectively be able to build a clinical trial and then access the data entry forms themselves.

The whole system will contain only the level of detail and functionality required to demonstrate the
use of certain design techniques. It is acknowledged that in real life, a system for capturing clinical
data would necessarily have to include other functionality including (but not limited to) features such
as a security sub-system, multiple role capabilities, reporting and export features etc. While this func-
tionality could be added, the intent was not to build a fully featured, “ready to use, out of the box”
EDC system.

Approach
While the use of Open Source software tools is often controversial, the technologies used for this pro-
totype were PHP and MySQL. Within that technology framework, an object-oriented design and
programming approach was taken. While not strictly an Object Oriented language like Java, C# or
Smalltalk – PHP version 5 does support OO constructs and methods.

Key to the design is the encapsulation of all Trial elements within database structures including edit-
check logic to be applied to data elements. This “metadata” approach allows for simple data copy
and compare processes that are important tools for building reusable modules. The Trial elements
mentioned here refer to a hierarchy of objects which together go to make up the Data Capture aspects
of a Clinical trial. They are discussed in greater detail in a later section, but briefly they are as shown
in Figure 1.

Smith & Sambasivam

49

Figure 1 Hierarchy of Trial Objects

Outcome
The Study Build tool is available for use on the public Internet; the URL is
http://208.131.145.200/studymaster/main.php

Functionality includes full ability to list, add, edit, copy and delete all trial components.

After building or modifying a trial, the results can be viewed at the following link:
http://208.131.145.200/studymaster/studies/login.php

A user with the following credentials has been set up to access the studies of the “Bristol Myer” spon-
sor:

Username: steve
Password: dtg

Industry Literature
According to a report from the Tufts Center for the Study of Drug Development, it takes US drug
companies typically between 10 to 15 years from drug discovery to approval from the FDA to market
the drug. Also, for every 5 drugs that enter the clinical testing phase, only one will finally be ap-
proved for patient use (Hewitt, 2001). Clinical testing proceeds through a series of phases defined by
the FDA:

Phase 1 – studies are conducted on a small number of healthy volunteers (between 20 and 80) to ex-
amine how a drug is metabolized by the human body. Dosing level decisions are made based upon
the results, testing will not proceed to the next phase if any serious adverse side effects are discov-
ered.

Phase 2 – conducted on several hundred subjects who have a disease or condition to assess the effi-
cacy of the drug. If the drug proves to be effective and any identified risks are considered to be ac-
ceptable, the drug moves on to phase 3.

Phase 3 – the drug is administered to thousands of subjects with a disease, typically in a double-
blinded fashion (both the patient and the doctor do not know whether the drug being used contains the

Web Based Data Capture

50

active ingredient or placebo). Often the drug is tested against existing therapies to statistically prove
or disprove superior efficacy. The larger patient populations will often uncover less common adverse
side effects (FDA, 2006).

Historically, data collected for these trials have been paper-based with doctors recording information
on paper case report forms (CRF’s) and sending them to the drug company where the information is
analyzed.

“The paper-based approach to clinical trial data collection, exchange and entry presents multiple
opportunities for errors and delays” (IBM, 2007).

Over the past ten to fifteen years, several remote and electronic data capture technologies have been
used to exchange this data, significantly reducing the time to data review. In addition, edit check
logic can be applied at the point of data entry to catch invalid, non-conformant or conflicting data re-
sulting in cleaner data earlier. There is also a potential for improvement in safety with adverse events
being identified faster.

“EDC appears to be catching on, not because it is now possible, but because a small number of spon-
sors have shown that clinical development can be accelerated while actually reducing cost” (Collins,
2007).

Industry analysts predict a sharp increase in the use of these technologies over the next few years.
One report from IDC Health Industry Insights predicts that 45% of all trials will be conducted using
EDC by the end of 2007, up from 24% at the end of 2005:-

“The life science industry is undergoing a fundamental shift away from batch-processes where clini-
cal data recorded on paper can be locked up for weeks. EDC enables life science companies to con-
duct adaptive clinical trials that operate in real-time” (Connor, 2007).

Central to each clinical study is a document called the “Protocol” designed with clinical and statistical
aims in mind. From the Clinical Data Interchange Standards Consortium (CDISC) glossary of terms,
the protocol is:

“…a document that describes the objective(s), design, methodology, statistical considerations, and
organization of a trial” (CDISC, 2006).

There is a critical time period after protocol finalization and before data-entry is enabled during which
the technical components of an EDC system are designed, configured and tested. The goal of this
project was to propose techniques to reduce this period through the use of easily reusable, standard
components.

Project Documentation
Requirements were broken down into the Study Build system and the Data Entry system.

Study Build
In this simplified version of EDC, a study builder will need to list, add, modify, copy, or delete a
number of study components:-

• Sponsor – any company or institution conducting clinical trials. This could include pharmaceuti-
cal or biotech companies, medical device manufacturers or educational institutions.

• Study – describes the studies that are conducted by a sponsor

• Event – analogous to a patient visit at which time clinical information is collected. However it
could also include non-scheduled events such as an adverse experience.

Smith & Sambasivam

51

• Form – similar to a paper case report form, each form is a “module” of information that is col-
lected at an event (vital signs, ECG, blood chemistry for example).

• Group – a logical group of questions on a form, can be useful for describing repeating groups.

• Question – a single piece of information collected on a form.

• Edit check – logic applied to a question as a “sanity check”, used as a data quality aid.

• Parameter – an edit check may contain one or more parameters describing the constraints that will
be applied to a question’s data.

The Use Cases for viewing, manipulating or copying these components are as shown in Figure 2.

Figure 2 Study build use cases

Key to the concept of reusability is that a study builder will have the ability to copy any component,
whether it is a form, an edit check or an entire study.

Data Collection
Run-time use cases based upon a study sponsor’s particular work stream processes could typically
include those shown in Figure 3.

Web Based Data Capture

52

Figure 3 Run time use cases

As previously mentioned the functionality of this prototype is limited but demonstrates:

Web-based forms for entering clinical data automatically generated from metadata archi-
tected in the study build process.

System generated queries based upon automatic metadata-defined edit checks.

The ability to copy study components from one trial to the next.

Using this metadata approach, validation of new trials can include simple data comparison proce-
dures.

Architecture
Both the Study Build tool and the Data Collection tool are web-based. The build tool constructs the
metadata that defines the structure of each study, the metadata drives the forms and edit check logic
of the Data Collection system.

Study Build Tool
The hierarchy of the primary objects for the study build tool are as shown in Figure 4.

Smith & Sambasivam

53

Figure 4 Study Build Object Hierarchy

All of these objects inherit from a single “Base” parent that allows for a single UI for each of the
tool’s use cases.

The logic for each of these functions are implemented in the parent class; for example the following
shows stubs for the constructor and copy methods of the “Base” parent class:-

class Base

/* Constructor */
function TrialComponent ($classID=0, $className="" , $classKey="")
{
 // constructor code…
}

/* Copy function */

function copy_instance ()
{
 // copy this
 // copy children
}

Each of the specific trial components inherit from this base object and will be intelligent enough to
know about the objects above and below it in the hierarchy. As an example, the Forms object might
look like:-

Web Based Data Capture

54

 Class Forms extends Base
{
var $keyName="formID";
var $childrenName="Groups";
var $childKeyName="groupID";
var $parentKeyName = "eventID";
var $parentName = "Events";
}

Erich Gamma in his book “Design Patterns” describes this form of inheritance as “white box reuse”
referring to the visibility of the internals of the parent class (Gamma, 1995).

The screenshot in Figure 5 is the list UI for the Form component:-

Figure 5 List Forms (list.php)

The same UI is used for all other Trial components, for example Sponsors and Studies as shown in
Figures 6 and 7.

Smith & Sambasivam

55

Figure 6 List Sponsors (list.php)

Figure 7 List Studies (list.php)

A Study Builder can navigate down through the object hierarchy by clicking on the hyperlinked ob-
ject name in the list. For example, clicking on a study name will bring up a list of associated events,
clicking on an event name will bring up a list of forms.

From any level, a new component can be added by clicking the Add button. Through the “fieldques-
tions” metadata table, the Add form is smart enough to know what fields to paint for any given object.
In the example shown in Figure 8, this new Demographics form once submitted will be added to the
parent Event:-

Web Based Data Capture

56

Figure 8 Add Form

Also from the List UI, any row can be selected by clicking on one of the radio buttons in the first col-
umn, then Edit, Delete or Copy can be chosen. Edit will bring up a UI very similar to the populated
Add form. Information for any of the objects can be modified and submitted through this form.

Hitting the Delete button once a row is selected will bring up the warning screen shown in Figure 9.

Figure 9 Delete screen

Copy is the powerful feature that allows a Study Builder to select an object at any level and copy it
along with all its children objects to a new sibling. As an example shown in Figure 10 – if an event
called Visit 4 was identical to a subsequent visit 5, the row can be selected and a sibling created and
renamed.

Smith & Sambasivam

57

Figure 10 Copy functionality

This feature guarantees that the object and all children in the branch below it are copied to the sibling.
The recursive code that accomplishes this is implemented in two functions defined in the parent
“Base” class – copy_instance and the function that it calls copyChildRows:-

function copy_instance ($parentKeyValue=0, $parentKey="")
{
/* Copy the row */

$query = "select * from " . $this->name . " where " . $this->key . "=" . $this->id;
$result = $mysqli->query($query) or die(mysql_error());
$row = $result->fetch_array(MYSQLI_BOTH);

…..A lot of other code, see Appendix A for full list

/* Copy children rows */

if ($this->copyChildRows($mysqli))
 { return TRUE;}
else
 { return FALSE;}
}

Web Based Data Capture

58

The function copyChildRows then recursively calls copy_instance for each of its children:-

function copyChildRows($mysqli)
{ foreach ($this->children as $childKey)
 {
 $obj = new $this->childrenName($childKey,$this->childrenName,$this-
>childKeyName);
 if (!$obj->copy_instance($key,$this->keyName))
 { return FALSE;}
}

As far as edit checks to validate the data that is entered through the Data Collection Tool, the types of
check shown in Figure 11 have been implemented for the sake of demonstration:-

Figure 11 Edit Checks

A field can be defined as “Required”, meaning that leaving it blank would fire a discrepancy mes-
sage. “Range” checks that it is between 2 numbers requiring 2 child parameters. “GT”, “GE”, “LT”
and “LE” are simple numeric comparisons against a single parameter. “After” is a date comparison –
in the example shown in Figure 11, a date of birth field is checked to ensure that a patient was born
after 1950. This edit check and others will be demonstrated through the Data Collection Tool.

Smith & Sambasivam

59

Figure 12 Edit Checks on Systolic Blood Pressure field

The Figure 12 shows that three edit checks have been set up for a field designed to collect systolic
blood pressure. The field is required, and it must be between 50 and 150. It will be shown how these
edit checks appear in the Data Collection tool.

Data Collection Tool
The run-time Data Collection system is driven by the metadata entered through the build process.
The major objects of this Data Collection tool are shown in Figure 13.

Figure 13 Data Collection Object Hierarchy

Web Based Data Capture

60

• Studies – describes the studies that are conducted by a sponsor

• Sites – a location where clinical data is collected and recorded, it can be a doctor’s office, a hospi-
tal or a university department.

• Users – anyone who records or accesses a study’s clinical information (doctor, study coordinator,
clinical research associate, clinical data manager).

• Datapoints – the actual data that is collected, only meaningful in the context of the metadata that
describes it.

For security purposes, all users of the Data Collection tool must logon with a unique username and
password (see Figure 14).

Figure 14 Login screen

For the sake of simplicity it is assumed that each user defined in the Data Collection system belongs
to a single sponsor. After logging on, the user will see a list of trials that have been defined for the
user’s sponsor as shown in Figure 15.

Smith & Sambasivam

61

Figure 15 Study List

After selecting the study by clicking on the hyperlink, the list of sites for that study appears (Figure
16).

Figure 16 Site List

After selecting the site to be worked on, a list of patients is displayed (Figure 17).

Web Based Data Capture

62

Figure 17 Patient List

The user at this point has the option of selecting an existing patient or entering the initials of a new
patient. If the patient already existed, the complete trial structure of visits, forms and fields will have
already been created and the user is taken directly to the patient trial tree. If on the other hand a pa-
tient is being entered for the first time, the structure must be created. The code that accomplishes this
is:-

/* create new patient record */
 $query = "insert into patients (initials, siteID) values ('" . $inits . "'," . $site . ")" ;
 if (!$result = $mysqli->query($query))
 {
 printf("Insert failed: %s\n", mysqli_connect_error());
 exit();
 }
 $obj = $result->fetch_object();
 $pt = new Patient($obj->patientID, $study);

A row is inserted into the actual “patients” table, then a new patient object is instantiated. The patient
class constructor method instantiates an event for each visit defined in metadata by the Build Tool for
this trial:-

 /* return all scheduled events for the study */

 $query = "select * from events where eventScheduled = 'Yes' and studyID =" . $study . "
order by eventSequence";

 if ($result = $mysqli->query($query))
 {
 while ($obj = $result->fetch_object())
 {
 $event = new Event($obj->eventID, $study, $ptID, 0);
 }
 }

Smith & Sambasivam

63

Each event created will instantiate all forms defined for that visit, and each form will instantiate its
fields. In this way, the complete trial structure is navigated and created. Persistence of this informa-
tion is performed by the Base object from which all trial objects inherit. The code below externalizes
each object by writing a record to the “patientinstances” table:-

 function Base ($ID=0, $study="" , $pt="" ,$parent=0)
 {
 $values = $study . "," . $pt . ",'" . $this->instanceType . "'," . $ID . ",'Yes'," . $parent;
 $query = "insert into patientinstances (studyID, ptID, instanceType, ID, scheduled,
parentID) values (" . $values . ")" ;
 $result = $mysqli->query($query);
 $this->instantiateChildren ($ID, $study, $pt, $obj->instanceID, $mysqli);
 $mysqli->close();
 }

Whether a new patient is created or an existing patient is reopened, the patient’s trial hierarchy will be
displayed (Figure 18).

Figure 18 Patient Trial Hierarchy

Nodes on the tree can be expanded and collapsed until the individual case report forms can be seen
(Demographics, Vital Signs, etc.). Clicking on a form hyperlink invokes the form.php script with a
parameter of node ID that is used as a key to look up the row in the patientinstances table. The code
then renders all fields for that form and the data associated with it. When a form is entered for the
first time, the fields will appear empty (Figure 19).

Web Based Data Capture

64

Figure 19 Empty Vital Signs Form

As the “Date of Exam” and “Systolic” fields have been set up with a “Required” edit check through
the Study Build tool, submitting the form without any further data entry would result in the form be-
ing repainted with the following discrepancy text in red (Figure 20).

Figure 20 Required discrepancies

Instead if data is entered correctly and submitted, the user is returned to the patient’s study tree struc-
ture. Figure 21 shows the “GT” or greater than edit check that was set up on the Systolic field.

Smith & Sambasivam

65

Figure 21 GT edit check

Similarly, Figure 22 shows how the date check that was set up on the Date of Birth field appears on
the Demographics forms.

Figure 22 Date edit check

In this way, data entered can be preliminarily validated by using simple database-driven edit checks.
As all form metadata and logic is encapsulated in simple data structures, simple procedures for copy-
ing and comparing trial objects can be employed to assist in ensuring quality when building and de-
ploying trials.

Conclusion
A key design goal of the project has been to have a trial completely described within data structures
without additional code which will need to be validated each time a trial is copied or built from
scratch. When this is done, it should be fairly simple to build in procedures that compare trial com-

Web Based Data Capture

66

ponents with those that have been previously tested. These procedures could even be kept within the
database in the form of stored procedures. As an example, an SP to compare forms might look like:-

DELIMITER $$

-- ---

DROP PROCEDURE IF EXISTS `studymaster`.`compareforms` $$

CREATE DEFINER=`root`@`localhost` PROCEDURE `compareforms`(tbl1 int, tbl2 int, OUT msg
varchar(80))

BEGIN

DECLARE cnt int;

select count(t1.formID) into cnt from (select * from forms where formID = tbl1) t1,

 (select * from forms where formID = tbl2) t2

where t1.formName = t2.formName and

 t1.formDescription = t2.formDescription and

 t1.formHelp = t2.formHelp and

 t1.formSequence = t2.formSequence

group by t1.formID;

if cnt > 0 then

/* you could call a lower-level component compare procedure in here */

 set msg = 'They are the same';

else

 set msg = 'They are different';

end if;

END $$

-- ---

DELIMITER ;

Calling this stored procedure with 2 form ID’s from the command line would look like the follow-
ing:-

Mysql>call compareforms(104,106,@msg);

Mysql>select @msg

+------------------------------+

| @msg |

+------------------------------+

| They are the same |

+------------------------------+

1 row in set (0.00 seconds)

Smith & Sambasivam

67

The procedure could itself call compare procedures for the lower level component (group) which
would call a compare procedure for all fields, and so on.

In this way, it is hoped that quality is automatically built in to trial components that have been copied
and previously tested. This should result in a decrease in the time, effort and expense of the technical
design and configuration of each trial in a field where this activity is often on the critical path towards
the drug approval process.

References
CDISC. (2006). Clinical research glossary. Retrieved 2007 March 15 from

http://cdisc.org/glossary/CDISCGlossaryV5.pdf

Collins, S. (2007). Next generation phamaceutical – The need for speed. Retrieved 2007 May 5 from
http://www.ngpharma.com/pastissue/article.asp?art=25516&issue=143

Connor, C. (2007). EDC poised to disrupt life sciences industry. Retrieved 2007 May 5 from
http://www.healthindustry-insights.com/HII/getdoc.jsp?containerId=prUS20671907

Deitel, H., & Deitel, P. (2003). Java – How to program. ISBN 0-13-183661-7.

Deitel, H., Deitel, P., & Goldberg, A. (2004). Internet & World Wide Web – How to program. ISBN 0-13-
145091-3.

Eclipse. (2007) Eclipse – An open development platform. Retrieved 2007 April 22 from http://www.eclipse.org/

FDA. (2006). Inside clinical trials: Testing medical products in people. Retrieved 2007 May 2 from
http://www.fda.gov/fdac/special/testtubetopatient/trials.html

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns. ISBN 0-201-63361-2.

Hewitt, P. (2001). How new drugs move through the development and approval process. Retrieved 2007 May 2
from http://csdd.tufts.edu/NewsEvents/RecentNews.asp?newsid=4

IBM. (2007). EDC for life sciences. Retrieved 2007 May 5 from http://www-
03.ibm.com/industries/healthcare/doc/content/solution/975043105.html

Kush, R., Bleicher, P., Kubick, W., Kush, S., Marks, R., Raymond, S., & Tardiff, B. (2003). eClinical trials –
Planning and implementation. Thomson Centerwatch. ISBN 1-930624-28-X.

Lee, J., & Ware, B. (2003). Open source web development with LAMP. ISBN 0-201-77061-X.

Mon.itor.us (2007) Linux versus Windows. Retrieved 2007 April 2 from
http://www.cs.cornell.edu/courses/cs513/2002fa/opt1.soln.it33.pdf

MySQL AB. (2007). MySQL. Retrieved 2007 April 22 from http://mysql.com/

Robinson, S., Nagel, C., Watson, K., Glynn, J. Skinner, M., & Evjen, B. (2001). Professional C#. ISBN
1861004990.

Sun. (2007). Sun Java Studio Enterprise at a glance. Retrieved 2007 April 22 from
http://developers.sun.com/jsenterprise/index.jsp

Tien, I. (2002) Open source and assurance. Cornell University. Retrieved 2007 April 2 from
http://www.cs.cornell.edu/courses/cs513/2002fa/opt1.soln.it33.pdf

Xinox Software. (2007). JCreator. Retrieved 2007 April 22 from http://jcreator.com/

Web Based Data Capture

68

Biographies
Stephen Smith has been involved in technology consulting for over 20
years, primarily in the Pharmaceutical and Financial industries. Originally
from the UK, he now lives in the Eastern Pennsylvania, USA

Dr. Samuel Sambasivam is the chairman of the Department of Computer
Science of Azusa Pacific University. Professor Sambasivam has done ex-
tensive research, publications, and presentations in both computer science
and mathematics. His research interests include optimization methods, ex-
pert systems, Fuzzy Logic, client/server, Databases, and genetic algo-
rithms. He has taught computer science and mathematics courses for over
25 years. Professor Sambasivam has run the regional Association for Com-
puting Machinery (ACM) Programming Contest for six years. He has de-
veloped and introduced several new courses for computer science majors.

Professor Sambasivam teaches Database Management Systems, Information Structures and Algo-
rithm Design, Microcomputer Programming with C++, Discrete Structures, Client/Server Applica-
tions, Advanced Database Applications, Applied Artificial Intelligence, JAVA and others courses.
Professor Sambasivam coordinates the Client/Server Technology emphasis for the Department of
Computer Science at Azusa Pacific University.

