
Proceedings of the 2007 Informing Science and IT Education Joint Conference

Creating Learning Objects
Carlos Francisco Lerma

General Directorate of Technological Innovation
Universidad Autónoma de Tamaulipas,

Ciudad Victoria, Tamaulipas, México

cflerma@uat.edu.mx

Abstract
The changes that computers have introduced to society include the way and speed in which hu-
mans acquire knowledge and process information. The use of computers has been driven by aca-
demic research, and it is within academic settings where the use of computers has been felt
stronger by society.

This paper identifies the different types of learning objects and determines the factors that should
be taken into consideration in the creation of learning objects, along with the different tools
needed to create them.

Next, we will analyze the factors that should be taken into consideration in the creation of these
modules, such as learning types, social and psychological factors of learning that guide the crea-
tion of learning objects; tools and recommendations proposed to facilitate the creation of learning
objects and economic costs of developing these materials.

Keywords: learning, objects, creation, types, metadata, cost

Introduction
Ever since its conception, computer software has been seen as a potential tool used as an effective
aid in the learning process of many areas of knowledge. Fighter pilots, bus drivers, and even car
sales personnel have benefited from the extensive use of electronic software tools that provide not
only a situational, experiential and dynamic learning environment, but also, in many cases, a set
of learning guidelines that take the students through a training/learning process that eases the ac-
quisition of knowledge and reduces the required time to learn new skills or concepts.

Learning Objects represent an important element when using electronic media to deliver educa-
tional contents to an audience in a learning environment. Learning Objects provide both of the
aforementioned concepts: the basic building blocks used to construct the software tools and a
dual-purpose method that not only points out the way to use the software tools but also serves as a

guideline to deliver content in an organ-
ized and effective way. Experienced
educators have benefited from these
tools by adding powerful and dynamic
tools that enhance and enrich the overall
learning experience. Novice educators
with no pedagogical experience adopt
them as a tool that enables an effective
transfer of their experiential learning to
students while providing them with an

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Creating Learning Objects

114

ordered method to structure a course’s lessons.

Learning objects have proven to be effective as aids to accelerate the process of learning. But
their construction does not involve a simple method, as their nature is directly linked to the intri-
cacies of human cognitive and learning processes. Learning objects differ from ordinary software
development projects because their assembly is not only guided by simple client requirements but
by the learning particularities of the students that will use them. A learning object used to train
fighter pilots will differ significantly from one that will be used by car salespersons. Taking this
fact as starting point, not only is the target audience the main factor to take into account but also
the sociological, psychological, and cognitive particularities of that specific target audience,
which will be assessed later in this chapter.

Types of Learning Objects
Software tools revolutionized many fields of science due to the practical and almost immediate
benefits that information processing brought to humans in the 1960’s when the use of computers
to automate the processing of large amounts of information became an everyday reality. Being
evolution a natural process in almost every aspect of human life, software was not the exception.
Learning objects derived directly from the use of software tools with educational purposes, be-
coming self-contained elements whose main application was to aid in the teaching of specific
concepts. As special types of software became specifically learning-oriented, learning objects
appeared as pieces of electronic media with specific application in the educational field.

The term “Learning Object” derives initially from Object - Oriented Programming, a modern
trend in software development focused towards the use of visual elements integrated into inter-
face design, and its application into development efforts whose main purpose is the creation of
software with educational purposes.

Wiley (2000) provides a classification of types of learning objects, making it easier to understand
the nature of the elements contained inside of them:

• Fundamental – The basic, most simple form of learning aid. A simple image depicting a
stage of a surgical procedure

• Combined-closed – Still a simple element but one that integrates more complex mecha-
nisms in order to provide an explanation. An animation or video clip depicting a surgical
procedure, including audio

• Combined-open – Several simple objects encased inside integration elements. An integra-
tion element (i.e. a website) that includes the image and the video clip of the surgical pro-
cedure, along with the use of plain text that explains the procedure

• Generative-presentation – Combination of objects providing advanced visual and audi-
tive capabilities with limited interactive features. A dynamic Flash animation capable of
generating and recreating a visual picture depicting a surgical procedure and its inherent
operational conditions

• Generative-instructional – Combination of objects providing advanced visual and audi-
tive capabilities with advanced interactive features, allowing a high level of hands-on ex-
perience. A dynamic Flash animation, linked to an image and text database, capable of
generating a graphic environment depicting a surgical procedure and its operational envi-
ronment, where users can manipulate surgical instruments and monitor patient vital signs
in order to provide hands-on instruction

 Lerma

 115

Allert et al. (2004) provide a purpose-oriented definition of learning objects. This definition helps
understand the scope of a learning object in terms of its purpose, be it direct instruction of con-
cepts or providing guidelines and/or methods to use learning objects in learning environments:

• First – Order Learning Objects (FOLOs): These are “resources which are created or re-
designed towards a specific learning objective”. These learning objects depend on the fi-
nal objective of the learning process, making them specific to the concepts they aim to
explain. Logically, the learning objectives or final concepts will define the form of the
learning object and its content. In concrete terms, FOLOs represent the prime matter used
to initially construct learning objects. Texts, images, animations or videos fall into this
category since they are used basically to give form to learning objects.

• Second – Order Learning Objects (SOLOs): Defined as “resources which provide and re-
flect a strategy”, SOLOs define guidelines and strategies to plan a learning environment.
They also provide aid and serve as a strategic plan to promote the creation of knowledge.

Both classification criteria illustrate an important fact about learning objects, they are small
elements that combine themselves to form self-contained systems or sub-systems whose na-
ture can be objective (concept specific, tangible learning materials) or subjective (learning
methods and systems focused towards the transfer or acquisition of knowledge). Still, it was
previously noted that learning objects are dynamic in terms of their nature. Technology is not
static and its inherent evolving characteristics suggest several aspects regarding the properties
of learning objects that need to be taken into account. Table 1 shows those properties in de-
tail.

Table 1. Goals of Learning Objects
Source: WBITC Trends. http://www.wbtic.com/trends_objects.aspx

Goals of Learning Object Design

Goal Description

Reusability Learning content modularized into small units of instruction suitable for as-
sembly and reassembly into a variety of courses

Interoperability Instructional units that interoperate with each other regardless of developer or
learning management system

Durability Units of instruction that withstand ever evolving delivery and presentation
technologies without becoming unusable

Accessibility Learning content that is available anywhere, any time—learning content that
can be discovered and reused across networks

Static Learning Objects
Additionally, as we discussed the major classifications of learning objects based in their in-
herent nature, Table 1 does not cover a classification of learning objects based on their dy-
namic and evolving nature. Learning objects can be produced as software materials intended
to be fairly static and constant. Their contents abide to a specific form and style that does not
vary throughout the overall learning experience. This approach is useful in a controlled learn-

Creating Learning Objects

116

ing setting where participants have almost equal levels of experience and learning capabili-
ties. Such learning objects can be found in professional training materials used for profes-
sional certifications offered by IT/Telecomm companies like Microsoft or Cisco Systems
where simulators, animations and explanations follow a predefined path that does not vary in
terms of difficulty levels or overall lesson detail.

Static Learning Objects are helpful in instructional settings with simple and/or very straight-
forward requirements, generally similar to those in which educators need to have full control
of the learning method and process. This may become a drawback when educators need to
adapt to the ever changing way of knowledge acquisition of students. In order to fulfill this
need, Dynamic Learning Objects are conceived and designed to be used within learning envi-
ronments where an educator encounters variable levels of skill, experience, retention and rea-
soning amongst a group of learners. Dynamic Learning Objects represent a great challenge
when adapting educational software to the true nature of humans’ learning methods.

Dynamic Learning Objects
The nature of the cognitive/learning process in humans has been identified by extensive re-
search as a dynamic process that takes many forms and changes its path from one individual
to the other. Learning/cognitive processes take place inside the learning individual, regardless
of the delivery method used by the teaching entity. The method relies on the most successful
learning experiences or methodologies previously used by the individual in order to under-
stand any given topic required for him to learn. On most occasions, a student learning any
given topic will focus his/her senses towards the teacher in a lesson with the sole purpose of
acquiring knowledge in the first place but it is the dynamic nature of the assimilation, synthe-
sis and retention processes that follow what becomes the main focus when educators and de-
velopers try to design learning objects that adapt to those variable forms of learning. Harness-
ing and assimilating the ever-changing nature of the aforementioned processes will result in
effective methodologies and procedures that contribute to elevate the effectiveness of learn-
ing objects by educators or developers.

Different fields of science might require different learning methods for different students. A
simple analysis of learning techniques show us that Mathematics and applied sciences rely on
clear explanations followed by repetitive exercises in order to grasp a concept (i.e. How to
solve an equation or how to determine a finite amount based in different factors that integrate
a formula). Social sciences and arts rely more on reading comprehension, image association
and pure concept retention in order to understand a series of events (i.e. a synopsis of a group
of events that conform a historical era or event like the French Revolution or World War II).
Languages and linguistics make use of associations of visual elements of characters and
pieces of text and auditive resources in order to explain how to group characters or words to
construct phrases or sentences in order to speak or write a given language, the latter concept
exemplified in Lam et. al. (2004) through research conducted in China with the purpose of
addressing those needs while learning to handle the complexities of Chinese characters.

These variations represent a starting point towards understanding of the use and selection of
teaching/learning methods that give form to learning objects development. Adapting those
combinations of learning methods to the modus operandi of learning objects is crucial to en-
sure that the latter can be effectively used by heterogeneous groups of students where learn-
ing capabilities and overall skill levels vary greatly. Conquering this obstacle also pre-
conceives an important expectation: the fact that learning objects can change its form, level of
difficulty, delivery method and overall information load by means of information collection
resources such as surveys and questionnaires whose results serve as guidelines to dynami-
cally generate learning objects and logical paths to use them.

 Lerma

 117

Additionally, there is an important distinction to be made in relation to dynamic learning ob-
jects design (which can also be applied to static learning objects): the type of design orienta-
tion. This characteristic clearly identifies the type of approach used in the design process of
the learning object, which can be teacher-oriented or student-oriented. Teacher-oriented
learning objects are developed with teachers’ methods and preferences as the main design
element and are preconceived to follow teachers’ methods and techniques in relation to the
learning path that control the flow of activities during the lesson. This design orientation is
useful in learning object design projects intended for use in groups displaying rather stable
learning conditions and groups of students with homogenous learning skills and expertise.

Student-oriented learning objects are developed around the students’ requirements and pref-
erences. This learning object orientation tries to adapt lesson flow, contents, difficulty level
and lesson pace to the students’ learning/cognitive methods and capabilities by gathering in-
formation before the start of the lesson. This enables the learning object to determine what
pieces of information must be chosen as lesson elements, what aids must be invoked to pro-
vide additional support to the lesson, what type of elements (visual, auditive or both) the user
prefers to manipulate and if the lesson pace will be set to fast, slow or an intermediate spot.

The aforementioned classification criteria for learning objects enumerates the main elements
that need to be integrated and the orientation needed by the final product in order for it to be
useful in real life. We can see that centering the development method on users’ require-
ments/preferences is a good choice when trying to narrow the gap between man-made learn-
ing aides and human cognitive processes. But, even when this is a highly desirable result, it is
far from being the solution to all the issues regarding learning object design. There might be
specific situations in specific fields of knowledge in which instructors need to have control of
what is being taught, enabling them to have a more effective control regarding the learning
process of students. Equally, tight control and pre-defined learning materials designed with-
out taking into account the variations in a learning environment have an equally negative im-
pact as the opposite orientation scheme we previously mentioned.

An example of an entry-level dynamic learning object is proposed by Lam and Ki (2004) to
aid students learning Chinese. The learning object proposes the use of an operational frame-
work coupled with visual and auditive aids whose properties can be dynamically manipulated
by the user in order to understand inherent variable elements in the Chinese language, spe-
cially those visual (written) and auditive (sounds/pronunciation).

This dynamic learning object is comprised of a tool whose main function is to display Chi-
nese characters and their variations. Users select characters commonly used in Chinese and
perform different activities, like changing the form of the characters by altering the strokes of
which they’re made of or comparing symbols that bear close resemblance to one another not
just graphically but also in regards of their meaning. More advanced activities include con-
structing a character based on certain strokes with the help of aides like a flashing pointer
whose blinking increases as users come close to correctly assemble a character and auditive
components that reproduce spoken versions of assembled characters as they are combined af-
ter assembly to form sentences or paragraphs.

The application and adaptation of dynamic learning objects to the intricacies of human learn-
ing processes is particularly interesting in this case, due to the fact that these learning objects
are quite simple but their design enables them to adapt to different learning levels and capa-
bilities in extremely heterogeneous groups. This model was field-tested in Hong Kong using
groups of students in different learning settings taking into consideration differences between
students like their variable skill levels and academic progress rate. Positive results were ob-

Creating Learning Objects

118

tained from tests, having the tool been accepted by teachers and students and considered as a
helpful aid.

Technologies Used in Learning Object Development
In order to begin the construction of a Learning Object, one of the elements that developers
and educators alike must choose is the technology they will use to build their product. This
part is essential in the construction process because it resembles the use of a tool to perform a
task by a construction worker: it relies heavily on how comfortable, experienced and knowl-
edgeable a worker is when it comes to using that specific tool (like a sledgehammer, a chisel
or a nail gun). Expertise in terms of the use of a development tool when it comes to produce a
quality learning object is crucial in order to deliver the desired knowledge or instruct a sub-
ject in terms of a specific topic because the developer knows which features and special char-
acteristics he/she must apply when using the desired development tool according to the pro-
ject in progress. The objective is to use those development tools and their features to the full-
est in order to produce a learning object that can accurately deliver the knowledge to the end
user, reduce the time it takes to effectively acquire and assimilate that knowledge and adapt
to the multiple ways in which students synthesize information internally.

There is not a specific technology or tool that is considered the “Magic Bullet” when it comes
to effectively build a learning object. The choice depends on many factors that affect any
software development project:

- Initial Requirements: First step towards the start of most projects, analyzing pro-
ject requirements and objectives helps to eliminate possible candidates in terms
of tools to be used to develop a learning object.

- Functionality: Specific tools might not be able to perform or design a certain
function or movement specifically needed in order to deliver a concept or expla-
nation.

- Developer’s Expertise: Familiarity with a certain development tool or method is
an important factor when a developer chooses which software he will use to build
a learning object. It is important to contemplate this variable in order to get the
most out of our developer’s efforts and expertise.

- Visual Impact: Certain learning object development projects require a high de-
gree of visual dynamism. Certain tools provide better ways to handle graphics
than others.

- Element Interaction: The degree in which a development tool can handle the fu-
sion of different types of media like text, audio, video and animation; in a single
object.

- Compatibility/Integration: The ability of a tool to be able to interact with file
types from other tools. This feature makes it easier to compensate flaws or pit-
falls between two or more tools in a development project. Compatibility to run on
different platforms and adapt to different hardware configurations is also a very
important issue when selecting learning object tools.

- Ease of Use: Related to the second entry in this list, ease of use focuses more on
novice educators or developers and how fast they can learn to use software tools
to develop learning objects.

- Cost: Choosing authoring tools and technologies can also be directly linked to
project budgets constraints. Well-funded projects with no budget limitations can

 Lerma

 119

afford to use advanced tools, while projects with poor funding and budget con-
straints can benefit from the use of open-source or freeware applications, pro-
gramming languages and platforms.

It is clear that there is not a technology focused towards the production of specific types of learn-
ing objects. Developers and educators alike can make use of any technology available at hand as
long as the final product clearly fulfills the educational roles that it is supposed to play. In relation
to the functions that development tools fulfill there is the need to establish a significant difference
between two groups in order to better understand their roles inside of an educational setting. One
group of technologies is intended to produce learning objects per se, while a second group pro-
vides the platform from which those learning objects are stored, managed and delivered to end
users according to their needs and requests. Last, an information component or property embed-
ded to learning objects is needed in order to ease on the identification, classification and storage
of learning objects contained in repositories.

Development Tools
Development tools are intended to produce learning objects in the first place. They provide means
to manipulate text, images, video and other basic media. The applications or learning objects de-
veloped by using these types of tools represent what can be called a “front end”: The elements
that are closer to the user and that will be directly manipulated by it. Their secondary function
consists in integrating or packaging those basic elements into one single entity which will become
a learning object. Additionally, advanced development tools provide means to integrate educa-
tional methodologies that guide the developer/educator into organizing their content in order to
maximize the effectiveness. García and García (2005) propose an advanced tool that not only in-
tegrates basic element editing and integration capabilities into a single software product, but also
provides guidelines to organize and structure the content of a learning object according to learn-
ing ontologies, achieving a high level of quality in terms of the final product.

Development tools include, but are not limited to:

Office suites
Office suites like Microsoft Office, Corel WordPerfect Office and StarOffice (by Sun Microsys-
tems) provide tools to perform basic actions like text editing and spreadsheet generation. Presen-
tations generated by components of office suites like Microsoft PowerPoint have been used in
classrooms extensively and provide a good tool to organize the contents of a course. They also
have good capabilities to integrate different types of media into a single learning object.

Hypertext editors
These tools allow users to create Hypertext documents (webpages or websites) by using a simple
interface. Because of the fact that building a webpage involves using Hyper Text Markup Lan-
guage (HTML), users who lack the programming skills can still create hypertext documents by
taking advantage of a graphic environment in the same way that skilled programmers would by
manipulating commands and HTML tags. Hypertext editors also allow integration other types of
media by linking them into a single document.

Vector graphics editors
These tools allow users to produce high-quality animations. These visual aids are very popular
amongst graphic designers due to the fact that file length is typically short and issues like move-
ment, image transition, morphing and the inclusion of sound and text is almost seamless. Once
compiled into a single file, objects produced by vector graphics editors are also able to run on any

Creating Learning Objects

120

type of computer without the need of a special software or plug-in, while still retaining their
original features and quality. Some of these editors provide developers additional tools to man-
age the flow of presentations and handling the relations between the elements included within the
lesson, making it easier for educators to control the pace of the lesson and to visualize the entire
contents of the course (i.e. by generating maps of elements). Examples of vector graphics editors
include Macromedia Flash, Director and Authorware, the latter being an example of a product
that includes the aforementioned educator-oriented aids to control lesson flow and overall visuali-
zation capabilities.

Advanced programming languages
These tools provide developers and educators with the building blocks to create advanced appli-
cations that can be adapted to become learning objects. Programming languages and techniques
also allow for accurate planning and development of applications according to very specific re-
quirements. By manipulating commands and instructions defined into a programming language’s
structure, a developer can create application that can run in a stand-alone manner or by using al-
ternate pieces of software. They also provide capabilities to extend different software tools like
the ones listed above, by providing the means to modify them and connect them to operating sys-
tems and databases. Programming languages provide the maximum level of application customi-
zation and the resources to create brand new software products. Additionally, techniques like ob-
ject-oriented programming (currently supported by most programming languages and commercial
software development products) allow for the creation of pieces of software that integrate a
graphic interface, allowing for the manipulation of elements like buttons, forms and text boxes
that end users can easily understand and work with. However, in order to benefit from these fea-
tures and capabilities, developers and educators require having knowledge, training and expertise
in the use of advanced programming languages. This condition makes them more difficult to use
than any of the previously mentioned tools. Examples of these tools include most programming
languages used today, like Visual Basic, PERL, C++, Java and Development suites like Microsoft
Visual Studio .NET and Sun Java Studio.

Platform Tools
While development tools provide the means to build learning objects, platform tools provide the
infrastructure needed to store, run and distribute learning objects to end users who require them.
Platforms are robust operating systems installed on high-performance pieces of computer hard-
ware whose main purpose is to control and manage resources stored in them while handling the
requests for access to files from multiple clients at once. Platform tools also organize content by
cataloguing it and keeping it ordered according to designers’ needs. Platform tools also house
systems whose sole purpose is to provide management of learning objects according to a specific
deployment.

Platform tools include, but are not limited to:

Operating systems
They represent the most important software installed in a computer, since it allows it to run in a
proper manner. Operating systems define how many and which people can access resources
stored in a computer, restricts storage quotas for users, allows or denies access to files and re-
sources and makes them available to a large amount of users, amongst many other activities. Op-
erating systems are designed to be installed either in smaller personal computers (desktop operat-
ing systems) or large servers (network operating systems). Learning objects can be stored and
distributed from both platforms, but the nature of learning objects is more focused towards multi-
ple access of files by multiple users, making network operating systems the de facto choice for

 Lerma

 121

learning object storage and deployment. Additional platform tools like databases are supported by
operating systems, since the latter becomes the underlying support structure on which the former
are built on. Operating systems include the Microsoft Windows family of operating systems
(Windows 2000, XP, 2003), Solaris (by Sun Microsystems), UNIX, Linux and Macintosh’s Mac
OS as some of the most popular names in the industry nowadays.

Databases
Tools designed to maintain an ordered structure of elements housed inside a computer. Databases
apply methods of organization to large groups of information that needs to be displayed or trans-
mitted in an ordered manner. Databases work by ordering data according to search criteria that
looks for records inside of cataloguing units called tables. Subsequently, tables contain organiza-
tional units named fields, in which special information is stored. A group of fields subsequently
forms a record. Query engines look for specific information contained inside of fields, generating
matches once information has been found. Databases are mounted on top of operating systems in
order to consolidate a database server. Examples of databases used widely today are Microsoft
SQL Server, Oracle, Informix, DB2 (by IBM) and MySQL.

Learning management systems (LMSs)
These tools provide a management system with organization and classification capabilities to de-
liver online courses and lessons to groups of users. In general, a learning management system can
be defined as a software tool that manages educational content and resources stored in a reposi-
tory (server) in order to deliver them to users in a controlled learning environment. These can ei-
ther be bought from manufacturers or built from scratch by a developer or educator according to
specific needs. They are also mounted on top of an operating system in order to work, but they
limit their management capabilities to the educational content stored in the server rather than the
overall resources of it. Learning management systems also perform important tasks regarding the
delivery of learning objects and courseware by tracking user habits, how many times are re-
sources accessed, can send and receive e-mail, establish collaboration tools like discussion fo-
rums, reception of documents and delivery and analysis of tests. Depending on specific needs,
learning management systems can be tweaked to include additional custom features. Popular
commercial solutions include WebCT, Blackboard and Microsoft SharePoint Portal Server.

Xuan et al. (2004) propose what is called a “Learning Objects Management System” (LOMS),
similar to a Learning Management System but exclusively focused in managing learning objects
stored in a server, rather than the functions of a full-scale learning management system. This sys-
tem integrates a new type of management strategy for learning objects because many LMSs limit
themselves to the management of courseware, but not of learning objects per se, providing a tool
whose importance lies in extending the cataloguing and organization of learning objects inside of
a plain LMS. By extending these capabilities inside of a LMS, the provisioning of learning ob-
jects to the user can be more accurate according to the type and special characteristics of learning
objects requested by users.

Metadata
The last element of technology in order to create learning objects, metadata is not a technology in
itself, but an information property of files and objects that aids in their correct classification and
cataloguing. Metadata can be defined as “data used to describe other data. It can be used to de-
scribe information such as file type, format, author, user rights etc. and is usually attached to files
but invisible to the user” (Europe4DRM, 2005). These data attributes make it easier for Learning
Management Systems to look for the elements that it needs in a repository that may contain large

Creating Learning Objects

122

amounts of learning objects due to the fact that the search engines on most LMSs (and LMOSs)
make use of metadata once a query is submitted or the system is looking for a file.

After understanding the types of learning objects that can be produced according to the needs of
educators and institutions and understanding the different technologies available for developers
and educators in order to produce an effective learning management system to deliver those learn-
ing objects, the economic aspects of the production of such objects and systems is an important
aspect of project planning. The cost modeling of learning objects is important to assess the overall
amount of economic resources that will be allocated in order to produce an effective product that,
at the same time, fits into the budget of the responsible individual or institution.

Currently, the Working Group 12: Learning Object Metadata of the Institute of Electrical and
Electronics Engineers (IEEE, 2002) has produced the most comprehensive and accurate standards
to define the minimum set of metadata that learning objects must contain within themselves. Ini-
tially, this standard “specifies the syntax and semantics of Learning Object Metadata, defined as
the attributes required to fully/adequately describe a Learning Object”, setting the foundation for
the elements to be considered by the creators of a specific learning object in order to accurately
describe its contents. According to this standard, some of the metadata fields that must be con-
tained in a learning object are: Type of object, author, owner, terms of distribution and format.

If the case applies to a specific learning object, metadata can also contain the following “peda-
gogical attributes: Teaching or interaction style, grade level, mastery level and prerequisites. The
standard also defines that these attributes of metadata must accommodate the possibility of them
being extended or reduced as needed and their nature can be required to be mandatory or op-
tional. The standard also provides security and privacy information among other optional fields.

Learning Objects Software Cost Modeling and Analysis
A software cost model is a tool used to assess the amount of resources needed to build a software
system. These models work by integrating a series of estimations represented by rough numerical
values that equal or near equal to real-life true values. These tools are used by developers to cal-
culate many important factors, like work schedule, implementation deadlines and predictions to-
wards final product value and support schemes. Depending on the estimation, the information
given and processed will aid towards the determination of many other factors, like project feasi-
bility and overall planning. Cost models also aid in the allocation of resources throughout the
span of the project.

Most cost models rely on information from past projects. Whether it is a model of general use,
like the Constructive Cost model (COCOMO) or the Function Points model, historical data is
used to make precise comparisons based on effort, resources and total project cost in order to
provide a developer with a template that is applied to a list of requirements. Once the template is
integrated with the data from the client’s requirements, the result provides a numerical value that
expresses the desired projections in terms of the final value of a project.

Currently, there are several preconceived software development cost models that serve as a good
stepping stone to produce an initial assessment towards an effective determination of the final
price of a software development project. These techniques are based on mathematical models that
represent the cost elements and their interactions between themselves by tying them to rather
complex formulas. The outcome of those calculations represents many aspects that need to be
taken into account to determine the final value of the development project. Size is a primary cost
factor in most models. There are two common ways to measure software size: lines of code and
function points. Values like total effort (expressed in dollars per hour), function points and thou-
sand of lines of code provide quantifiable amounts that accurately represent the elements needed
to take into account in a software development project.

 Lerma

 123

Peters (1999) lists four basic steps in software project estimation:

1. Estimation of size of the software system expressed in Lines of Code (LOCs) or Function
Points (FCs).

2. Effort estimation expressed in hours per person or months per person.

3. Project’s schedule estimation expressed in months

4. Project’s cost estimation expressed in dollars (or local currency)

Size Determination
Estimating the size of the software system constitutes the first step towards the construction of a
model. This process begins by reviewing the project’s basic requirements, since a customer must
always provide an initial list of requirements in order to understand what is needed to do. This
process takes up a moderate amount of time, since the developer must have as much information
regarding what needs to be done and if special requirements (functional or technological) need to
be fulfilled in order to consider the model useful. Sometimes, a developer might encounter diffi-
culties when trying to assess the initial requirements or estimates, but this phase can be fulfilled
by a simple face-to-face encounter with the client, where the latter could only give a broad idea of
what the product is supposed to do and what kind of requirements it must fulfill. Subsequent in-
formation from the client is useful throughout this part, since that enables the developer to per-
form adjustments and re-estimate the size of the software system.

In order to assess the size of a software project, a developer can produce a precise estimation of
this value by comparing the requirements list to historical data or by applying a template of algo-
rithms to the requirements list. If the developer uses the first option, he/she must downsize or es-
calate the size of the current project in direct relation to a previously produced software product.
Once this process has been repeated several times by comparing it to previous projects, the result
is a final value that resembles a similar project. The difference lies in the fact that the new estima-
tion has already integrated specific values that are particular to that specific solution and that
were not estimated in the past.

By choosing the second option, a developer must assess the number of features or functions that
the software system will need to have and then, an algorithmic approach will be applied to it in
order to understand the weight of every one of those required features or characteristics. This op-
tion is very useful when it is used by a more experienced developer, due to the fact that those
types of developers are very specific when it comes to functionality pricing and know how much
a component or function really cost. It is also very useful when the software system tends to adopt
a “tree form”, in which several subsystems or sub-functions are needed to be integrated to a main
system, similar to modular systems like SAP.

Effort Determination
Effort estimation uses the data from size estimation in order to come up with very important ele-
ments that will shape the software development process. Effort will be measured by man-
hours/dollars spread out throughout the course of a schedule set by the project leader. This part of
the process is marked by the determination of schedules and the use of the Software Development
Lifecycle (SDLC). The SDLC acts as a signaling mechanism that announces the developer when
a phase must start and end. It also serves as a tool to assess the amount of time that will be needed
for each and every type of development activity: design, coding, and initial testing. This part
highlights a very important fact about software development: not everything is coding. In order
for it to function properly, a software system must undergo several phases and coding is only one
of many elements.

Creating Learning Objects

124

The effort estimation phase uses a similar approach from the size estimation phase. It goes back
in time to do a comparison with information from past projects in order to come up with a realis-
tic approach represented by a finite amount, which can be either an up scaled or downsized ver-
sion of a past project. The basic premise to calculate effort consists in determining the value for
each man-hour of the project, whether it is a design, coding or testing effort. Each category must
be weighed separately, as it is a logical that the same effort will not be put into an hour of those
three categories. Once obtained, the effort value will reflect the monetary value that each man-
hour represents, in relation to the type of effort done.

Once again, a developer can determine values by using two different approaches towards the ef-
fort. The first approach consists of going back to historical data in order to find a similar project
to the one being analyzed. Once found, the historical data will be compared to the current project
in terms of the complexity of each effort function (design, coding and testing) in order to come up
with a value that represents the reality in terms of the current software project. This approach also
assumes that the tools, schedule and development lifecycles are similar in both the past and cur-
rent software projects.

The second option is more suitable when working towards a very specific project that doesn’t
allow for comparison with historic data due to either lack of the latter or because of the high level
of complexity of the project to be developed. This approach involves the developer to estimate
the total size of the software system (using either method for estimation of size) and then apply-
ing an algorithmic method that enables a direct conversion of size to effort. As a reference, the
original COCOMO model, the updated COCOMO II model and the Putnam Methodology are
three cost models whose accuracy can be relied upon, since they have been modeled using data
collected from thousands of software development projects and its effectiveness has been proven
in the field with a high level of success.

Schedule Determination
The determination of the schedule in relation to the software project depends entirely on the de-
termination of size and effort. Once these two elements have been determined, the next logical
step is to distribute the workload across the allotted period of time that the development operation
will take in order to determine work distribution between team members.

For an easier understanding, the schedule estimation phase takes the form of a technique used by
developers named the Work Breakdown Structure. According to Olson (2001, pp. 119-121), “the
Work Breakdown Structure is a top-down hierarchical chart of tasks required to complete the pro-
ject. The WBS is hierarchical in that different levels of detail can be described. The overall pro-
ject consists of a set of major activities or major project sub-elements”. The WBS is also a good
way to control the flow of tasks across the lifespan of a project, since many of those tasks can be
set up in a sequential matter, chaining them together. This condition can be worked out by effec-
tively mapping out the correlation between tasks and assigning team members to carry them out
in an orderly fashion.

The addition of elements like a responsibility matrix and an organization chart make it easier to
identify boundaries like task responsibility and areas of action.

Estimating Cost
Once the size, effort and schedule estimation phases have been determined, the last element that
needs to be determined is the total cost. Cost is represented by a numerical monetary value that
expresses the total amount of resources put into the software development project. In accordance
to traditional cost accounting practices, the three elements of cost are:

 Lerma

 125

- Labor: Generally known as salaries, this group includes all the resources allocated into
paying for professional services by laborers. In this particular case, every person directly
involved in the development process. This can be considered the core of the cost groups,
since most of the cost comes from labor. The determination of the cost group is made by
multiplying the wages paid for each hour of work by the total number of hours worked.

- Materials: All matter used into manufacturing a product.

- Indirect Production Costs: Every other element that, because of its nature, cannot be fit-
ted into the previous two cost groups.

Conclusions
The creation of Learning Objects is an activity that involves many intricacies in regards of the
effectiveness they must possess in order to serve as a usable tool to aid and/or accelerate the
process of learning in students. Initially, the first barrier encountered in the process of introducing
learning objects in the classroom consists on learning objects being dynamic enough to adapt to
the internal learning processes of every student in a class. This is a problem that will be tough to
solve, mainly because of the extremely difficult way to determine how the learning process takes
place in humans. Even though this is an important issue, it does not lessen the effect that learning
objects can have in improving and/or accelerating the learning process once they are applied in an
educational setting.

Learning objects by themselves are effective but, in order to obtain the best results, learning ob-
jects must be used in conjunction with alternate technologies that allow for the use of multiple
learning objects, to reuse them, to observe user behavior in order to select the most suitable ob-
jects for every student, to establish a way to store, arrange, classify and extract learning objects
and to display them in a proper manner so the user can manipulate them. This is achieved by the
use of repositories and Learning Management Systems. As stated by Atif et al. (2003), the maxi-
mum level of adaptation to a user’s behavior and learning needs is achieved by the interaction
between learning objects, a learning management system and a repository combined with tracking
a student’s behavior in order to select the objects that are more suitable for his/her level of ad-
vancement in the learning process.

Cost determination is important in order for developers and educators to make initial budget con-
siderations that help them shape the cost of a learning objects development project. Depending on
the type of project, it is crucial to consider the amount of economic, human and intellectual re-
sources in order to fine tune its development phase and to identify those parts of the budget where
resource allocation is scarce and had to increase. This will ultimately lead to better resource allo-
cation and to achieve the objectives of the project.

References
Allert, H., Richter, C., & Nejdl, W (2004). Lifelong learning and second-order learning objects. British

Journal of Educational Technology, 35(6), 701-715.

Europe4DRM. (n.d.). Retrieved 7 – 15 - 2005 from:
http://www.europe4drm.com/l_menue/glossary/glossary.htm

Garcia, F. J. & Garcia, J. (2005). Educational hypermedia resources facilitator. Computers & Education
44(3), 301-325.

IEEE-LTSC (2002). WG12, Working Group Information. Announcements and News, Position Statement
on 484.12.1-2002 Learning Object Metadata (LOM) Standard Maintenance/Revision. 10 December.

Creating Learning Objects

126

Lam, H. C.; Ki, W. W.; Chung, A. L. S.; Ko, P. Y.; Lai, A. C. Y.; Lai, S. M. S.; Chou, P. W. Y.; & Lau, E.
C. C. (2004). Designing learning objects that afford learners the experience of important variations in
Chinese characters. Journal of Computer Assisted Learning, 20(2), 114-123.

Olson, D.L. (2001). Introduction to information systems project management. McGraw-Hill.

Peters, K. (1000). Software project estimations. Course Notes, Software Productivity Center. Simon Fraser
University.

Wiley, D. A. (2000). Connecting learning objects to instructional design theory: A definition, a metaphor,
and a taxonomy. In D. A. Wiley (Ed.), The instructional use of learning objects. Retrieved 2 - 17 -
2005 from: http://reusability.org/read/chapters/wiley.doc

Xuan, W., Li Z., & Fang, Y. (2004). An implementation of learning objects management system. Advances
in Web-Based Learning – Icwl, 3143, 393-399

Biography
Carlos Francisco Lerma is an operating systems service engineer for
the General Directorate of Technological Innovation at the Universidad
Autónoma de Tamaulipas in Ciudad Victoria, México. He holds a
Bachelor’s Degree in Public Accounting from Universidad Autónoma
de Tamaulipas and a Masters’ Degree in Telecommunications and
Network Management from Syracuse University in Syracuse, New
York, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

