
Issues in Informing Science and Information Technol ogy Volume 5, 2008

Using Roles of Variables to Enhance Novice's
Debugging Work

Mikko-Jussi Laakso
Turku Centre for Computer
Science and University of

Turku, Turku, Finland
milaak@utu.fi

Lauri Malmi
Helsinki University of

Technology, Espoo, Finland

lauri.malmi@tkk.fi

Ari Korhonen
Helsinki University of

Technology, Espoo, Finland

ari.korhonen@tkk.fi

Teemu Rajala
Turku Centre for Computer
Science and University of

Turku, Turku, Finland

temira@utu.fi

Erkki Kaila
University of Turku, Turku,

Finland

ertaka@utu.fi

Tapio Salakoski
Turku Centre for Computer
Science and University of

Turku, Turku, Finland
sala@utu.fi

Abstract
Abstract Debugging skill is an essential part of the programming skills. It is also highly related
with program comprehension skills. In this paper we present a novel tool, called ViLLE, which
supports learning debugging by promoting students' understanding of target program. ViLLE
combines visual debugging features with the support for roles of variables. These roles promote
activating schemas of variable use in programs. In addit ion, ViLLE supports automatic presenta-
t ion of the target program in different programming languages, even in pseudo code or with tex-
tual explanations. This, in turn, helps in building more general and abstract understanding of pro-
gram structures and their relation to problem domain concepts. The key features of the tool are

presented, followed by a discussion of
how the tool should be used in pro-
gramming education.

Introduction
Programming is a complex cognit ive
skill. Most students face a lot of new
challenges in learning the basic skills
required to design and implement even
small programs. Several extensive inter-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Using Roles of Variables

282

national studies have confirmed this, not to speak of results that have been reported in dozens of
studies – mostly of single courses – presented in computing education conferences. For example,
Valentine (2004) surveyed and classified total of 444 papers published in SIGCSE Technical
Symposium conferences in years 1984-2003, all of which were related to teaching introductory
programming, including different teaching methods, tools, experiments, new kinds of assign-
ments, etc. Extensive studies include the McCracken et al. (2001) working group research with
216 students in 4 universit ies. The results indicate an alarming number of failures in simple pro-
grams the students were requested to code. A few years later another study was carried out by
Lister et al. (2004). In this case, the topic of investigation was the students’ understanding of exe-
cution of simple programs. The results of 556 students from 12 institut ions indicate that the stu-
dents had severe problems understanding even the smallest of the code fragments. Thus, it seems
that first and second year students have serious shortcomings in both reading and writ ing skills of
programs. It is therefore not surprising that Tenenberg et al. (2005) found out in their study –
concerning 21 institut ions and 300 students – that students cannot design even simple programs
after their introductory courses.

What makes learning to program so complex, and how should we tackle this problem in educa-
tion? Obviously much of the complexity follows from the fact that programming includes many
different types of tasks, including problem solving, conceptual analysis of problem domain, pro-
gram design, detailed temporal t ime splitt ing of actions, developing and combining algorithms
and data structures, understanding language issues – both syntax and semantics, writ ing program
code, testing and finally debugging it . Mastering all of these requires a lot of training and experi-
ence, which cannot be acquired during a single introductory course. Moreover, programming re-
quires thinking with abstract concepts, which is not easy for all novices.

du Boulay (1989) classified some of these challenges by identifying five different subfields of
programming skill that a novice student has to learn to work effectively. First ly, he must gain a
general understanding in what programming is about and what computers can do. Secondly, he
needs to understand the principles of how programs execute within a computer. du Boulay used a
term notional machine, which means a general model of computer internals and program execu-
tion – including how memory is used for storing variables, how statements and procedures are
executed etc. Thirdly, computer programs are written using programming languages, art ificial
formal notations. Each of these has its own syntax and semantics that must be understood.
Fourthly, learning programming means acquiring a large set of schemas of how things – such as
scanning an array of data to identify information, building a linked list or reading data from input
source – are typically implemented. Knowledge of such schemas reduces the cognit ive complex-
ity of reading and writ ing programs, as the programmer can focus on composing larger chunks of
code from smaller ones instead of thinking all the details simultaneously. Finally, programming
requires practical skill – programmers need to know (and be able to use) special tools such as edi-
tors, compilers, profilers and debuggers for coding, compiling, testing and debugging programs.

Programming education has tradit ionally put a lot of effort in teaching the syntax of part icular
language. However, when recalling du Boulay's five subfields of programming skill, we note that
issues concerning syntax mostly cover the last three areas, whereas the second one, understanding
program execution, may easily be somewhat overlooked, or is at least less emphasized. However,
it should be seen as an essential part in the programming skills.

In this paper, our focus is on the relation of program comprehension and debugging. A seemingly
obvious conception is that good programming skills should always include good debugging skills.
However, Ahmadzadeh, Elliman, and Higgins (2005) demonstrated that this relation is not that
obvious. In their study, including almost 200 students, they found that less than 40 percent of stu-
dents gett ing good marks on a programming course were able to identify and correct all errors in
a relatively simple program in a controlled situation. This group was surprisingly small. Students

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

283

who performed poorly on the course got even worse results. Thus, we conclude that there still
seems to be a posit ive correlation with good debugging skills and good programming skills.

We discuss how to improve students' debugging practices with better program comprehension.
Our assumption is that this, in turn, will improve their general performance in programming
tasks. The debugging process inherently includes applying a mental model of program execution,
i.e., the ability to follow execution of code, make predictions on variable values and observe their
actual values to identify possible discrepancies. This requires a fair understanding on how the
program executes on the notional machine, and especially how variable values are changed dur-
ing the program execution. However, typical debuggers track only snapshots of variable values
during program execution. They do not support program comprehension by identifying and em-
phasizing different schemas or by demonstrating the variable use. We are specifically interested
in schemas called roles of variables, first presented by Sajaniemi (2002). The key idea is that al-
most all variables conform to one of the few identified behavioural patterns. For example, one
variable may act as a counter, thus having the role of a stepper, and another stores a sum of calcu-
lations, thus being a gatherer. Or a value that is being looked for from a wider collection of data
is stored in a most-wanted-holder. Thus, roles form an abstract form of variable behaviour, which
describes program execution from the data point of view, whereas control structures and func-
t ions describe the program from the execution point of view. Thus, roles of variables identify
valuable extra information of the program code to enhance the understanding of program behav-
iour. This information supports debugging by forecasting the expected changes in variable values
during the program execution, making it easier to notice mismatch between the expected value
and observed value. This way identifying faulty behaviour becomes easier.

Unfortunately, identifying roles of variables and following program execution are not easy tasks
for novices. Therefore proper tools are required to illustrate both variable behaviour and control
flow. A whole field of research, software visualization (For an overview, see for example,
(Stasko, Domingue, Brown, & Price, 1998) has concentrated on examining and demonstrating
program code, its structure, and the execution of code. Its two important subfields are program
visualization, in which the focus of activity is on illustrating the dynamic behaviour of actual pro-
gram code and variable values (see, for example, Jeliot (Moreno, Myller, Sutinen, & Ben-Ari,
2004), DDD (Zeller, 2001), jGrasp (Jain, James, Cross, Hendrix, & Barowski, 2006), and BlueJ
(Zeller, 2001), and algorithm animation where the focus is on the visualization of dynamic be-
haviour of more abstract concepts: data structures and algorithms (see, for example, Animal
(Rößling, Schüler, & Freisleben,, 2000), o JHAVE (Naps, Eagan, & Norton,, 2000), JAWAA
(Akingbade, Finley, Jackson, Patel, & Rodger, 2003), Samba (Stasko, 1997)). However, many
current tools, such as Jeliot, jGRASP, and Animal include features from both of these subfields.
Where the goal of program visualization is on illustrating the execution of the target program,
some tools have features better supporting the debugging process, such as proper control over the
execution (e.g. DDD, jGRASP, Retrovue (Callaway, 2002)). These tools can be called visual de-
buggers.

The focus of current program visualization and visual debugging tools is on illustrating and con-
trolling the dynamic behaviour of the target program in terms of control flow. Thus, these tools
are good for visualizing control execution, control structures, and function calls. Visual debug-
gers often illustrate data structures as well. However, few tools support good depictions of pro-
gram history, and history data of variable values, and effectively none support visualization of
roles. The only tool we are aware of, is PlanAni (see, e.g., Sajaniemi & Kuitt inen, 2003), which is
more a tool for demonstrating roles of variables than a visual debugger.

In this paper, we present a new tool ViLLE that integrates facilit ies both from visual debuggers
and the role analysis. Thus, the tool supports understanding programs in more versatile ways than

Using Roles of Variables

284

any previous tool that we know. We discuss the features available in ViLLE and how it can be
used in education.

In the next two sections, we present some research on program comprehension and roles of vari-
ables. In Section 4 we discuss debuggers and what is needed for efficient debugging. In Section 5,
we present ViLLE and in Section 6 we discuss the use of ViLLE in education. Finally, some con-
clusions are given.

Program Comprehension
Computer programs are complex objects, and their internal structure and working can be under-
stood from different points of view. One obvious view is to differentiate the syntax, semantics
and pragmatics of a program, i.e., what are its constituents, how do they work and what are they
used for in the target program. Another view could be to separate different levels of abstraction in
programs. For example, a debugger can operate on single statements and single variable values,
i.e., on a low level. A high level view could reveal the working of a whole software system giving
aggregate information of memory usage and object populations. There could be different levels
between these, such as method level, class level or architectural level descriptions of program
structure and behaviour (Pacione, 2004). Shneiderman and Myers (1979) present a model of syn-
tactic / semantic interaction. Where syntactic information is language dependent, semantic infor-
mation is more general. It is mult i-leveled, and the human understanding of a program is built by
recognizing the function of program components and fragments as chunks. These pieces are ag-
gregated until a description of the entire program is available.

Détienne discusses research of program comprehension in some detail in her book (Détienne,
2002). There are several theoretical approaches to explain how people understand code. First, the
functional approach is built on the hypothesis that understanding a program means activating and
instantiating knowledge schemas that present the generic knowledge a software expert possess.
Such schemas can be either programming schemas or problem schemas. Détienne describes their
significance, as follows: "The activity of understanding consists, in part, of activating schemas
stored in memory, using indexes extracted from program's code, and inferring certain information
start ing from the schemas invoked."

The structural approach, on the other hand, views understanding a program as constructing a net-
work of proposit ions, thus highlighting the importance of structural knowledge in understanding.
This structural knowledge can be of control structures, or functional parts of the program like In-
put, Calculate and Output. The dominating aspect is, however, the program structure.

The third approach, mental models, stresses that we dist inguish two different ways to understand
a program: the program model, which is about the program structure and the situational model,
which is related to the problem domain. Combining these two views is the key to understanding a
program. Pennington (1987) evaluated the validity of this approach within a study of how profes-
sional FORTRAN and COBOL programmers understood code. She gave them a code with a gen-
eral description what the code is about, but without any comments, and asked them to summarize
its behaviour, followed by implementing certain changes in the code. Pennington observed that
people who presented in their summaries both language level concepts and problem domain level
concepts performed clearly better than those who concentrated only on language level concepts or
problem domain concepts. She concluded that combining these two domains is essential for good
program comprehension.

Finally, Détienne mentions a fourth approach: seeing program comprehension as problem solv-
ing. Here the focus is in the information selection process when reading a program, because pro-
grams are not read sequentially. Instead, people constantly jump forwards and backwards when
reading code.

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

285

In this paper – as considering the activity of debugging – it seems evident that schemas related to
use of variables are important because an inherent part of debugging is tracking values of vari-
ables, and assert ing their correctness or fault iness. Thus we should emphasize such schemas in
the debugging process. The mental model approach, making the connection between language
level concepts and problem domain concepts, is important. A debugging tool should provide dif-
ferent views of the program, both low (language) level and high (pseudo code or even verbal de-
scriptions) level, to aid the user to create bindings between the program model and the situational
model.

Roles of Variables
Roles of variables are stereotypes of variable use in computer programs (Sajaniemi, 2002). The
basic idea behind roles of variables is to dist il expert programmers' tacit knowledge on variables
and their use. A role does not encapsulate a unique task in some specific program, but merely a
number of variables in many programs. Thus, a very small set of roles is enough to cover almost
all variables encountered in programs written by novice programmers.

In the following, we give a brief overview to roles of variables. In program code variable acts as
an identifier that can refer for example to a scalar value or an array. However, we encourage the
reader to visit the Roles of Variables Home Page (http://cs.joensuu.fi/ saja/var roles/) to read a
more comprehensive introduction to the role concept.

1. Fixed value is a variable which, after once init ialized with a proper value, does not get a
new one.

2. Stepper goes through a succession of values that are predictable and known in advance.

3. Most-Recent Holder is holding the latest value.

4. Most-Wanted Holder, on the other hand, is holding the most appropriate value encoun-
tered so far while examining a succession of unpredictable values.

5. Gatherer accumulates the effect of individual values.

6. Follower gets its new value based on an old value of some other variable.

7. One-Way-Flag has two possible values, its init ial value, and some other value that is
never changed anymore, if reached.

8. Temporary holds a value only for a very short t ime.

In addit ion, there are 3 other roles that are related to data structures.

9. Organizer stores data elements to be rearranged,

10. Container stores data elements to be added and removed, and

11. Walker traverses data structures.

Roles are cognit ive concepts, which mean that different persons may have different interpreta-
t ions of them. For example, a variable having the values from the sequence of Fibonacci numbers
may be interpreted to be a Stepper by a mathematician, but a Gatherer by a programmer that see it
summing up two Followers in each iteration. As long as this interpretation helps the programmer
to grasp or explain the idea behind the variable, and build a new 'chunk' of knowledge, it is good
for schema formation. While, expert programmers' (and instructors) have tacit knowledge on
variables and their use, novices lack this knowledge, and thus need ways to make it explicit .

Using Roles of Variables

286

Roles can be taught in introductory programming courses gradually as they appear in examples.
After this, roles can be used in program design, implementation, and debugging tasks all of which
require program comprehension skills.

Sajaniemi and Kuitt inen (2003) have studied program comprehension skills and they conclude
that students who are taught programming with roles of variables outperform other students. They
are not only able to describe the program behaviour better in terms of program summaries, but
they also attain better mental model of the programs. Such a schema formation is necessary in
order to be able to debug programs, as we are going to argue in the next section.

What is Debugging?
The ult imate goal of debugging process is to remove defects from computer programs (Chmiel &
Loui, 2004). More precisely, it is a process of locating the exact posit ion of the error and fixing it
after the existence of error is verified by means of testing (Vessey, 1986). In addit ion, this process
may include other tasks such as determining the cause of the error in order to fix it .

Debugging is often found and classified as a hard task to learn and master. This is due to its mul-
t ifaceted nature. Ducasse and Emde (1988) have presented a classification of debugging knowl-
edge sliced into seven categories: 1-2) knowledge of the intended program, and the actual pro-
gram, 3) understanding of the programming language, 4) general programming expertise, 5)
knowledge of the application domain, 6) knowledge of bugs, and 7) knowledge of debugging
methods. Even with a quick glance to this list, it can be said that for novices most of these topics
are unfamiliar and hard to grasp in the early phase of learning to program. Thus, it takes a lot of
effort from a novice programmer to debug even simple programs. This is evidently one reason
why novices find learning to program so t ime consuming and frustrating process (Johnson, 1990).

It can be said that the essential nature of debugging is testing hypotheses about what causes an
error, where to find it , and finally how to fix it . These hypotheses are derived from programmer's
mental model of the target program and its execution. In addit ion, novices are actively and con-
tinuously developing this mental model while gaining more experience of debugging and writ ing
programs.

Difficult ies in the debugging process are all about how to create relevant hypothesis and how to
test them. Experienced programmers can easily find simply errors and narrow down the causes
while novice programmers use trial and error method to debug programs (Lee & Wu, 1999).
More over, they may even end up inflict ing new bugs on the program during the course of trying
to find the original ones (Gugerty & Olson, 1986). In addit ion, according to Smith and Webb
(1995), experts are often able to make hypotheses about the most probable cause of an error. They
are also skilled at isolating and identifying errors due to the experience they have. Thus, without
any experience, novice's mental model of program code and its execution can be quite far a way
from the ideal one and as a consequence debugging the program can be extremely difficult.

Gugerty and Olson (1986) argued that experts' superior debugging ability originates from their
better skill to comprehend the program. In addit ion, according to Lee and Wu (1999) the program
comprehension was often mentioned as the crucial skill for being able to debug efficiently. It is
interesting, though, to compare this to the results obtained by Ahmadzadeh et al. (2005). In their
study with almost 200 students, they found that less than 40 percent of students gett ing good
marks on introductory course of programming were able to identify and correct all errors in a
given relatively simple program in a controlled programming task. It would seem obvious that
good performance in programming would imply a good skill in program comprehension, which in
turn would imply good debugging skills. This research challenges this hypothesis at least for nov-
ices. However, their results about students performing badly in the course were that their debug-
ging skills were clearly worse than those of "good programmers". We therefore conclude that

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

287

there still seems to be a posit ive correlation with good debugging skills and good programming
performance.

Nevertheless, our assumption is that better program comprehension aids students to create and
test more easily their hypothesis that aim at discovering and correcting errors. These hypotheses,
as aforementioned, are based on student's current mental model of the programming task. We
note that the model may change and improve during the program comprehension process as stu-
dent's understanding of the task increases. Moreover, we believe that there is a cycle that can be
called a debugging-comprehension cycle, running from the beginning of the process of learning
to program. Good comprehensions skills support the possibility to become a better debugger, be-
cause with them the student is able to create more relevant hypotheses. Correspondingly good
debugging skills enhance student's ability to comprehend program execution because with them
he/she can test hypotheses more efficiently and thus gain a better understanding of the program

Our assumption is supported by Kuitt inen and Sajaniemi (2004) who noticed that using role in-
formation in basic programming courses promoted students' understanding about the whole pro-
gram. Moreover, they showed that with the role concepts students can interpret program code in a
more abstract and novel way regardless of the programming language or even the programming
paradigm. The role concepts provide information about the behaviour of variables, which aids
students to modify and develop their own mental model of the target program. For example, stu-
dents often focus too much on the execution of single statements and the execution order instead
of variables and how they behave. Therefore, in teaching, we should emphasize the behaviour of
variables and point out mismatches on their actual use and definit ions; if we know that the role of
a certain variable is a stepper then the variable should act like a stepper.

To conclude, the role information aids student's to comprehend programs more deeply and with
better program comprehension they can debug more efficiently. In addit ion, better debugging
skills aid program comprehension even further by providing tools and ways to grasp the idea be-
hind a program code.

This said, we note that recognizing roles when reading program code is far from easy for novices.
Therefore, in order to use roles of variables effectively in teaching programming and debugging
we need a tool that is able to identify automatically the roles within the program code written by
the student. Moreover, the tool must also have functionalit ies to gather the dynamic information
about the behavior of the variables like their values etc. The values need to be logged during the
program execution, followed by comparing this information with the identified role of the vari-
able. We also need a manner to interactively work with the roles to enhance student knowledge of
how to recognize different roles and how to use them in practical debugging. For example, during
the program execution, questions could be asked about the role of a part icular variable and its
previous, current or next values. Finally, to enhance the learning effect while teaching program-
ming or debugging, we need a tool that provides these kinds of features and combines the pre-
sented approaches together.

VILLE - A Tool for Debugging and
Executing Program Code

ViLLE is a program visualization tool, which can be used to create and edit various programming
examples, and to observe the events in the programs during their execution. The tool can be used
both in lectures and in independent learning. Its main purpose is to support the learning process of
novice programmers.

ViLLE supports typical features of a visual debugger, including controlled program execution,
visualization of the execution path in the code and the values of variables (see figure 1). How-

Using Roles of Variables

288

ever, there are a number of novel features as well. First ly, ViLLE automatically displays role in-
formation of the variables in the target program. Secondly, ViLLE supports presentation of the
target program in many imperative programming languages (currently Java and C++) as well as
in pseudo code in order to show the conceptual similarity among imperative programming lan-
guages. Finally, ViLLE allows execution of programs both forwards and backwards, which is an
important benefit for debugging.

Currently the tool supports the following features of Java: basic variable types (int, float, double,
Boolean), main aspects of the String class, condit ional statements (if, else-if and else), loop struc-
tures (for, while and do-while), methods, one and two dimensional arrays, and records. These
programming concepts cover majority of the topics usually included in the curriculum of a first
programming course. ViLLE is not designed for teaching interaction of objects, but sequential
execution of programs and algorithms. This is essential in order to grasp the basic understanding
of programs regardless of selected programming language or even whether we teach imperative
or/and object oriented programming. More detailed information about the tool can be found in
Rajala, Laakso, Kaila, and Salakoski (2007) and it ’s effectiveness in programming learning is
evaluated in Rajala, Laakso, Kaila, and Salakoski (2008).

Figure 1 shows the visualization view of ViLLE. On the left side of the view we see how the cur-
rent line and the previously executed line are highlighted from the program code. A user can add
breakpoints to program lines by clicking the line number from the code area. The buttons for con-
trolling the visualization are situated in the upper left corner. Three text areas at the bottom of the
view display an explanation of the current program event (including the role information of vari-
ables), program outputs, and the states of variables. Method calls are visualized with a call stack
on the right side of the view. The call stack area can be replaced with a variable state area, which

Figure 1: The visualization view of ViLLE

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

289

visualizes arrays and matrices graphically. The slider below the three text areas indicate, how far
the execution has progressed. By moving the slider, the user can progress to any state of the pro-
gram execution.

Key Features
Execution line by line , progress in program execution is represented by highlighting lines from
the code. In addit ion, VILLE highlights the previously executed line with a different color. This
makes following of the program execution easier especially in loops and for novices (Korhonen,
Sutinen, & Tarhio, 2002).

Flexible control of visualization both forwards and backwards, the user can move one step at
a t ime, both forwards and backwards in the execution of the program. Examples can also be run
automatically with adjustable speed. In addit ion, VILLE has an execution slider with which the
user can move to any state in program execution. These are features we have used to see in algo-
rithm animation tools (see, e.g., Moreno et al., 2004; Rößling et al., 2000; Stasko 1997). How-
ever, moving backwards in the program execution is usually not possible in debuggers and it is
missing from many program visualization tools.

Breakpoints, the user can set breakpoints into any program code line and move between them
both forwards and backwards. This functionality enables debug-based control and observation of
the program execution. Again, backward tracing between breakpoints is a novel feature, which is
not available in other debuggers.

Code line explanation, every code line has a description in which all the program events related
to the line are clearly explained verbally. Furthermore, all possible outputs and variable states are
shown. This is also a feature that is absent in many similar applications.

Role information, information about the roles of variables is integrated into the code line de-
scription. According to Sajaniemi and Kuitt inen (2004), this helps in learning programming, and
enhances understanding of the program.

Some papers cover and indentify some typical programming errors for novices (see Sporher &
Soloway, 1986; Joni, Soloway, Goldman, & Ehrlich, 1993). For example, Joni et al. (1993) have
noted Array Index Variable bug, which is shown in Figure 2.

In this case, the array is not referenced with loop variables as intended. With role information
student can easily notice this type of error, because variable i should have role Stepper and now it
has role of Fixed value. Similar to this, all errors in which the loop variable is not incremented
can be found more easily with role information in hand.

Pop-up questions, one useful feature of VILLE is the possibility to create pop-up questions (see,
e.g., Naps et al. 2000) for the programming examples. With the built-in editor, a teacher can cre-
ate mult iple choice questions and set them to trigger in certain states of the program execution.

…

67: for (int i = 0; i < 100; i++){

68: tbl[some_other_than_i] = 0;

69: }

Figure 2: Example of Array Index Variable bug in Java

Using Roles of Variables

290

Figure 3 shows an example of a pop-up question, which asks the user to select the correct role for
a variable in the program.

Figure 3: A pop-up question

Call stack, moving the program execution point between different methods due to function calls
and returns is visualized with a call stack. When a method is called, a new window is opened in
the call stack. The window remains in the call stack until the method is finished. When the execu-
tion returns to the caller, a return value is shown on top of the call stack. The visualization of the
execution can be alternatively viewed in a parallel view with the program code viewed in two
languages simultaneously.

Discussion
Programming is a complex cognit ive skill, thus learning programming is hard. In this paper, we
have argued that proper tools for debugging would promote program comprehension and clarify
the students' mental model of program execution. The key idea is to improve students' debugging
practices by providing novel debugging tools especially suitable for novice level programmers.
The debugging process inherently includes the ability to follow execution of code as well as mak-
ing predictions and observations on variable values. This requires a proper understanding on how
the program executes on the notional machine, and especially how variable values are changed
during the program execution. By using proper debugging tools, the student gradually compre-
hends the program code, which eventually helps developing better debugging skills. Ult imately,
the aim of this program comprehension cycle is to promote the understanding of the principles of
program execution in general--a learning task that we feel is overlooked or at least less empha-
sized in text books.

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

291

An init ial step is required to get this debugging-comprehension cycle running. Our method is to
use Roles of Variables to give the first impulse in this respect. The role information automatically
attached to variables help novices to comprehend with the code. They can start following a single
variable and verify its responsibility during the program execution. This way they can gradually
improve the debugging skills until they are ready to take the next step, i.e., use their new skills to
develop the mental model of the program even further.

Software visualization techniques can support the debugging process by supporting the control
over the program execution. Tools adopting such techniques are called visual debuggers. The cur-
rent program visualization and visual debugging tools are good for illustrating and controlling the
dynamic behavior of the target program in terms of control flow. Thus, they focus on visualizing
control execution, control structures, and function calls besides showing variable values. How-
ever, typically these tools do not include the role information of variables. ViLLE is a novel vis-
ual debugger that includes both visual debugging facilit ies and role analysis. The tool thus sup-
ports understanding programs in more versatile ways than any previous tool that we know.

ViLLE is a program visualization tool which incorporates the role information and the aforemen-
tioned features for enhancing novice level programming and debugging skills. We suggest that
the role concept should be included in introductory programming course's curriculum, because
good knowledge and understanding of the role concept enhances student's ability to comprehend
programs in more abstract level. In addit ion, ViLLE provides a feature to generate pop-up ques-
t ions about the role knowledge, the kinds like “what is the role of variable total”, “which sums up
the values in a table” or “what is the role of variable i that travels through the values 1, 3, 5, 7, 9
during the execution of an algorithm”. In addit ion, questions such as "what values the variable
iter encounters during the execution" can also be asked.

The system conforms also to several different teaching methods by promoting the programming
language independency paradigm. This also aims for better comprehension of programs due to
the fact that from student's point of view, it is not that important to learn how loops are defined in
part icular programming language, but far more importantly learn the basic principles behind loop
structures regardless of the language. This is supported in ViLLE, as teachers can define pseudo
languages of their own, suit ing their needs better. The defined (pseudo) language can be visual-
ized and executed like any other imperative language. Furthermore, these aspects can be empha-
sized by executing the example simultaneously in parallel view with two different programming
languages. Thus, a student can notice that programming is not a skill of mastering the syntax of a
programming language, but of mastering the basic concepts and semantics behind programs. This
can also help the changeover from one programming language to another.

To support debugging and comprehension skills even more, ViLLE automatically generates a
description of the executed code to aid understanding the purpose of every single code line. Not
to mention that the tool holds also typical features related to debugging: breakpoints, step-by-step
execution, moving between breakpoints both forward and backward, representation of states of
variables, etc. The backward functionality, just to name one, is missing from many debugging
tools, which often frustrates students especially in the early phases of learning.

We suggest that ViLLE should be used in the introductory programming courses to gather exam-
ples, to define a language if needed, to emphasize main points of programming language inde-
pendecy paradigm, to support learning of role concepts, to boost effectiveness of code examples,
and finally, to improve students ability to debug and comprehend programs.

Using Roles of Variables

292

Conclusions
In this paper, we have presented how ViLLE can be used to enhcance debugging skills of nov-
ices. ViLLE is a versatile tool for visual debugging, suitable for novice level programmers that
are still forming their mental model of program execution. The tool promotes the use of roles of
variables which is a novel concept for novice level programmers to grasp the essential character-
ist ics of programs at glance. This role information aids learning of program comprehension and
assists the students in their way to master programming and debugging skills. In addit ion, ViLLE
supports programming language independency paradigm, in which the goal is to comprehend
programs and their components in more abstract level.

Future Directions
So far we have a proof-of-concept tool to show that the visualizations and role information can be
automatically extracted from the source code. However, experimental studies will be needed in
the future to show that this new tool actually promotes learning and has the desired quality in
teaching and learning process in general.

Acknowledgments
This work was supported by the Academy of Finland under grant number 111396.

References
Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging among novice

computer science students. ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on Inno-
vation and technology in computer science education, 84-88, New York, NY, USA.

Akingbade, A., Finley, T., Jackson, D., Patel, P., & Rodger, S. H. (2003). JAWAA: Easy web-based anima-
tion from CS0 to advanced CS courses. Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE’03, 162-166, Reno, Nevada, USA.

Callaway, J. (2002). Visualization of threads in a running Java program. Master’s thesis, University of
California, June 2002.

Chmiel, R., & Loui, M. C. (2004). Debugging: From novice to expert. Proceedings of the 35th SIGCSE
Technical Symposium on Computer science education, 17-21, New York, USA.

Détienne, F. (2002). Software design – Cognitive aspects. Springer-Verlag. ISBN 1852332530.

du Boulay, B. (1989). Some diffi culties of learning to program. In E. Soloway & J. Spohrer (Eds.), Study-
ing the novice programmer (pp. 283-299).

Ducasse, M., & Emde, A.-M. (1988). A review of automated debugging systems: Knowledge, strategies
and techniques. Proceedings of the 10th International Conference on Software Engineering, 162-171,
Singapore.

Gugerty, L., & Olson, G. M. (1986). Debugging by skilled and novice programmers. CH186 Proceedings,
171–174.

Jain, J., James, I., Cross, H., Hendrix, T. D., & Barowski, L. A. (2006). Experimental evaluation of ani-
mated veri fying object viewers for Java. SoftVis ’06: Proceedings of the 2006 ACM Symposium on
Software Visualization, 27-36, New York, NY, USA.

Johnson, W. L. (1990). Understanding and debugging novice programs. Artificial Intelligence, 42, 51-97.

Joni, S. N., Soloway, E., Goldman, R., & Ehrlich, K. (1983). Just so stories: How the program got that bug,
Proceedings of the SIGCUE/SIGCAS Symposium on Computer Literacy.

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

293

Korhonen, A., Sutinen, E., & Tarhio, J. (2002). Understanding algorithms by means of visualized path test-
ing. In S. Diehl (Ed.), Software visualization: International seminar, 256-268, Dagstuhl, Germany.

Kuittinen, M. & Sajaniemi, J. (2004). Teaching roles of variables in elementary programming courses.
SIGCSE Bulletin, 36(3), 57-61.

Lee, G. C., & Wu, J. C. (1999). Debug it: A debugging practicing system. Computers and Education, 32,
165-179.

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lind-
holm, M., McCartney, R., Moström, J. E., & Sanders, K. (2004). A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bulletin, 36(4), 119-150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. SIGCSE Bulletin, 33(4), 125-180.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. Proceed-
ings of the International Working Conference on Advanced Visual Interfaces, 373-376, Gallipoli
(Lecce), Italy.

Naps, T.L., Eagan, J. R., & Norton, L. L. (2000). JHAVÉ: An environment to actively engage students in
web-based algorithm visualizations. Proceedings of the SIGCSE Session, 109-113, Austin, Texas.

Pacione, M. J. (2004). Software visualisation for object-oriented program comprehension. Proceedings of
the 26th International Conference on Software Engineering, 63-65, Los Alamitos, CA.

Pennington, N. (1987). Comprehension strategies in programming. In G. M. Olson, S. Sheppard, & E. So-
loway (Eds.), Empirical studies of programmers: Second workshop, 100-113.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: A case
study with the ViLLE tool. (Manuscript submitted for publication.)

Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T. (2007). VILLE – A language-independent program
visualization tool. Proceedings of the Seventh Baltic Sea Conference on Computing Education Re-
search (Koli Calling 2007), Koli National Park, Finland, November 15-18, 2007. Conferences in Re-
search and Practice in Information Technology, Vol. 88, Australian Computer Society. Raymond
Lister and Simon, Eds.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and dis-
cussion. Computer Science Education, 13(2), 137-172.

Rößling, G., Schüler, M., & Freisleben, B. (2000). The ANIMAL algorithm animation tool. Proceedings of
the 5th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science
Education, ITiCSE’00, 37-40, Helsinki, Finland.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. Pro-
ceedings of IEEE 2002 Symposia on Human Centric Computing Languages and Environments, 37-39.

Sajaniemi, J., & Kuittinen, M. (2003). Program animation based on the roles of variables. Proceedings of
the 2003 ACM symposium on Software visualization, 7-16, New York, USA.

Shneiderman, B., & Myers, R. (1979). Syntactic/semantic interactions in programmer behavior: A model
and experimental results. International Journal of Parallel Programming, 8(3),219–238. ISSN 0885-
7458.

Smith, P. A., & Webb, G. I. (1995). Transparency debugging with explanations for novice programmers.
Proceedings of the 2nd Workshop on Automated and Algorithmic Debugging, St. Malo.

Spohrer, J., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications of the
ACM, 29(7), 624-632.

Stasko, J. T. (1997). Using student-built algorithm animations as learning aids. Proceedings of the 28th
SIGCSE Technical Symposium on Computer Science Education, 25-29, San CA, USA.

Using Roles of Variables

294

Stasko, J. T., Domingue, J. B., Brown, M. H., & Price, B. A. (1998). Software visualization: Programming
as a multimedia experience. Cambridge, MA: MIT Press. ISBN 0-262-19395-7.

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen, T.-Y., Chinn, D., Cooper, S., Eckerdal, A., John-
son, H., McCartney, R., & Monge, A. (2005). Students designing software: A multi-national, multi-
institutional study. Informatics in Education, 4(1), 143-162.

Valentine, D. W. (2004). CS educational research: A meta-analysis of SIGCSE technical symposium pro-
ceedings. SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education, 255-259, New York, NY, USA.

Vessey, I. (1986). Expertise in debugging computer programs: An analysis of the content of verbal proto-
cols. IEEE Transactions on Systems, Man, and Cybernetics, 16, 621–637.

Zeller, A. (2001). Animating data structures in DDD. Proceedings of the First Program Visuliztion Work-
shop – PVW 2000, 69-78, Porvoo, Finland.

Biographies
Mikko-Jussi Laakso is a PhD student working as a researcher in a
joint project of University of Turku and Helsinki University of Tech-
nology. He received his M.Sc (Computer Science) in 2003. His re-
search interest covers program and algorithm visualization, learning
environments, computer aided and automatic assessment in computer
science education.

Lauri Malmi is a professor of Computer Science at Helsinki Univer-
sity of Technology. He received his D.Sc. (Tech.) degree from the
same university in 1997. His current research concentrates mostly on
computing education research, especially developing and evaluating
tools for supporting programming education, and understanding vari-
ous aspects of how students learn programming. Professor Malmi is
leading the COMPSER research group
(http://www.cs.hut.fi/Research/COMPSER/).

Ari Korhonen is a researcher and instructor at Helsinki University of
Technology (HUT). He received his M.Sc. (Computer Science) in
1997, and his D.Sc. (Tech) diploma in 2003. His research includes data
structures and algorithms in software visualization, various applica-
t ions of computer aided learning environments and automatic assess-
ment in computer science education.

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

295

Teemu Rajala is a PhD student at the University of Turku. He re-
ceived his master’s degree from the same university in 2007. His re-
search focuses on visualization of programs and algorithmic problem
solving.

Erkki Kaila is writ ing his master thesis on program visualization in
programming learning in University of Turku. His research interests
include program visualization systems and IT education.

Tapio Salakoski is a professor of Computer Science at University of
Turku, where he received his Ph.D. in 1997. His main research focus
has been in methodology development using machine learning and
other intelligent techniques. He is leading a mult idisciplinary research
group studying various task domains, including problems related to
human learning and computing education research.

