Issues in Informing Science and Information Technol ogy Volume 5, 2008

Using Roles of Variables to Enhance Novice's
Debugging Work

Mikko-Jussi Laakso Lauri Malmi
Turku Centre for Computer Helsinki University of
Science and University of Technology, Espoo, Finland
Turku, Turku, Finland
milaak@ utu. fi laur.malmi@tkk.fi
Ari Korhonen Teemu Rajala
Helsinki University of Turku Centre for Computer
Technology, Espoo, Finland Science and University of
Turku, Turku, Finland
ari.korhone n@tkk.fi temira@utu.fi
Erkki Kaila Tapio Salakoski
University of Turku, Turku, Turku Centre for Computer
Finland Science and University of
Turku, Turku, Finland
ertaka@utu.fi sala@utu. fi
Abstract

Abstract Debugging skill is an essential part & pnogramming skills. It is also highly related
with program comprehension skills. In this paperpnesent a novel tool, called VILLE, which
supports leamning debugging by promoting studemtgérstanding of target program. VILLE
combines visual debugging features with the supfpontoles of variables. These roles promote
activating schemas of variable use in programadiiition, VILLE supports automatic presenta-
tion of the target program in different programmilagguages, even in pseudo code or with tex-
tual explanations. T his, in turn, helps in buildimgre general and abstract understanding of pro-
gram structures and their relation to problem doncancepts. The key features of thetool are
presented, followed by a discussion of

Material published as part ofthis publicationheitondine or how the tool should be used in pro-
in print, is copyrighted by the Informing Sciencsstitute. ; :

Permission to make digital or paper copy of partibofthese gramming education.
works for persond or classroomuse is grantedoamttfee

provided thatthe copies are not made or distribéteprofit |ntr0d uction
or commercial advantage AND that copies 1) bearrilotice o .
in full and 2) give the full citation on the firpige. It is per- Programming is a complex cognitive

missible to abstract these works so long as diediven. To skill. Most students face alot of new
copy in dl other cases orto republish or to pwsa serveror challenges in leaming the basic skills

to redistribute to lists requires spedfic permessand payment - - .
ofa fee. Contadtublisher@ Informing Sdence.otg request required to design and |mpleme_nt even
redistribution permission. small programs. Several extensive inter-

Using Roles of Variables

national studies have confirmedthis, not to spealesults that have been reported in dozens of
studies — mostly of single courses — presentednmpeting education conferences. For example,
Valentine (2004) surveyed and classified total44 papers published in SIGCSE T echnical
Symposium conferences in years 1984-2003, all a¢lwivere relatedtoteaching introductory
programming, including different teaching methads|s, experiments, new kinds of assign-
ments, etc. Extensive studies include the McCraeken. (2001) working group research with
216 students in 4 universities. The results indica alarming number of failures in simple pro-
grams the students were requested to code. A favsyater another study was carried out by
Lister et al. (2004). Inthis case, the topic afagigation was the students’ understanding of exe-
cution of simple programs. T he results of 556 sutilédrom 12 institutions indicate that the stu-
dents had severe problems understanding even thkkeshof the code fragments. Thus, it seems
that first and second year students have seriaarscgimings in both reading and writing skills of
programs. It istherefore not surprising that Tdoeeg et al. (2005) found ou intheir study —
concerning 21 institutions and 300 students —shatlents cannot design even simple programs
after their introductory courses.

What makes learning to program so complex, anddiowld we tacklethis problem in educa-
tion? Obviously much ofthe complexity follows frahe fact that programming includes many
different types of tasks, including problem solyingnceptual analysis of problem domain, pro-
gram design, detailed temporal time splitting dficaxs, developing and combining algorithms
and data structures, understanding language issbeth syntax and semantics, writing program
code, testing and finally debugging it. Masteritigpathese requires a lot of training and exper
ence, which cannot be acquired during a singl@dugtory course. Moreover, programming re-
quires thinking with abstract concepts, which is @asy for all novices.

du Boulay (1989) classified some of these challeriyeidentifying five different subfields of
programming skill that a novice student has toriéarwork effectively. Firstly, he must gain a
general understanding in what programming is abadtwhat computers can do. Secondly, he
needs to understandthe principles of how progexesute within a computer. du Boulay used a
termnotionalmachinewhich means a general model of computer intemmatbprogram execu-
tion — including how memory is used for storingiahfes, how statements and procedures are
executed etc. Thirdly, computer programs are writiging programming languages, artificial
formal notations. Each of these has its own syaracksemantics that must be understood.
Fourthly, leaming programming means acquiringrgdeset of schemas of how things — such as
scanning an array of datato identify informatibuilding a linked list or reading data from input
source — are typically implemented. Knowledge ahsschemas reduces the cognitive complex-
ity of reading and writing programs, as the progreancan focus on composing larger chunks of
code from smaller ones instead of thinking alldetails simultaneously. Finally, programming
requires practical skill— programmers need to k@md be able to use) specialtools such as edi-
tors, compilers, profilers and debuggers for codogmnpiling, testing and debugging programs.

Programming education has traditionally put a fatffort in teaching the syntax of particular
language. However, when recalling du Boulay's §ivbfields of programming skill, we note that
issues concerning syntax mostly cover the lasethreas, whereas the second one, understanding
program execution, may easily be somewhat overldodeis at least less emphasized. However,

it should be seen as an essential part in the pmaging skills.

In this paper, our focus is onthe relation of peogy comprehension and debugging. A seemingly
obvious conception isthat good programming skitisuld always include good debugging skills.
However, Ahmadzadeh, Elliman, and Higgins (2005haestrated that this relation is not that
obvious. Intheir study, including almost 200 shide they found that less than 40 percent of stu-
dents getting good marks on a programming course akle to identify and correct all errors in

a relatively simple program in a controlled sitaatiThis group was surprisingly small. Students

282

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

who performed poorly on the course got even woeselts. Thus, we conclude that there still
seems to be a posttive correlation with good deimggskills and good programming skills.

We discuss how to improve students' debugging prestvith better program comprehension.
Our assumption isthat this, in tum, will impraveir general performance in programming
tasks. The debugging process inherently included/agg a mental model of program execution,
i.e., the ability to follow execution of code, mgaedictions on variable values and observe their
actual values to identify possible discrepancidss Tequires a fair understanding on howthe
program executes onthe notional machine, and idlygww variable values are changed dur-
ing the program execution. However, typical debuggeack only snapshots of variable values
during program execuion. They do not support pgagcomprehension by identifying and em-
phasizing different schemas or by demonstratingir@ble use. We are specifically interested
in schemas called roles of variables, first presgtiy Sajaniemi (2002). The key idea isthat al-
most all variables conformto one of the few idgedi behavioural patterns. For example, one
variable may act as a counter, thus having theafodesteppey and another stores a sum of calcu-
lations, thus being gatherer Or a value that is being looked for from a widetlection of data

is stored in anost-wanted-holdeiT hus, roles form an abstract form of variabledsebur, which
describes program execuion fromthe data poinief, whereas control structures and func-
tions describe the program from the execution pafitiew. T hus, roles of variables identify
valuable extra information ofthe program codertbance the understanding of program behav-
iour. This information supports debugging by forgey the expected changes in variable values
during the program execuion, making it easierdtice mismatch between the expected value
and observed value. T his way identifying faulty &abur becomes easier.

Unfortunately, identifying roles of variables aralldwing program execution are not easy tasks
for novices. Therefore proper tools are requiredlustrate both variable behaviour and control
flow. A whole field of research, software visualipa (For an overview, see for example,
(Stasko, Domingue, Brown, & Price, 1998) has cotrebad on examining and demonstrating
program code, its structure, andthe executiorodéclts two important subfields apeogram
visualization,in which the focus of activity is on illustratitlge dynamic behaviour of actual pro-
gram code and variable values (see, for examplet floreno, Myller, Sutinen, & Ben-Ari,
2004), DDD (Zeller, 2001), jGrasp (Jain, James;s§réiendrix, & Barowski, 2006), and BlueJ
(Zeller, 2001), andlgorithm animatiorwherethe focus is on the visualization of dynabde
haviour of more abstract concepts: data structamesalgorithms (see, for example, Animal
(RoRIling, Schiler, & Freisleben,, 2000), o JHAVEaPN, Eagan, & Norton,, 2000), JAWAA
(Akingbade, Finley, Jackson, Patel, & Rodger, 2083nba (Stasko, 1997)). However, many
current tools, such as Jeliot, JGRASP, and Animellide features from both ofthese subfields.
Where the goal of program visualization is on tHasng the execution of the target program,
some tools have features better supporting thegdetmiprocess, such as proper control over the
execution (e.g. DDD, jGRASP, Retrovue (Callawayd2)). These tools can be called visual de-
buggers.

The focus of current program visualization andalisiebugging tools is on illustrating and con-
trolling the dynamic behaviour of the target pragria terms of control flow. T hus, thesetools
are good for visualizing control execution, contsylictures, and function calls. Visual debug-
gers often illustrate data structures as well. Herefew tools support good depictions of pro-
gram history, and history data of variable valaes] effectively none support visualization of
roles. The only tool we are aware of, is PlanAerig(s.g., Sajaniemi & Kuittinen, 2003), which is
more a tool for demonstrating roles of variablesnth visual debugger.

In this paper, we present a newtool VILLE thatinates facilities both from visual debuggers
and the role analysis. Thus, thetool supports netaeding programs in more versatile ways than

283

Using Roles of Variables

any previoustoolthat we know. We discuss theureat available in VILLE and how it can be
used in education.

In the next two sections, we present some researgnogram comprehension androles of vari-
ables. In Section 4 we discuss debuggers and stmegeided for efficient debugging. In Section 5,
we present VILLE and in Section 6 we discuss theeafsViLLE in education. Finally, some con-
clusions are given.

Program Comprehension

Computer programs are complex objects, and thterrial structure and working can be under-
stood from different points of view. One obviouswiis to differentiate the syntax, semantics
and pragmatics of a program, i.e., what are itsaents, how do they work and what are they
used for in the target program. Another view cdido separate different levels of abstraction in
programs. For example, a debugger can operategle statements and single variable values,
i.e.,on alowlevel. A high level view could revédze working of a whole software system giving
aggregate information of memory usage and objegtiadions. T here could be different levels
between these, such as method level, class lewkbitectural level descriptions of program
structure and behaviour (Pacione, 2004). Shneideand Myers (1979) present a model of syn-
tactic / semantic interaction. Where syntacticiinfation is language dependent, semantic infor-
mation is more general. It is muli-leveled, anel tuman understanding of a program is built by
recognizing the function of program componentsfaagments as chunks. These pieces are ag-
gregated until a description of the entire progiaravailable.

Détienne discusses research of program compremmemsamme detail in her book (Détienne,
2002). There are several theoretical approachesilain how people understand code. First, the
functional approach is built on the hypothesis timaterstanding a program means activating and
instantiating knowledge schemasthat present thergeknowledge a software expert possess.
Such schemas can be either programming schemashidem schemas. Détienne describes their
significance, asfollows: "The activity of understing consists, in part, of activating schemas
stored in memory, using indexes extracted from r@wés code, and inferring certain information
starting from the schemas invoked."

The structural approach, on the other hand, viewerstanding a program as constructing a net-
work of propositions, thus highlighting the imparta of structural knowledge in understanding.
This structural knowledge can be of control striesuor functional parts of the program like In-
put, Calculate and Output. The dominating aspettosever, the program structure.

The third approach, mental models, stresses thdisti@guish two different ways to understand
a programthe program modehhich is about the program structure andditgational model
which is relatedto the problem domain. Combinimese two views is the key to understanding a
program. Pennington (1987) evaluated the validitths approach within a study of how profes-
sional FORT RAN and COBOL programmers understoo@ c8tle gave them a code with a gen-
eral description what the code is about, but wittemy comments, and asked themto summarize
its behaviour, followed by implementing certain lgas in the code. Pennington observed that
people who presented in their summaries both laygglevel concepts and problem domain level
concepts performed clearly betterthan those winceuatrated only on language level concepts or
problem domain concepts. She concluded that conthihiese two domains is essential for good
program comprehension.

Finally, Détienne mentions a fourth approach: sgprmgram comprehension as problem solv-
ing. Here the focus is in the information seleciwacess when reading a program, because pro-
grams are not read sequentially. Instead, peopistantly jump forwards and backwards when
reading code.

284

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

In this paper — as consideringthe activity of dgiug — it seems evident that schemas related to
use of variables are important because an inhpeghbf debugging is tracking values of vari-
ables, and asserting their correctness or faukinigsus we should emphasize such schemas in
the debugging process. The mental model approaakingnthe connection between language
level concepts and problem domain concepts, isiitapt A debugging tool should provide dif-
ferent views of the program, both low (languagekleand high (pseudo code or even verbal de-

scriptions) level, to aid the user to create bigdibetween the program model and the situational
model.

Roles of Variables

Roles of variables are stereotypes of variabldrusemputer programs (Sajaniemi, 2002). T he
basic idea behind roles of variables is to distijest programmers' tacit knowiedge on variables

and their use. Arole does not encapsulate a uhégkein some specific program, but merely a
number of variables in many programs. Thus, a gengll set of roles is enough to cover almost
all variables encountered in programs written byice programmers.

In the following, we give a brief overview to rolesvariables. In program code variable acts as
an identifier that can refer for example to a scatddue or an array. However, we encourage the
reader to visit th®oles of Variables Home Pad#tp://cs.joensuu.fi/ saja/var rolgsd read a
more comprehensive introduction to the role concept

1. Fixed valuds a variable which, after once intialized witip@per value, does not get a
new one.

Steppemoes through a succession of valuesthat aregbabté and known in advance.
Most-Recent Holdeis holding the latest value.

4. Most-Wanted Holdeonthe other hand, is holdingthe most appropratlue encoun-
tered so far while examining a succession of uriptale values.

5. Gathereraccumulatesthe effect of individual values.
Follower gets its new value based on an old value of sahex wariable.

One-Way-Flaghas two possible values, its initial value, anchemther value that is
never changed anymore, if reached.

8. Temporanholds a value only for a very short time.
In addition, there are 3 other rolesthat are egltéb data structures.
9. Organizerstores data elementsto be rearranged,
10. Containerstores data elements to be added and removed, and
11.Walkertraverses data structures.

Roles are cognitive concepts, which mean that wiffepersons may have different interpreta-
tions of them. For example, a variable having thlees from the sequence of Fibonacci numbers
may be interpretedto be a Stepper by a matheraatibut a Gatherer by a programmerthat see it
summing up two Followers in each iteration. As lasghis interpretation helpsthe programmer
to grasp or explain the idea behind the varialid,kild a new 'chunk' of knowledge, it is good
for schema formation. While, expert programmernst(astructors) have tacit knowiedge on
variables and their use, novices lack this knovéedad thus need ways to make it explicit.

285

Using Roles of Variables

Roles can be taught in introductory programmingsesigradually asthey appear in examples.
After this, roles can be used in program desigp/émentation, and debugging tasks all of which
require program comprehension skills.

Sajaniemi and Kuittinen (2003) have studied progcamprehension skills andthey conclude
that students who are taught programming with rofesariables outperform other students. They
are not only able to describe the program behawetier in terms of program summaries, but
they also attain better mental model of the progtéBuch a schema formation is necessary in
order to be able to debug programs, as we are goiaggue in the next section.

What is Debugging?
The ultimate goal of debugging process is to reng®fects from computer programs (Chmiel &
Loui, 2004). More precisely, it is a process ofdiitg the exact position of the error andfixing it
after the existence of error is verified by meaftesting (Vessey, 1986). In addition, this process
may include other tasks such as determining theecalithe error in order to fix .

Debugging is often found and classified as a hask to learn and master. This is due to its mul-
tifaceted nature. Ducasse and Emde (1988) havemieska classification of debugging knowl-
edge sliced into seven categories: 1-2) knowledigbeointended program, andthe actual pro-
gram, 3) understanding of the programming langudyygeneral programming expertise, 5)
knowledge of the application domain, 6) knowledfidugs, and 7) knowledge of debugging
methods. Even with a quick glance to this liscaih be said that for novices most ofthese topics
are unfamiliar and hard to grasp in the early plodsearningto program. T hus, it takes a lot of
effort from a novice programmer to debug even semqgbgrams. This is evidently one reason
why novices find learning to program so time conisigrand frustrating process (Johnson, 1990).

It can be said that the essential nature of dehiggigitesting hypotheses about what causes an
error, where to find it, and finally how to fix These hypotheses are derived from programmer's
mental model of the target program and its exeeutiv addition, novices are actively and con-
tinuously developing this mental model while gammore experience of debugging and writing
programs.

Difficulties in the debugging process are all aboaiv to create relevant hypothesis and how to
test them. Experienced programmers can easilysfingly errors and narrow down the causes
while novice programmers use trial and error metioodkebug programs (Lee & Wu, 1999).

More over, they may even end up inflicting new bagghe program during the course of trying
to find the original ones (Gugerty & Olson, 198@)addition, according to Smith and Webb
(1995), experts are often able to make hypothdsmgt ahe most probable cause of an error. T hey
are also skilled at isolating and identifying esralue to the experience they have. Thus, without
any experience, novice's mental model of prograde @nd its execution can be quite far a way
from the ideal one and as a consequence debudguimgrogram can be extremely difficult.

Gugerty and Olson (1986) argued that experts' supdebugging ability originates from their
better skillto comprehendthe program. In additeecording to Lee and Wu (1999)the program
comprehension was often mentioned as the crucihfakbeing able to debug efficiently. It is
interesting, though, to compare this to the realitained by Ahmadzadeh et al. (2005). In their
study with almost 200 students, they found that tkan 40 percent of students getting good
marks on introductory course of programming were &b identify and correct all errors in a
given relatively simple program in a controlled granming task. It would seem obvious that
good performance in programming would imply a gekitl in program comprehension, which in
turn would imply good debugging skills. This resgachallenges this hypothesis at least for nov-
ices. However, their results about students pelfogrbadly in the course were that their debug-
ging skills were clearly worse than those of "gpoalgrammers". We therefore conclude that

286

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

there still seemsto be a positive correlation witlod debugging skills and good programming
performance.

Nevertheless, our assumption isthat better programprehension aids studentsto create and
test more easily their hypothesis that aim at discog and correcting errors. These hypotheses,
as aforementioned, are based on student's curemitainmodel of the programming task. We
note that the model may change and improve duhiegptogram comprehension process as stu-
dent's understanding of the task increases. Moremecbelieve that there is a cycle that can be
called a debugging-comprehension cycle, runningnfiiee beginning ofthe process of leaming
to program. Good comprehensions skills supporptssibility to become a better debugger, be-
cause with them the student is able to create nedegant hypotheses. Correspondingly good
debugging skills enhance student's ability to caapnd program execution because withthem
he/she can test hypotheses more efficiently ansighin a better understanding of the program

Our assumption is supported by Kuittinen and Sajami(2004) who noticed that using role in-
formation in basic programming courses promotedesits’ understanding about the whole pro-
gram. Moreover, they showed that with the role emts students can interpret program code in a
more abstract and novel way regardless of the progring language or even the programming
paradigm. The role concepts provide informationuabloe behaviour of variables, which aids
students to modify and develop their own mental ehodithe target program. For example, stu-
dents often focus too much on the execution oflsis@tements and the execution order instead
of variables and how they behave. Therefore, iohtieq, we should emphasize the behaviour of
variables and point out mismatches on their aatsaland definitions; if we know that the role of
a certain variable is a stepper thenthe varidimeld act like a stepper.

To conclude, the role information aids student'samprehend programs more deeply and with
better program comprehension they can debug mdiaeetly. In addition, better debugging
skills aid program comprehension even further lvjoling tools and ways to grasp the idea be-
hind a program code.

This said, we note that recognizing roles whenirgaprogram code is far from easy for novices.
Therefore, in order to use roles of variables ¢iffedy inteaching programming and debugging
we need a tool that is able to identify automatjdhle roles within the program code written by
the student. Moreover,the tool must also havetfanalities to gather the dynamic information
about the behavior of the variables like their ealatc. The values need to be logged during the
program execution, followed by comparing this inf@tion with the identified role of the vari-
able. We also need a manner to interactively watk the roles to enhance student knowledge of
how to recognize different roles and how to usetlirepractical debugging. For example, during
the program execution, questions could be askedtdbe role of a particular variable and its
previous, current or next values. Finally, to ertegiine learming effect while teaching program-
ming or debugging, we need a tool that provideseHends of features and combines the pre-
sented approachestogether.

VILLE - ATool for Debugging and

Executing Program Code

VILLE is a program visualization tool, which can beed to create and edit various programming
examples, and to observe the events inthe progdanrsy their execution. Thetool can be used
both in lectures and in independent learning. lednnpurpose isto support the learning process of
novice programmers.

VILLE supportstypical features of a visual debuggecluding controlled program execution,
visualization of the execution path in the code #redvalues of variables (see figure 1). How-

287

Using Roles of Variables

ever,there are a number of novel features as Riedtly, ViILLE automatically displays role in-
formation of the variables in the target prograecdhdly, VILLE supports presentation of the
target program in many imperative programming lages (currently Java and C++) as well as
in pseudo code in order to showthe conceptualairtyi among imperative programming lan-

guages. Finally, VILLE allows execution of prograbuh forwards and backwards, which is an
important benefit for debugging.

Currently the tool supports the following featuoédava: basic variable types (int, float, double,
Boolean), main aspects of the String class, cadilistatements (if, else-if and else), loop struc-
tures (for, while and do-while), methods, one amal timensional arrays, and records. These
programming concepts cover majority of the top®sally included in the curriculum of a first
programming course. VILLE is not designed for taéagtinteraction of objects, but sequential
execution of programs and algorithms. This is d$skin order to grasp the basic understanding
of programs regardless of selected programminguiageyor even whether we teach imperative
or/and object oriented programming. More detaitédrmation about the tool can be found in
Rajala, Laakso, Kaila, and Salakoski (2007) areddffectiveness in programming learning is
evaluated in Rajala, Laakso, Kaila, and SalakdX}08).

Figure 1 shows the visualization view of VILLE. @re left side of the view we see howthe cur-
rent line and the previously executed line are ligghed fromthe program code. A user can add
breakpointsto program lines by clicking the lineber from the code area. The buttons for con-
trolling the visualization are situated in the uppedt corner. Three text areas at the bottom efth
view display an explanation of the current progeant (including the role information of vari-
ables), program outputs, andthe states of vadgablethod calls are visualized with a call stack
on the right side of the view. The call stack ataa be replaced with a variable state area, which

visual imarning foal
FINETT T

I T EIET 1 g i
4 l L ke 8 EE D H || main
AR D __LdL"' T avesagogal
e O | e ;
|

fwesagn of prasem valees = Ghin L4 b [L]. e 93

public metic waid meincEnrirgl] srpedi

droblel] &= (1.8 8. % Lo BT 5B ELLi 1 Tefult = seruly & ia]:
i -

Irrtam. Ut princlinievacage Iml o v

BN s R~

Aasiign welves 3 op WallAble 3 MrrRgwiR|z Al == 08T %

a0n DYDTLAE] Lot ldE Gas Hiock
Pariable i hoa Dol Avepper

= Urnsmmrmty o Ttk w
] nenpe | Lo o irtormatan Yechoology

Figure 1: Thevisualization view o ViLLE

288

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

visualizes arrays and matrices graphically. T ldeslbelow the three text areas indicate, how far
the execution has progressed. By movingthe slitieruser can progress to any state ofthe pro-
gram execution.

Key Features

Execution line by line, progress in program execution is representeddhlighting lines from
the code. In addition, VILLE highlights the prevityiexecuted line with a different color. T his
makes following ofthe program execution easieeeggly in loops and for novices (Korhonen,
Sutinen, & T arhio, 2002).

Flexible contral of visualization both forwar ds and badkwar ds, the user can move one step at
a time, both forwards and backwards in the exenwfdhe program. Examples can also be run
automatically with adjustable speed. In additiol,DME has an execution slider with which the
user can moveto any state in program execuionsd lare features we have used to see in algo-
rithm animationtools (see, e.g., Moreno et alQ2MRofiling et al., 2000; Stasko 1997). How-
ever, moving backwards in the program executioausiglly not possible in debuggers and it is
missing from many program visualization tools.

Break points, the user can set breakpoints into any prograre ttod and move between them
both forwards and backwards. T his functionality ldesa debug-based control and observation of
the program execution. Again, backward tracing betwbreakpoints is a novel feature, which is
not available in other debuggers.

Cocde line explanation, every code line has a description in which al finogram events related
tothe line are clearly explained verbally. Furthere, all possible outputs and variable states are
shown. This is also a feature that is absent inynsamilar applications.

Roleinformation, information about the roles of variables is ima¢gd into the code line de-
scription. According to Sajaniemi and Kuittinen @0, this helps in learning programming, and
enhances understanding of the program.

Some papers cover and indentify some typical progreng errors for novices (see Sporher &
Soloway, 1986; Joni, Soloway, Goldman, & Ehrlic@93). For example, Joni et al. (1993) have
noted Array Index Variable bug, which is shown iguFe 2.

67: for (inti =0; i <100; i++}
68: tbl[some_other_than_i] = 0;
69:}

Figure2: Exampled Array Index Variable bugin Java

In this case, the array is not referenced with leapables as intended. With role information
student can easily notice thistype of error, beeatariablé should have role Stepper and now it
has role of Fixed value. Similar to this, all esran which the loop variable is not incremented
can be found more easily with role information ani.

Pop-up questions, one useful feature of VILLE is the possibility treate pop-up questions (see,
e.g., Naps et al. 2000) for the programming exasipMith the built-in editor, a teacher can cre-
ate multiple choice questions and set them toerigg certain states of the program execution.

289

Using Roles of Variables

Figure 3 shows an example of a pop-up questiorgiwhsks the user to select the correct role for
a variable in the program.

VILLE , ,
visual learning tool

Anmation controls Cal stack | Yariable states

M« e o | EE | B | main: b==0

Execution spesd Chaose program |angs

- i main: e == 4
9 | Java v] 1 z 3 4
fAwRILinGg Tahlas nrdar main: table == 1 ‘ 2 I 3 ‘ 4 I 5 |

public static woid main(Strangl| args)|
int[] table = {1,2,3,4,5);

1
2
@ irw b = 0:

4 int @ = table, length-1;
5
B int temp = tabla[hb];
7 tablelb] = tablelal:
8 table[e] = temp;

9 bis;

:2) =ed € |, ‘Whatisthe rale of variable b?
& ~
12 forfant i = 0; i < table lenguh; 144} { =, O Fallower
:: Systen.out _princlinfcable[i]];) mest-recert bolder
i
15) () stepper
) fixed value
oK Carce! |
Program kne explanation Progranm output State of varisbles
Iniciglizing variabhle e, and assigning valus 4 main: & == 4 ~
to it main: table, length == §

(o] == 1
(1] ==2

[2] == 3
[3] == 4
[4] == 5

University of Turku

Depariment of Information Technology

Figure3: A pop-up question

Call gadc, moving the program execution point between difieraethods due to function calls
and returns is visualized with a call stack. Whenethod is called, a new window is opened in
the call stack. The window remains in the calllstamtil the method is finished. When the execu-
tion returnsto the caller, a return value is shamwtop of the call stack. The visualization of the
execution can be alternatively viewed in a paraiielv with the program code viewed in two
languages simultaneously.

Discussion

Programming is a complex cognitive skill, thus leag programming is hard. Inthis paper, we
have argued that proper tools for debugging woutdvmote program comprehension and clarify
the students' mental model of program executior.Kdy idea isto improve students' debugging
practices by providing novel debugging tools esplgcsuitable for novice level programmers.
The debugging process inherently includes thetpbdifollow execution of code as well as mak-
ing predictions and observations on variable vallibss requires a proper understanding on how
the program executes on the notional machine, apecélly how variable values are changed
during the program execution. By using proper dgimgytools, the student gradually compre-
hends the program code, which eventually helpsldping better debugging skills. Ultimately,
the aim ofthis program comprehension cycle isttomte the understanding of the principles of
program execution in general--a learning task theafeel is overlooked or at least less empha-
sized in text books.

290

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

An inttial step is required to get this debuggirapgprehension cycle running. Our method isto
use Roles of Variables to give the first impuls¢hiis respect. The role information automatically
attachedto variables help novices to comprehettdthie code. They can start following a single
variable and verify its responsibility during thgram execution. This way they can gradually
improvethe debugging skills until they are reaalyake the next step, i.e., use their new skills to
develop the mental model of the program even furthe

Software visualization techniques can support giugging process by supporting the control
overthe program execution. Tools adopting suchrtiggies are called visual debuggers. The cur-
rent program visualization and visual debuggings$a@ne good for illustrating and controllingthe
dynamic behavior of the target program in termeaftrol flow. T hus, they focus on visualizing
control execution, control structures, and functiatis besides showing variable values. How-
ever, typically these tools do not include the linfermation of variables. VILLE is a novel vis-

ual debugger that includes both visual debuggirdifi;s and role analysis. The tool thus sup-
ports understanding programs in more versatile wass any previous tool that we know.

VILLE is a program visualization tool which incomabes the role information and the aforemen-
tioned features for enhancing novice level programgnand debugging skills. We suggest that
the role concept should be included in introducianggramming course's curriculum, because
good knowledge and understanding ofthe role canepances student's ability to comprehend
programs in more abstract level. In addition, ViLpEvides a feature to generate pop-up gues-
tions about the role knowledge, the kinds like “imMsahe role of variable total”, “which sums up
the values in atable” or “what isthe role of &fe i that travels through the values 1,3, 9, 7,
during the execution of an algorithm”. In additiauestions such as "what values the variable
iter encounters duringthe execution” can alsoske

The system conforms also to several different tiegomethods by promotintpe programming
language independency paradigithis also aims for better comprehension of prograue to

the factthat from student's point of view, it @ that importantto learn how loops are defined in
particular programming language, but far more inguatly learn the basic principles behind loop
structures regardless of the language. This isatipghin VILLE, asteachers can define pseudo
languages of their own, suiting their needs bettlee defined (pseudo) language can be visual-
ized and executed like any other imperative languigrthermore, these aspects can be empha-
sized by executing the example simultaneously mlfeh view with two different programming
languages. Thus, a student can notice that progirgnenot a skill of mastering the syntax of a
programming language, but of mastering the basiceus and semantics behind programs. This
can also help the changeover from one programnainguage to another.

To support debugging and comprehension skills enere, VILLE auomatically generates a
description of the executed code to aid understanifiie purpose of every single code line. Not
to mention that the tool holds also typical feaswedated to debugging: breakpoints, step-by-step
execution, moving between breakpoints both forveard backward, representation of states of
variables, etc. The backward functionality, jushme one, is missing from many debugging
tools, which often frustrates students especialhhe early phases of learming.

We suggest that VILLE should be used in the intebolty programming courses to gather exam-
ples, to define alanguage if needed, to emphas#e points of programming language inde-
pendecy paradigm, to support leaming of role cpts;¢o boost effectiveness of code examples,
and finally, to improve students ability to debuglacomprehend programs.

291

Using Roles of Variables

Conclusions

In this paper, we have presented how VILLE candsgliio enhcance debugging skills of nov-
ices. VILLE is a versatile tool for visual debuggjrsuitable for novice level programmers that
are still forming their mental model of program ewigon. The tool promotes the use of roles of
variables which is a novel concept for novice lgwelgrammersto grasp the essential character-
istics of programs at glance. T his role informatéas learning of program comprehension and
assists the students in their way to master progriagnand debugging skills. In addition, VILLE
supports programming language independency paradigwhich the goal isto comprehend
programs and their components in more abstract leve

Future Directions

So far we have a proof-of-concept tool to show thetvisualizations androle information can be
automatically extracted from the source code. Hameexperimental studies will be needed in
the future to show that this new tool actually pobes learning and has the desired quality in
teaching and learning process in general.

Acknowledgments
This work was supported by the Academy of Finlandeaw grant number 111396.

References

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2008n analysis of patterns of debugging among novice
computer science student$iCSE '05: Proceedings of the 10th annual SIGC8#&ference on Inno-
vation and technology in computer science educai®di88, New York, NY, USA

Akingbade, A., Finley, T., Jackson, D., Patel,&PRodger, S. H. (2003). JAWAA: Easy web-based anima
tion from CSO to advanced CS courdesoceedings of the 34th SIGCSE Technical Symposium
Computer Science Education, SIGCSE'082-166, Reno, Nevada, USA.

Callaway, J. (2002)isualization of threads in a running Java progradhaster’s thesis, University of
California, June 2002.

Chmiel, R., & Loui, M. C. (2004). Debugging: Fromvwice to expertProceedings of the 35th SIGCSE
Technical Symposium on Computer science educatiti2l, New York, USA.

Détienne, F. (20025oftware design — Cognitive aspecdpringer-Verlag. ISBN 1852332530.

du Boulay, B. (1989). Some dificulties of learnitggprogram. In E. Soloway & J. Spohrer (EdSiudy-
ing the novice programmépp. 283-299).

Ducasse, M., & Emde, A.-M. (1988). A review of amated debugging systems: Knowledge, strategies
and techniquesProceedings of the 10th International ConferenceSoftware Engineerindl62-171,
Singapore.

Gugerty, L., & Olson, G. M. (1986). Debugging byllskl and novice programmer€H186 Proceedings
171-174.

Jain, J., James, |., Cross, H., Hendrix, T. D., @&dvski, L. A (2006). Experimental evaluation of-a
mated verifying object viewers for Jav@oftVis '06: Proceedings of the 2006 ACM Symposiom
Software Visualizatigr27-36, New York, NY, USA.

Johnson, W. L. (1990). Understanding and debuggingce programsArtificial Intelligence, 42 51-97.

Joni, S. N., Soloway, E., Goldman, R., & Ehrlich,(K983). Just so stories: How the program got b,
Proceedings of the SIGCUE/SIGCAS Symposium on Qenipteracy

292

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

Korhonen, A., Sutinen, E., & Tarhio, J. (2002). @relanding algorithms by means of visualized pesitt
ing. In S. Diehl (Ed.)Software visualization: International semin&56-268, Dagstuhl, Germany.

Kuittinen, M. & Sajaniemi, J. (2004). Teaching wlaf variables in elementary programming courses.
SIGCSE Bulletin, 38), 57-61.

Lee, G. C., & Wu, J. C. (1999). Debug it: A debuggpracticing systenComputers and Education, 32
165-179.

Lister, R., Seppéla, O., Simon, B., Thomas, L.,/AdaE. S., Fitzgerald, S., Fone, W., Hamer, J.dLin
holm, M., McCartney, R., Mostrom, J. E., & Sandéts(2004). A multi-national study of reading and
tracing skills in novice programmerSIGCSE Bulletin, 3@), 119-150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, Miagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas,
L., Utting, ., & Wilusz, T. (2001). A multi-naticad, multi-institutional study of assessment of pro-
gramming skills of first-year CS studen8GCSE Bulletin, 33), 125-180.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M2004). Visualizing programs with JeliotBroceed-
ings of the International Working Conference onaubed Visual Interface873-376, Gallipoli
(Lecce), ltaly.

Naps, T.L., Eagan, J. R., & Norton, L. L. (2000§AVE: An environment to actively engage students in
web-based algorithm visualizatiorRroceedings of the SIGCSE SessitdD-113, Austin, Texas.

Pacione, M. J. (2004). Software visualisation bjeat-oriented program compreh ensi®noceedings of
the 26th International Conference on Software Eagiing 63-65, Los Alamitos, CA.

Pennington, N. (1987). Comprehension strategiggagramming. In G. M. Olson, S. Sheppard, & E. So-
loway (Eds.),Empirical studies of programmers: Second worksHdj)-113.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski,(2008). Effectiveness of program visualizatidncase
study with the VILLE tool. (Manuscript submitted fublication.)

Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski,(Z007). VILLE — A language-indep endent program
visualization toolProceedings of the Seventh Baltic Sea Conferencgoomputing Education Re-
search(Koli Calling 2007), Koli National Park, Finlantlovember 15-18, 2007. Conferences in Re-
search and Practice in Information Technology, 8|. Australian Computer Society. Raymond
Lister and Simon, Eds.

Robins, A., Rountree, J., & Rountree, N. (2003)rhing and teaching programming: A review and dis-
cussion.Computer Science Education, (28 137-172.

RORling, G., Schiler, M., & Freisleben, B. (200Dhe ANIMAL algorithm animation toolProceedings of
the 5th Annual SIGCSE/SIGCUE Conference on Innowand Technology in Computer Science
Education, ITICSE'0037-40, Helsinki, Finland.

Sajaniemi, J. (2002). An empirical analysis ofsodd variables in novice-level procedural prografs-
ceedings of IEEE 2002 Symposia on Human CentricpDting Languages and Environmengs,-39.

Sajaniemi, J., & Kuittinen, M. (2003). Program aation based on the roles of variablBsoceedings of
the 2003 ACM symposium on Software visualizafeb6, New York, USA.

Shneiderman, B., & Myers, R. (1979). Syntactic/s#ieanteractions in programmer behavior: A model
and experimental resulttternational Journal of Parallel Programming(3®,219-238. ISSN 0885-
7458.

Smith, P. A., & Webb, G. | (1995). Transparenchulging with explanations for novice programmers.
Proceedings of the 2nd Workshop on Automated agdriiimic DebuggingSt. Malo.

Spohrer, J., & Soloway, E. (1986). Novice mistalkde® the folk wisdoms correctCommunications of the
ACM, 297), 624-632.

Stasko, J. T. (1997). Using student-built algorilmmations as learning aidBroceedings of the 28th
SIGCSE Technical Symposium on Computer Sciencafimiyc25-29, San CA, USA.

293

Using Roles of Variables

Stasko, J. T., Domingue, J. B., Brown, M. H., &d@riB. A. (1998)Scftware visualization: Programming
as a multimedia experienc€ambridge, MA: MIT Press. ISBN 0-262-19395-7.

Tenenberg, J., Fincher, S., Blaha, K., Bouvier,ahen, T.-Y., Chinn, D., Cooper, S., Eckerdal, Jahn-
son, H., McCartney, R., & Monge, A. (2005). Stugaésigning sottware: A multi-national, multi-
institutional studylnformatics in Education, @), 143-162.

Valentine, D. W. (2004). CS educational researcimeta-analysis of SIGCSE technical symposium pro-
ceedings SIGCSE '04: Proceedings of the 35th SIGCSE TechBaposium on Computer Science
Education 255-259, New York, NY, USA

Vessey, |. (1986). Expertise in debugging compptegrams: An analysis of the content of verbal grot
cols. IEEE Transactions on Systems, Man, and Cybernetg21-637.

Zeller, A. (2001). Animating data structures in DDOProceedings of the First Program Visuliztion Work-
shop — PWV 200®9-78, Porvoo, Finland.

Biographies
Mikko-Juss Laakso is a PhD student working as a researcherin a
joint project of University of Turku and Helsinkidizersity of Tech-
nology. He received his M.Sc (Computer Scienc&0D3. His re-
search interest covers program and algorithm viign, leaming
environments, computer aided and automatic assessmeomputer
science education.

Lauri Mami is a professor of Computer Science at Helsinkveni
sity of Technology. He received his D.Sc. (T edegree from the
same university in 1997. His current research eptretes mostly on
computing education research, especially develogirtgevaluating
tools for supporting programming education, andewgtéinding vari-
ous aspects of how students learn programmingeBsof Malmi is
leading the COMP SER research group
(http://Amww.cs.hut.fi/Research/COMP SER/

Ari Korhonen is aresearcher and instructor at Helsinki Uniiaeis
Technology (HUT). He received his M.Sc. (Computeaece) in
1997, and his D.Sc. (T ech) diploma in 2003. Higagsh includes data
structures and algorithms in software visualizatiarious applica-
tions of computer aided learning environments audraatic assess-
ment in computer science education.

294

Laakso, Malmi, Korhonen, Rajala, Kaila, & Salakoski

Teemu Rgjala is a PhD student atthe University of Turku. He re
ceived his master’s degree from the same univers@07. His re-
search focuses on visualization of programs anarittignic problem
solving.

Erkki Kaila is writing his master thesis on program visualaain

programming learning in University of Turku. Hissearch interests
include program visualization systems and IT edooat

Tapio Salakoski is a professor of Computer Science at University o
Turku, where he received his Ph.D. in 1997. Hissmmasearch focus
has been in methodology development using mackamihg and
other intelligent techniques. He is leading a ndigtiplinary research
group studying various task domains, including feols related to
human learning and compuing education research.

295

