
Issues in Informing Science and Information Technology Volume 4, 2007

Befriending Computer Programming: A Proposed
Approach to Teaching Introductory Programming

Iwona Miliszewska and Grace Tan
Victoria University, Melbourne, Australia

Iwona.Miliszewska@vu.edu.edu Grace.Tan@vu.edu.edu

Abstract
The problems encountered by students in first year computer programming units are a common
concern in many universities including Victoria University. A fundamental component of a com-
puter science curriculum, computer programming is a mandatory unit in a computing course. It is
also one of the most feared and hated units by many novice computing students who, having
failed or performed poorly in a programming unit, often drop out from a course. This article dis-
cusses some of the difficulties experienced by first year programming students, and reviews some
of the initiatives undertaken to counter the problems. The article also reports on the first stage of a
current research project at Victoria University that aims to develop a balanced approach to teach-
ing first year programming units; its goal is to ‘befriend’ computer programming to help promote
success among new programming students.

Keywords: automated assessment, introductory computer programming, programming support,
student mentors

Introduction
Computer programming is an integral part of a computer science curriculum and a major stum-
bling block for many computing students, particularly in the first year of study; many of those
students find programming difficult to grasp, let alone master (Dunican, 2002; Jenkins, 2002;
McCracken et al., 2001; Proulx, 2000). Difficult to learn, programming skills are difficult to teach
too (Allison, Orton & Powell, 2002), not least because “traditional teaching methods do not adapt
well to the domains of coding and problem solving, as it is a skill best learned through experi-
ence” (Traynor & Gibson, 2004, p. 2). According to Kölling and Rosenberg (2001), the situation
is even more challenging when it comes to teaching object-oriented programming to beginning
students as “software tools, teaching support material and teachers’ experience all are less mature
than the equivalent for structured programming” (p. 1).

The issue of computer programming is no different at Victoria University where, since 1999, ob-
ject-oriented programming using Java has been taught to the introductory programming students.

Here, too, students struggle with pro-
gramming, and programming has con-
tinued to be a major factor contributing
to the attrition of first year students from
the computing courses. Various restruc-
turings of the programming unit and
changes to teaching methods imple-
mented over the years, for example the
use of different textbooks, or the intro-
duction of an electronic assignment as-
sessment system, have done little to im-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Befriending Computer Programming

278

prove the situation; a new approach was called for. To this end, a new research project, supported
by a Teaching and Learning Support grant, was launched in July 2006 to investigate the nature of
the difficulties encountered by programming students and develop a ‘friendly’ framework for
teaching programming to novices; the framework was intended to make computer programming
welcoming and accessible to novice programmers and, at the same time, achieve pedagogical ob-
jectives.

To address the difficulties associated with computer programming, first it is necessary to under-
stand them well. Accordingly, this article first looks in detail at the reasons why first year stu-
dents find programming such a daunting prospect, and discusses the impact that poor perform-
ance or failure in an introductory programming unit can have on computing students. An over-
view of the various interventions created to alleviate the programming problem is also presented.
Then, the article outlines the features of a proposed approach to teaching introductory program-
ming currently being developed at Victoria University.

Difficulties Encountered by
First Year Programming Students

Undergraduate students enrolling in computing courses are not expected to have prior program-
ming experience; computing experience is not a prerequisite. While some students study some
computing units in secondary schools, many do not. The lack of prior computing experience does
not seem to be a problem however, the lack of problem-solving skills is. Dunican (2002) indi-
cated that subjects offered in secondary schools do not include any logic/problem-solving mod-
ules, which puts students in a difficult position when they enrol in computing courses at univer-
sity. Stamouli, Doyle, & Huggard (2004) also pointed out at the lack continuity between subjects
studied in secondary schools and those encountered in the first year of university studies; they
went on to say that several of the first year units including computer programming were “beyond
the students’ previous experience”.

Even though computer literacy may be high among some of the commencing computing students,
most of them tend to lack experience with programming. This includes not only program design
and construction, but also routine tasks such as compiling or running a program, or, indeed, a ba-
sic understanding of a computer model with its hardware and software components. This lack of
understanding of a mental model of a computer often results in much frustration when students
are expected to not only construct a program but make it work, too (Ben-Ari, 1998).

Another difficulty faced by programming students is the need to imagine and comprehend many
abstract terms that do not have equivalents in real life: how does a variable, a data type, or a
memory address relate to a real life object? Programming concepts tend to be difficult to grasp
(Dunican, 2002). Consequently, many computing students claim to ‘hate programming’ as they
struggle to comprehend even the most basic of programming concepts (Stamouli et al., 2004;
Thomas et al., 2002).

One more difficulty is the task to meet the requirements of programming syntax. Even students,
who have adequate problem-solving skills and manage to phrase a solution to a programming
problem in terms of a pseudocode, can find it difficult to turn the pseudocode into a syntactically
correct computer program (Dunican, 2002; Kölling & Rosenberg, 2001; Sheard & Hagan, 1998).

Impact of Failure/Poor Performance on Students
While some programming students experience only one of the types of problems outlined above,
others encounter several of them (Dunican, 2002). The effect of such experiences can be devastat-
ing. As Dunican (2002) has pointed out, “it takes very few negative experiences at the early

 Miliszewska & Tan

 279

stages to disillusion the student”. Consequently, a student’s initial enthusiasm for programming
wanes as rapidly as difficulties emerge (Sheard & Hagan, 1998). Jenkins (2001) agreed, pointing
out that the challenging aspects of learning how to program may de-motivate students; he con-
cluded that if students are not motivated, they will not learn and, subsequently, they will not suc-
ceed. Some of the students who struggle with programming will drop out of the computing course
altogether, while others will continue but will “assiduously avoid future programming projects
and ultimately choose a career path that does not involve programming” (Stamouli et al., 2004).

High dropout and failure rates of first year programming units have been a growing concern at
many universities. Tavares et al. (2001) investigated the problem, and identified two main factors
that, according to students, precipitate the failure at introductory programming units: the curricu-
lum organisation and the teaching methods; students pointed out complexity of the material cov-
ered in class as one of the reasons for dropping out. A different study found that, discouraged by a
difficult curriculum, only less than half of the programming students attended practical classes
and participated in assessment (Huet et al., 2003). Meisalo et al. (2002) reported that nearly 30%
of their introductory programming students had dropped out from the course because they had
found programming exercises too difficult, or had failed a re-take examination.

Interventions Employed to Help
Novice Programming Students

Various types of interventions have been created over the years to help students develop pro-
gramming skills. The interventions ranged from changes to the curriculum, pedagogy, and as-
sessment, to the provision of additional support to new programming students.

Curriculum
Van Roy et al. (2003) successfully based programming units on concepts rather than on single
paradigms (object oriented programming, logic programming, or functional programming) or
languages. Having taught with this approach for two years in four universities, they found that it
enabled students to “reason in a broad and deep way about their program’s design, its correctness,
and its complexity” (p. 270).

In environments where a programming unit was based on a single, object-oriented paradigm, one
of the major issues is the way in which object orientation is introduced to students (Blumenstein,
2004; Lister & Leaney, 2003). Two contradictory approaches to curriculum design have been
used and tested in various institutions: the objects-first approach and the structured program-
ming- first approach; both these approaches have been reported as successful. Sheard & Hagan
(1998) reported on changes to the curriculum of an introductory programming unit following the
findings of a research project investigating the teaching and learning of introductory program-
ming. They observed that students “started to feel lost … about the same time when object-
oriented paradigm was introduced” to the unit (Sheard & Hagan, 1998, p. 315). Consequently, it
was decided to use the more traditional bottom-up (structured programming- first) approach first,
and introduce the object-oriented concepts after the students have had gained an understanding of
expressions, statements, parameters, etc. This was one of the changes introduced to the unit but,
as a result, “a significant increase in student performance has been noted since these changes
were implemented” (Sheard & Hagan, 1998, p. 319).

Boris Magnusson (Van Roy et al., 2003) on the other hand, swore by the object-first approach. He
opined that an early introduction of structuring mechanisms, classes, methods, and inheritance,
helped students understand the mechanisms of problem analysis and solution development. He
reported to have had over ten years of positive experience using this approach.

Befriending Computer Programming

280

Pedagogy
One pedagogical technique employed to teach programming concepts to students is based on
analogy. This technique is particularly useful when teaching programming fundamentals such as
input/output, data types, sorting, searching, etc.; it uses illustrative examples of concepts that stu-
dents have seen before, and relates the familiar concepts to new ones. In an analogy, the familiar
concept is identified as the source and the new one as the target and, when an analogy is made,
the source is mapped onto the target (Blanchette & Dunbar, 2000). Dunican (2002) describes sev-
eral analogies for example: the use of children’s toys to teach assignment statements; the use of
boxes to determine the smallest and largest number in a list; and, the use of a leaflet distributor to
explain the concept of array manipulation.

Another important pedagogical facet is relevance: students should see a purpose to what they are
learning. Sheard & Hagan (1998) report on positive feedback from students after games with at-
tractive graphical interfaces, including Solitaire and Minesweeper, were used to illustrate the
benefits of the object-oriented paradigm. This illustration provided an opportunity to explain the
advantages of object-oriented programming and design over other styles of programming for
complex applications such as the presented games.

Iterative approach to learning and continuous reinforcement of concepts was yet another well-
received technique introduced by Sheard & Hagan (1998) to their first year programming unit. In
addition to an ongoing reinforcement effort, two entire lectures were devoted to consolidation and
revision of the object-oriented concepts covered earlier.

Another approach relies on the use of technology for teaching. Clancy et al. (2003) described
their efforts to develop a laboratory-based model for computer science instruction. Their model
included three components: an online course builder for the instructor, a Web-based learning en-
vironment for the delivery of all student activities, and a course portal that served as a learning
management system. The evaluation of the system showed that student performance in the course
had improved and that the students found the course enjoyable. However, the new model had no
impact on the attrition rate from the course.

Assessment
Frequent assessment is favoured in an introductory programming unit (Blumenstein, 2004) and
the two types of assessment most commonly used include objective testing and performance-
based assessment. Objective testing such as multiple choice questions is said to be useful in pro-
viding instant feedback to students in their understanding of language syntax or program behav-
iour; performance-based assessment such as laboratory exercises, programming assignments and
examinations help to test students’ ability to write working computer programs (McCracken et
al., 2001).

While the most common assessment methodology requires all students to work on the same as-
sessment tasks, Lister & Leaney (2003) advocated the use of criterion-referenced grading scheme
in assessing their students. They suggested that such a technique was likely to maximise the po-
tential of every student in a disparate class of different capabilities.

There is also considerable empirical evidence to support the view that student learning is en-
hanced when students are aware of their own learning (Boud, Keogh & Walker, 1985). Hence,
educational theory indicates the benefits of promoting learner reflection in the learning process.
In their study of learning styles and performance in an introductory programming sequence,
Thomas et al. (2002) found that reflective learners, who learned by thinking things through and
working on their own, scored higher than active learners who learned by trying things out and
working with others. To enhance student reflection in an introductory programming unit, Fekete

 Miliszewska & Tan

 281

et al. (2000) incorporated different assessment strategies, and reported that, in their view, reflec-
tion enhanced the technical mastery of their students.

Support for Programming Students
One successful form of support provided to programming students was the introduction of discus-
sion classes reported by Sheard & Hagan (1998). The classes, used to consolidate material intro-
duced in lectures, were a success, particularly when object-oriented programming was introduced.
Special exercises were developed to stimulate discussion among students and, when students re-
ported difficulties with a particular aspect of an assignment for example, that aspect became the
subject of the discussion class to assist students with their work.

Web pages for programming units have proved to be a useful support feature. Typically they con-
tain unit details, staff timetables, lecture slides and laboratory exercises. In addition, most of the
unit Web sites give students an opportunity to provide feedback to the staff. In the Web support
system reported by Sheard & Hagan (1998), anonymous student feedback was used. It was a use-
ful source of student comment about various aspects of the unit and, it was found that, “many stu-
dents were willing to comment anonymously but not to contribute to a newsgroup” (p. 318).

An “emergency hotline”, or help desk, operating outside class time is yet another form of support
well received by the students, proving particularly popular before assignment submission time.
This type of service is often manned by tutors, and the problems referred to it usually concern
programming syntax or logic errors, although questions concerning design strategy have been
recorded too, as reported by Sheard & Hagan (1998).

A different service, a Programming Support Centre, has been launched by the Department of
Computer Science at Trinity College (Stamouli et al., 2004). Its distinct feature is the provision of
structured one-to-one support to students with programming difficulties. Like in other centres of
this type, attendance is voluntary, but students are encouraged to take advantage of the service.
The service operates for sixteen hours a week, in addition to regular classes; it is manned by pro-
fessional programmers; and, it is housed in a dedicated well-equipped computing room. The re-
sults of a quantitative and qualitative evaluation of the centre indicate that it has had a positive
impact on student learning.

A Proposed Approach to Teaching an
Introductory Programming Unit

Computer programming is a core unit in six undergraduate degree courses offered by the School
of Computer Science and Mathematics at Victoria University. As a mandatory first year unit in all
courses, computer programming is a prerequisite to a number of second year units.

Issue to be Addressed
Over the years, the programming unit, RCM1311, has proven to be a stumbling block for many
first year students and the poor pass rate for the unit, as reported in Table 1, has been an ongoing
concern.

Table 1: RCM1311 Programming 1 - Percentage of students who failed the unit

Year 2001 2002 2003 2004 2005 2006
% of
failures 47 33 36 42 58 39

Befriending Computer Programming

282

This first year programming unit is considered crucial to students’ success in the computing
courses. This statement is supported by findings of a recent Higher Education Equity Program
(HEEP) funded equity project reported in (Miliszewska et al., 2004; Miliszewska et al., 2006).
The project revealed a number of transition related problems that seem to impact negatively on
commencing students; it identified the first semester of the course as the ‘make or break’ period,
and the introductory programming unit as the biggest ‘break’ factor. The first semester was not
only an important period with respect to adjustment to the course, but also it was a period most
likely to influence most students’ decisions about quitting the course. Hence, the first year pro-
gramming unit shapes students’ perceptions about the entire course and, if taught well, it can help
sustain students’ interest, and ensure their success in, and completion of, the course. Conversely,
a number of students have withdrawn from the course after the first semester because of their dif-
ficulties with the programming unit.

Information about the particular difficulties faced by new programming students at Victoria Uni-
versity was obtained from three sources: the 2006 cohort of first year programming students;
comments on the Student Evaluation of Unit forms (spanning three years); and, interviews with
lecturers involved in the teaching of the introductory programming unit. Classes and methods,
graphical user interfaces (GUIs), and event handling were considered to be the most difficult top-
ics to master, followed by iteration, selection, and input/output. In addition, students found it dif-
ficult to understand the mechanics of programming. These difficulties are common to many new
programming students, as reported in the literature (Carbone et al., 2001; McCracken et al., 2001;
Meisalo et al., 2002; Thomas et al., 2002).

Since the issue of first year computer programming has been recognised as important to students,
staff, and the University (it affects the future of computing courses), a research project was
launched in July 2006 to address the issue. The project team includes academics with experience
in computer programming and education experts; the project is being funded by Teaching and
Learning Support grant.

The Unit
The introductory programming unit, RCM1311 Programming 1, is the first programming unit that
all computing students encounter in the School of Computer Science and Mathematics at Victoria
University. It is the first of two mandatory units (RCM1312 Programming 2 is the second one)
taught in the first year of a computing degree; a pass in RCM1311 is required to proceed with
RCM1312. A pass in RCM1312 on the other hand, is required to enroll in three core units and
three elective units in the second year of the degree. Hence, a pass in the very first programming
unit is a virtual prerequisite to fulfilling the requirements of the degree.

The unit is based on the object-oriented paradigm, and it is taught according to the structured
programming – first approach. The structured programming- first teaching methodology has been
adopted as it was agreed that, “if students find it difficult to construct a viable model of variables
and parameters, why should we believe that they can construct a viable model of an object such
as a radio button?” (Ben-Ari, 1998, p. 260) Accordingly, it was decided that students should be-
come familiar and comfortable with basic programming fundamentals, before getting acquainted
with the concepts of the object-oriented paradigm; the syllabus of the unit is presented in the fol-
lowing order:

• Introduction: Course overview, editing, compiling and executing programs. Basic ele-
ments of Java programs: class, method, identifier, white space and comments. Basic data
types, arithmetic operations, type conversion.

• Program Development: Control structures – selection and iteration.

 Miliszewska & Tan

 283

• Objects and Classes: Class definition (instance variable, constructor, method), instantia-
tion of objects, UML diagrams, access modifiers, static variables and methods.

• Using Selected Classes: Java’s Class Library (e.g. Math, String, DecimalFormat, String-
Tokenizer, etc.) Applets and GUI components – label, text field, button, event handling,
the graphics class, color, drawing shapes and displaying text.

The Java programming language, Standard Edition (Java 2 Platform), has been used as the devel-
opment environment for the unit. Students can easily download the latest version of Java and the
associated documentation from two alternative sources: the Web site of Sun MicroSystems, or a
CD included in the prescribed textbook.

The delivery of the unit comprises of two one-hour lectures, a one-hour tutorial, and a one-hour
laboratory per week in a twelve-week semester. Assessment of the unit includes summative as-
sessment (weekly practical tasks, an assignment, and a test), which accounts for 30% of the final
mark, and a three-hour final examination, which contributes 70% of the final mark.

The Approach
The proposed approach aims to change the negative view that computer programming is difficult
and unfriendly for novice programmers; it aims to create a climate where students embrace pro-
gramming. To this end, the approach builds on a variety of strategies that have been reported as
‘successful’ in the literature (as described in the previous section of this article). The approach
incorporates the individual strategies with a view to achieving a better overall outcome.

Structure
The first year programming unit has been always taught in two one-hour lectures presented on
separate days, and this structure will be retained; research shows that students find it difficult to
concentrate for a two-hour span (Sheard & Hagan, 1998). Students will also attend two hours of
laboratory/tutorial sessions a week. To facilitate active learning and hands-on practice, laboratory
sessions will be merged with tutorial sessions; this will afford students more and better opportu-
nity to interact with each other and the tutors; this increased interaction will assist in early identi-
fication of students ‘at risk’. In addition, five hours of mentoring classes a week will be offered so
students can voluntarily seek one-to-one assistance with their programming difficulties.

Pedagogy
The teaching methods of the proposed approach will include a careful study of examples of well-
written code. This follows the recommendations of Kölling & Rosenberg (2001) who believe that
students should read code before attempting to write it, as they “can learn a lot from studying well
written programs and copying styles and idioms” (p. 2).

As students tend to respond well to analogy as a method of illustrating unknown concepts (Duni-
can, 2002), the proposed approach for teaching introductory programming will use analogy as
tool for teaching abstract concepts. An analogy involving a classic children’s shape toy for exam-
ple, will be used to teach the concept of data types, assignment statements and type mismatches.
In this analogy, adapted from Dunican (2002), an ‘integer’ shape can be stored in an ‘integer’
hole, or in a ‘real’ hole; on the other hand a ‘char’ shape cannot fit in either an ‘integer’ or a ‘real’
hole. The use of such simple analogies has met with student approval in previous offerings of the
programming unit. In particular, a wooden box divided in a number of small pigeonholes was
used to illustrate the concept of memory allocation; each pigeonhole had its own unique label (a
memory address), and it could also store content.

Befriending Computer Programming

284

It is intended to: design illustrative examples for most concepts; involve the programming stu-
dents in providing alternative examples of their own; and, compile a data bank of analogies for
future use.

Assessment
Students in the unit will be assessed through: laboratory exercises on a fortnightly basis, a major
group assignment set half way through the unit, a mid-semester test, and a final examination.
Summative assessment will be used in the laboratory exercises to assist students in developing
their programming skills. The exercises will be short and simple, and designed primarily as learn-
ing experiences; for instance students will be required to make minor modifications to existing
code. This should address concerns raised by Buck & Stucki (2001) who found that students, who
were required to write a complete program on their own, often did not know how to begin and,
instead of thinking a problem through, experimented by randomly throwing statements together
hoping to achieve a desired outcome.

The nature of the assessment will also address the development in students of several skills in-
cluding: collaborative skills, problem solving skills, and initiative; the open-ended scaffolding
assignment involving a team of students will support the development of these skills in students.
For instance, the assignment may require the students to write a program to play a game. The as-
signment will be divided into two parts: part one calling for a typical solution to the problem, and
to be attempted by all groups; and, part two seeking possible extensions to the standard solution,
as illustrated in Figure 1. This will motivate students to enhance their game programs and gain
additional skills (and marks).

Game playing problems, such as the one illustrated in Figure 2, have been selected as assignment
tasks to make the assessment task relevant and ‘friendlier’ to students. Students have been found
to be keener to learn programming when they can easily produce attractive graphical interfaces.

Figure 1: Scaffolding assignment.

 Miliszewska & Tan

 285

To this end, tasks involving the implementation of computer games that manipulate graphical
elements have been found particularly useful (Lorenzen & Heilman, 2002).

Mentoring classes
The biggest innovation with respect to support will be the introduction of mentoring classes.
Similar in concept to the Programming Support Centre (PSC) described by Stamouli et al. (2004),
the mentoring classes will be offered in addition to lectures, tutorials and laboratory classes, in a
designated laboratory, every day of the week, at the same hour every day.

Unlike the PSC, which was manned by professional programmers, the mentoring classes will be
manned by mentors recruited from among second year students. The choice of student mentors
was dictated by research findings suggesting that programming students prefer to seek help from
fellow students and lecturers. Research reported by Stamouli et al. (2004) suggested that “80% of
students prefer to ask their lecturer or a friend when they encounter programming problems”; Pas-
carella & Terenzini (2005) found that structured peer assistance for “historically difficult” units,
improved student progress and retention; and, an earlier study conducted among computing stu-
dents at Victoria University found that for female students,

the most preferred source of academic help was their fellow female students fol-
lowed closely by female lecturers … for males … fellow male students were the first
choice, followed by male lecturers. (Miliszewska et al., 2006, p. 16)

Accordingly, it was decided that to maximise the impact of mentoring classes, they would be at-
tended by a pair of mentors at a time; both female and male mentors will be available.

The mentoring classes are intended to fulfil a dual purpose: one, they will serve as a source of
‘friendly’ professional feedback and support to new programming students; two, they will serve
as an early ‘detector’ of students ‘at risk’. According to Cuseo (2004), poor academic progress is
a reliable indicator of potential attrition; hence, the importance of prompt feedback to students on
their academic progress. Prompt feedback, combined with appropriate interventions to assist stu-
dents with difficulties has been shown to improve student retention (Pascarella & Terenzini,
2005).

Attendance of the mentoring classes will be voluntary; however, students will be encouraged to
make use of the service – an introduction of some incentives is being considered. The mentors
will provide individual assistance to programming students. It is expected that, having gone
through the introductory programming experience themselves, the mentors will be well equipped
to assist new programming students.

The mentors will undergo a specialist training developed by computer science lecturers and edu-
cation experts to learn the necessary mentoring skills. The training will be conducted in February
2007, prior to the commencement of classes, and will involve role-playing exercises. The exer-
cises will emulate cases that the mentors will be likely to encounter with first year programming
students. A sample mentor training scenario is presented in Figure 2.

The mentor training will aim to instil in mentors the need to encourage reflection in students (as
illustrated in the sample scenario in Figure 2), and discourage the unproductive try-it-and-see-
what-happens attitudes amongst students (Ben-Ari, 1998, p. 260). During the semester the men-
tors will participate in weekly meetings with the lecturer in charge of the unit to review study ma-
terial, seek advice, and report possible problems.

Befriending Computer Programming

286

Web-based support
While students receive regular feedback on their work during scheduled laboratory sessions, the
tutor’s attention has to be divided among all the students in the classroom, and tutor’s assistance
is limited to the duration of the class. To enhance the provision of feedback, and to boost stu-
dents’ confidence in their programming skills, an on-line assignment submission system will be
used. While the system has been in operation since 2002, plans are afoot to develop the system
further and use it more extensively. The system enables students to test their programming as-
signments iteratively, while providing instant automatic feedback to each submission. The system
serves as a ‘supplementary’ automatic tutor and gives the students an additional opportunity to
perfect their programming skills. Providing students with self-assessment tests is one way of
making them more aware of their own learning and enabling them to monitor their own compe-
tence (Carbone, Schendzielorz & Zakis, 1997).

In addition, a unit Web site will be maintained as a complementary communication and material
delivery tool. All students enrolled in the unit will have access to material such as unit outline,
lecture notes, tutorial exercises, laboratory tasks, assessment specifications and hints, announce-
ments, and staff contact details; links to other useful resources and the online submission system
will also be provided. In addition, a Wiki might be included as a documentation system for group
assignments.

Expected Benefits and Deliverables
It is expected that the research project will yield a combination of immediate and long-lasting
benefits. On the immediate end of the scale, the teaching methods employed in the project will
develop and boost current students’ confidence in their programming skills. In addition, the in-
creased interaction between students, and students and tutors will assist in early identification of
students ‘at risk’.

The long-lasting benefits will stem from the teaching manual – The Guidelines – and the Web
based assignment submission system. The Guidelines for teaching first year computer program-
ming unit that will be compiled during the project (the framework will include a databank of
analogy examples and assessment tasks) will continue to be a source of reference for staff in the
School even after the project is finished. While it is expected that the Guidelines will also be of

A student writes a program that asks the user for two integer numbers. The pro-
gram stores the numbers and displays them on the screen. The program then
swaps the numbers and displays the two numbers again after the swap has taken
place; this second display shows that the first number has been swapped but the
second one seems to be lost.

• the mentor can lead the student in a discussion perhaps by showing him
two glasses of different coloured liquids and asking the student how
they would exchange the contents

• usually the student arrives at the need for a third glass or temporary
container (recalling an analogy example presented in the lecture prior to
the practical class)

• the student is then asked to code a temporary variable for the swap
problem and use it as he would for the liquid swapping

• the mentor can assist in helping the student decide how to move inte-
gers between containers/variables

Figure 2: A sample scenario for mentor training

 Miliszewska & Tan

 287

particular interest to staff in other sections of the University offering Engineering, Information
Systems, and Information Technology courses, some general recommendations may be applicable
to other scientific disciplines as well. The improved Internet-based assignment submission and
processing system will benefit future programming students, as it will continue to operate beyond
the duration of the project.

In addition to expected benefits, a number of project outcomes have been identified; the outcomes
include:

• At least a 10% improvement in the unit’s pass rate compared to 2006.

• An improvement in grade average for the unit.

• An improvement in student satisfaction with the unit as compared to 2006.

While the expected improvement in student pass rate and grade average may vary, as it will de-
pend on the characteristics of the student cohort, the outcomes are still likely to improve student
progression through the six undergraduate computing courses in the School of Computer Science
and Mathematics.

Conclusions
This article reports on a current research project that aims to improve the negative perception that
computer programming is difficult and unfriendly. Consequently, students will work individually
and in groups on programming tasks throughout the semester; they will be supported and men-
tored by lecturers, and second-year computing students.

To facilitate active learning and hands-on practice, laboratory sessions will be merged with tuto-
rial sessions; this will afford students more and better opportunity to interact with each other and
the tutors. The mentoring classes will enhance the opportunities for interaction, provision of feed-
back and friendly peer support even further. In addition, the on-line assignment submission sys-
tem will enable students to develop and test their programming skills in their own time.

The proposed approach will provide positive supportive atmosphere in which students can learn
the intricacies of object-oriented programming; the goal is to trigger the students’ interest, and
show the magic of the discipline to students. While the approach aims to befriend programming,
it also aims to realise the educational objectives of an introductory programming unit – those will
not be compromised at the expense of ‘popularity’.

References
Allison, I., Orton, P., & Powell, H. (2002). A virtual learning environment for introductory programming.

Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and Computer Sciences,
48-52.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the 29th SIGCSE Tech-
nical Symposium on Computer Science Education, 257-261.

Blanchette, I., & Dunbar, K. (2000). How analogies are generated: The roles of structural and superficial-
similarity. Memory and Cognition, 28, 108-124.

Blumenstein, M. (2004). Experience in teaching object-oriented concepts to first year students with diverse
backgrounds. Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC’04) [electronic proceedings].

Boud, D., Keogh, R., & Walker, D. (1985). Promoting reflection in learning: a model. In D. Boud, R. Ke-
ogh & D. Walker (Eds.), Reflection: Turning experience into learning (pp. 18-40). London: Kogan
Page.

Befriending Computer Programming

288

Buck, D., & Stucki, D. (2001). JkarelRobot: A case study in supporting levels of cognitive development in
the computer science curriculum. Proceedings of the SIGSCE Technical Symposium on Computer Sci-
ence Education, 16-20.

Carbone, A., Schendzielorz, P., & Zakis, J. D. (1997). A web-based quiz generator for use in tutorials and
assessment. Global Journal of Engineering Education, 1(3), 341-346.

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2001). Characteristics of programming exercises that
lead to poor learning tendencies: Part II. Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, 93-96.

Clancy, M., Titteron, N., Ryan, C., Slotta, J., & Linn, M. (2003). New roles for students, instructors, and
computers in a lab-based introductory programming course. Proceedings of the 34th SIGCSE Techni-
cal Symposium on Computer Science Education, 132-136.

Cuseo, J. (2003). Academic advisement and student retention: empirical connections and systematic inter-
ventions. Retrieved November, 2006 from
http://www.ulster.ac.uk/star/resources/academic_advisement.pdf

Dunican, E. (2002). Making the analogy: Alternative delivery techniques for first year programming
courses. In J. Kuljis, L. Baldwin & R. Scoble (Eds), Proceedings from the 14th Workshop of the Psy-
chology of Programming Interest Group, Brunel University, June 2002, 89-99.

Fekete, A., Kay, J., Kingston, J., & Wimalarante, K. (2000). Supporting reflection in introductory computer
science. ACM SIGCSE Bulletin, 32(1), 144-148.

Huet, I., Tavares, J., Weir, G., Ferguson, J., & Wilson, J. (2003). Co-operation in education: the teaching
and learning of programming at the Universities of Aveiro and Strathclyde. Paper presented at the
ICHED Conference, Aveiro, Portugal.

Jenkins T. (2001). The motivation of students of programming. Proceedings of the 6th Annual Conference
on Innovation and Technology in Computer Science Education, 53-56.

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer Sciences, 53-58. Retrieved November, 2006 from
http://www.psy.gla.ac.uk/~steve/localed/jenkins.html

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. ACM SIGCSE
Bulletin, Proceedings of the 6th Annual Conference on Innovation and Technology in Computer Sci-
ence Education, 33(3), 33-36.

Lister, R., & Leaney, J. (2003). First year programming: Let all the flowers bloom. Proceedings of the 5th
Australasian Computer Education Conference (ACE2003), Adelaide, Australia, 221-230.

Lorenzen, T., & Heilman, W. (2002). CS1 and CS2: Write computer games in Java! SIGCSE Bulletin,
34(4), 99-100.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

Meisalo, V., Suhonen, J., Sutinen, E. & Torvinen, S. (2002). Formative evaluation scheme for a web-based
course design. Proceedings of the 7th Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2002), University of Aarhus, Denmark, 130-134.

Miliszewska, I., Barker, G., Henderson, F., & Sztendur, E. (2006). The issue of gender equity in computer
science: What students say. Journal of Information Technology Education, 5, 107-120. Available at
http://jite.org/documents/Vol5/v5p107-120Miliszewska136.pdf

Miliszewska, I., Horwood, J., Tan, G., & Venables, A. (2004). Gender bias in computing? – Student per-
spectives. Proceedings of the Joint International Conference on Informatics and Research on Women
in ICT (RWICT), Kuala Lumpur, Malaysia, 1135-1146.

 Miliszewska & Tan

 289

Pascarella, E.T., & Terenzini, P.T. (2005). How college affects students: a third decade of research. San
Francisco: Jossey-Bass.

Proulx, V. (2000). Programming patterns and design patterns in the introductory computer science course.
SIGCSE Bulletin, 32(1), 80-84.

Sheard, J., & Hagan, D. (1998). Experiences with teaching object-oriented concepts to introductory pro-
gramming students using C++. Technology of Object-Oriented Languages and Systems-TOOLS 24,
IEEE Technology, 310-319.

Stamouli, I., Doyle, E., & Huggard, M. (2004). Establishing structured support for programming students.
Proceedings of the 34th ASEE/IEEE Frontiers in Education Conference, Savannah, GA, October 2004,
[electronic proceedings].

Tavares, J., Brzezinski, I., Huet, I., Cabral, A., & Neri, D. (2001). "Having coffee" with professors and stu-
dents to talk about higher education pedagogy and academic success. Paper presented at the 24th In-
ternational HERDSA Conference, Newcastle, Australia.

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning styles and performance in the in-
troductory programming sequence. Proceedings of 33rd SIGCSE Technical Symposium, 34, 33-37.

Traynor, D., & Gibson, P. (2004). Towards the development of a cognitive model of programming; A soft-
ware engineering approach. 16th PPIG Workshop, Carlow, Ireland, April 2004. Retrieved November,
2006 from http://www.cs.nuim.ie/~pgibson/Research/Publications/E-Copies/PPIG04.pdf

Van Roy, P., Armstrong, J., Flatt, M., & Magnusson, B. (2003). The role of language paradigms in teaching
programming. Proceedings of the 34th SIGCSE Technical Symposium on Computer science Education,
269-270.

Biographies
Dr Iwona Miliszewska is a senior lecturer in computer science at Vic-
toria University, Melbourne, Australia. She has led and participated in
research projects involving transnational education, effective teaching
methods, lifelong learning and women in computer science, and has
published in these areas. Currently, Iwona leads a grant-funded re-
search project aimed at addressing the difficulties faced by first year
computing students in a core introductory programming unit.

Grace Tan is a senior lecturer in Computer Science at Victoria Uni-
versity, Melbourne, Australia. Her research interests include investiga-
tions of innovative teaching methods, the development of graduate at-
tributes, and issues related to female students in computing courses.
Grace has experience in teaching programming to first year computing
students and, at present, she is part of a research team investigating
problems encountered by novice programmers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

