
Issues in Informing Science and Information Technology Volume 4, 2007

Accreditation of Monash University Software
Engineering (MUSE) Program

Sita Ramakrishnan
Clayton School of IT, Faculty of IT,

Monash University, Australia

sita.ramakrishnan@infotech.monash.edu.au

Abstract
Engineering programs in Australian Universities are accredited by Engineers Australia (EA)
based on certain strict guidelines. This paper discusses the undergraduate SE curriculum and ac-
creditation effort undertaken over the last ten years at Monash University in order to achieve a
successful outcome. The paper describes how the SE curriculum has evolved over this period at
Monash and maintained its product quality by benchmarking against various international efforts
such as the CMU-SEI effort in early 1990s, ACM/IEEE efforts on Software Engineering Body of
Knowledge (SWEBOK, versions 2001-2004) and the curriculum guidelines for each major area
of computing in Computing Curricula (CC2001) such as a Software Engineering volume
(SE2004). Currently at Monash, student-centric evaluations are used to determine the teach-
ing/learning outcome and in-form the world through the web to support the University’s quality
assurance and improvement strategies. We discuss our effort in providing an aligned, evidence-
based approach to quality assurance for continued accreditation of MUSE.

Keywords: accreditation, curriculum, software engineering, teaching/learning outcomes, quality
system process

Introduction
In Australia, you must graduate from an accredited engineering program to be assured graduate
membership of Engineers Australia (EA). Assessment of an engineering program for accredita-
tion by Engineers Australia is based on the curriculum: structure and content, the teaching and
learning environment and the quality assurance framework
(http://www.ieaust.org.au/membership/accreditation.html).

At Monash University, we have had three versions (iterations) of our Bachelor of Software Engi-
neering (BSE) curriculum over the past ten years. In the next section, we discuss the evolution of

our BSE curriculum in detail. The cur-
riculum has to satisfy the product qual-
ity requirements from a number of per-
spectives such as local and international
students, academics teaching into the
program, accreditation bodies such as
Australian Computer Society (ACS), IE
Aust. (also known as Engineers Austra-
lia (EA)), international student recruit-
ment agencies and Australian University
Quality Agency (AUQA), and the fed-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and pay-
ment of a fee. Contact Publisher@InformingScience.org to
request redistribution permission.

Accreditation of Monash University Software Engineering Program

74

eral government in terms of funding. In this age of global competition for students between Uni-
versities, it is important to show evidence of course (product) quality based on accreditation by
professional bodies such as ACS & EA, university quality rating for teaching and learning offered
by AUQA, and student evaluation of units & courses to target good students to enroll in the SE
program. The external product quality must be supported by sound internal processes as part of
the quality systems in the Faculty and University. The alignment of the product and process is
necessary for ensuring a quality teaching/learning program (Barrie, Ginns & Prosser, 2005; Barrie
& Prosser, 2003; Ramakrishnan, 2003) and for informing the students, academics, accreditation
bodies, the auditing body such as AUQA and the international student recruitment agencies. The
product here refers to the course curriculum, structure and content, and is detailed in the section
on “Product Quality Requirements”. The accreditation body is not only interested in the course
curriculum quality but also in the quality system processes including the teaching & learning
environment in place in the School /Faculty in charge of delivering the SE course. The approval
and evaluation process and quality assurance consideration associated with internal organizational
committees in the University, external bodies such as EA & AUQA, and performance-based
funding model for teaching and learning are explored in the section on “Quality System Process”.
This is followed with the section on “Related work on SE curriculum”. We conclude with a
summary.

Evolution of the Undergraduate
Software Engineering Program

In the first iteration in the mid 1990s, we considered the educational requirements of a SE cur-
riculum based on CMU/SEI and ACM model curricula (CMU/SEI-90-TR-3) for undergraduate
SE education (Ramakrishnan & Schmidt, 1998). It should be noted that with each of these itera-
tions of the curriculum, we have checked for conformance against what may be treated as a refer-
ence framework at the time for a SE curriculum. In iteration 1, we grouped the core units of the
four year undergraduate software engineering program into four clusters: software development
process, software analysis, software system construction and programming foundations and these
clusters were supported by units in Mathematic Foundations, Project Management, Communica-
tion Skills and Industry-based Project. As software engineering is not just about software, we
included the science of engineering such as Physics, and Engineering Units such as Electrical En-
gineering, Telecommunication, Mechano-informatics, Reliability Engineering and Engineering
Management. The inclusion of engineering units also met the needs of the Faculty of Engineering
at Monash and the accrediting body, Engineers Australia (known as IE Aust. in the 1990s). We
produced this SE curriculum in 1998 and commenced delivery of the program in 1999 under the
joint management of the Faculty of Engineering and Faculty of IT at Clayton campus, Monash
University. We received a provisional IE Aust. accreditation for the BSE course until 2003 along
with other Engineering courses in the Faculty of Engineering.

Negotiations as to the structure and management of the program continued between the Faculty of
Engineering and Faculty of IT had continued through out 1998, and resulted in an agreement to
transfer management of the Bachelor of Software Engineering (BSE) to the Faculty of IT, and a
complementary transfer of Bachelor of Computer Science & Engineering (BCSE) to the Faculty
of Engineering and its renaming to Bachelor of Computer Systems Engineering. The re-branding
of the 2 programs occurred with BSE more focused on “software” engineering and BCSE more
focused on “hardware” and telecommunication technology. As a result of this re-branding and
transfer of BSE management to the Faculty of IT, we removed the science unit such as Physics
and Engineering units from the set of BSE core units. Students were still able to take some of
these units as electives in their study.

 Ramakrishnan

 75

In this second iteration of the BSE program at Monash (2000-2004), we decided to check our re-
vised SE curriculum (see Table 1: Bachelor of Software Engineering at Monash University: Re-
vised Course Map – second iteration) for conformance against the reference framework at the
time: Software Engineering Body of Knowledge (SWEBOK, version 2001, IEEE Stoneman ver-
sion 0.7, Apr 2000). SWEBOK is an all-inclusive term that describes the sum of knowledge
within the profession of software engineering (http://www.swebok.org/). We needed to and did
make a clear distinction between the software engineering body of knowledge (SWEBOK) and
the contents of software engineering curricula. The accreditation visit by Engineers Australia in
Aug 2003 to accredit Engineering courses at Monash included this version of the BSE. An inno-
vative web-based environment called DoIT (Ramakrishnan & Cambrell, 2002) was demonstrated
to the accreditation panel. DoIT system provides a visual interpretation for the students and the
academics of what students have learnt in our BSE in terms of SWEBOK for the four years of
study. We had very positive responses regarding our BSE curriculum and the DoIT project during
our accreditation period from leading academics in SE such as Prof Bertrand Meyer and Prof
Alain Abran, École de technologie supérieure - Université du Québec. Prof. Meyer attended a
session of the accreditation panel visit and made very strong positive remarks about the Monash
SE curriculum. Prof. Meyer and Prof. Alain Abran were very impressed with the DoIT system
demonstration.

We received a conditional accreditation from Engineers Australia, and one of the major recom-
mendations was to put more “engineering” into our BSE program and recognize that SE is both a
computing and an engineering discipline. The accrediting body wanted our BSE to include core
and/or elective sequences sourced from the Faculty of Engineering in order to broaden the expo-
sure of students to professionals in other disciplines, and to strengthen an awareness of engineer-
ing risks associated with practical system limitations. Engineers Australia also reported that our
BSE program fulfilled one of their important requirements that all professional engineering pro-
grams include a major, capstone thesis/project activity. Students in the capstone project are re-
quired to address an open-ended complex problem with broad-based multi-disciplinary considera-
tions and embracing the full design cycle. The capstone project is well orchestrated in the BSE
program – Software Engineering Studio Project (Ramakrishnan, 2003). Students work in teams
on an industry specified project, negotiating a formal analysis and the development of a legal IP
agreement before embarking on the design and development cycle. The projects embrace every
aspect of Software Engineering product development in a real industry setting and conclude with
the formal processes of product acceptance testing, presentation, and documentation. Student
team progress is tracked and assessed via interviews, peer reviews, journal & diary entries of pro-
ject meetings minutes. Students are exposed to professional practice thorough a regular interface
with the industry client. However, the accreditation panel recommended that we introduce a man-
datory internship (paid relevant SE/Engineering vacation employment for 12 weeks in summer)
as part of the four year study as a formal industry based work placement. This has been instituted
in the third iteration of our BSE program.

Accreditation of Monash University Software Engineering Program

76

Table 1: Bachelor of Software Engineering at Monash University: Revised Course map
(second iteration)

First year

S1
CSE1301
Computer
Programming

CSE1401
Introduction to Software
Engineering

MAT1841 Mathematics
for Computer Science I Free Elective

S2 CSE1303
Computer Science

CSE1402
Technical Documenta-
tion for Software Engi-
neers

MAT1830 Mathematics
for Computer Science II Free Elective

Second year

S1

CSE2201
Software Engi-
neering (SE)
Practice

CSE2303
Formal Methods I

CSE2304
Algorithms and Data Struc-
tures

CSE2/3324
Computer Architecture

S2 CSE2302
Operating Systems

CSE2305
Object Oriented Soft-
ware Engineering

BUS2176
Project Management

CSE2/3325
Multimedia Programming
and the World Wide Web

Third year

S1
CSE4213
Formal Methods
in SE

CSE3308
Software Engineering:
Analysis and Design

CSE2/3391
Unix Tools /
 CSE2/3395
Perl Programming

 Free Elective

S2

CSE3302
Software Engi-
neering
Project

CSE3322
Programming Lan-
guages and Implementa-
tion

CSE3323
The Computer Industry:
Historical, Social and Pro-
fessional Issues

 Free Elective

Fourth year (Pass degree)

S1

CSE4431 System
verification and valida-
tion, quality and stan-
dards

Approved elective Free Elective

S2

CSE4002 Soft-
ware Engineer-
ing studio project
(Full year pro-
ject) CSE4333

Parallel Systems Approved elective Free Elective

Fourth year (Hons stream)

S1
CSE4431 System verifi-
cation and validation,
quality and standards

Approved elective

S2

CSE4002 Soft-
ware Engineer-
ing studio project
(Full year pro-
ject)

CSE4402 Software
engineering research
project (Full year pro-
ject) (Hons students
only by invitation
based on results)

CSE4333
Parallel Systems Approved elective

 Ramakrishnan

 77

Table 2: Bachelor of Software Engineering at Monash University:
Revised Course map (third iteration)

for student intake 2006 refer to http://www.infotech.monash.edu.au/units/ for handbook entries

First year

S1 FIT1001 Com-
puter systems

FIT1002 Computer
programming

MAT1841 mathematics for
Computer Science I

ENG1061 Engineer-
ing profession

S2
FIT1010 Introduc-
tion to Software
Engineering

FIT1008 Computer
Science

MAT1830 Mathematics for
Computer Science II Approved elective

Second year

S1 FIT2022 Com-
puter Systems FIT2010 Database FIT2004 Algorithms and

data structures
FIT2024 Software
Engineering Practice

S2
FIT2001 Systems
analysis and de-
sign

FIT2008 Networks
and data communica-
tions

FIT2014 Theory of compu-
tation

FIT2043 Technical
documentation for
software engineers

Third year

S1 FIT3086 IT pro-
ject management

FIT3077 Software
engineering: architec-
ture and design

FIT3042 Systems tools
and programming lan-
guages

Approved elective

S2
FIT4001 Parallel
and distributed
systems

FIT3013 Formal
methods for software
engineering

FIT3084 Multimedia pro-
gramming and the www Approved elective

Summer 12 week Industry Placement

Fourth year (Option 1)

S1
FIT4004 System veri-
fication and validation,
quality and standards

Approved elective Approved elective

S2

FIT4002 Software
Engineering stu-
dio project (Full
year project)

Approved elective Approved elective Approved elective

Fourth year (Option 2)

S1
FIT4004 System verifica-
tion and validation, quality
and standards

Approved elective

S2

FIT4002 Software
Engineering stu-
dio project (Full
year project)

FIT4003 Software
engineering research
project (Full year pro-
ject) (Hons students
only by invitation
based on results) Approved elective Approved elective

Fourth year (Option 3)

S1
FIT4004 System verifica-
tion and validation, quality
and standards

Approved elective

S2

FIT4013 Software engineering research
project (Full year project) (Hons students
only by invitation based on results)

Approved elective Approved elective

Accreditation of Monash University Software Engineering Program

78

In the third iteration of the BSE program at Monash (2005-current), we decided to adopt all of the
Engineers Australia’s recommendation in Dec 2004 to obtain the full accreditation for BSE. We
also checked our revised BSE curriculum (see Table 2: Bachelor of Software Engineering at
Monash University: Revised Course Map – third iteration) against current reference frameworks
as discussed next. This revised BSE curriculum was benchmarked against current reference
frameworks of: Software Engineering Body of Knowledge (SWEBOK, version 2004,
http://www.swebok.org, updated in Feb. 2005), Software Engineering (SE) 2004 and Computing
Curriculum (CC) 2001/2005. Next, we discuss some basic details of these frameworks. In the
2004 guide to the software engineering body of knowledge (SWEBOK), the IEEE Computer So-
ciety established a baseline for the body of knowledge in the field of SE. However, it should be
noted that between 1993 and 2000, the IEEE Computer Society and the Association of Computer
Machinery (ACM) had promoted the professionalization of SE through their joint Software Engi-
neering Coordinating committee (SWECC). The body of knowledge has been developing and
evolving over the past four decades and will need to continue to evolve as SE matures. Since
2001, IEEE has contracted the Software Engineering Management Research Laboratory at the
University of Quebec at Montreal (UQAM) and École de technologie supérieure - Université du
Québec to manage the SWEBOK project (Bourque & Dupuis, 1998). Under Prof. Abran’s execu-
tive editorship of SWEBOK2004, SWEBOK has become an ISO Technical report: ISO TR
19759. An evolution process has been designed to update the SWEBOK document and this will
be synchronized with the ISO regular review process. In 2001, the ACM and IEEE-CS published
Computing Curricula 2001, which contains curriculum recommendations for undergraduate pro-
grams in computer science (CS). CC2001 report also called for additional discipline-specific vol-
umes for each of computer engineering (CE), information systems (IS), and software engineering
(SE). The CC2001 task force decided to produce a set of curriculum guidance documents and
have produced CS2001, CE2004, IS2002, and SE2004. SE2004 is a document that provides rec-
ommendations for undergraduate program in software engineering
(http://sites.computer.org/ccse/). SE2004 was sponsored by the Association for Computing Ma-
chinery (ACM) and the IEEE Computer Society. The primary purpose of SE2004 is to provide
guidance to academic institutions and accreditation bodies about what should be included in an
undergraduate SE education. SE2004 includes the Software Engineering Education Knowledge
(SEEK), a list of topics that all SE graduates should know, as well as a set of guidelines for
implementing curricula and a set of proposed courses. More information on the overall comput-
ing curriculum effort is available on the IEEE Computer Society Education Board web site at
http://www.computer.org/education/cc2001, http://www.sigcse.org/cc2001/ and
http://www.acm.org/education/curricula.html.

During this iteration of the curriculum in 2005, we also had to accommodate the restructuring of
all undergraduate programs in the Faculty of IT at Monash. The restructuring involved the intro-
duction of a set of common first year level core for all courses in the Faculty of IT in Feb. 2006.
The common units are: Programming unit using Java, Computer Systems unit, Systems Analysis
unit, Database unit, Network & Data Communication unit, IT Project Management and IT in Or-
ganization. The common core units are meant to provide a solid initial foundation of basic prin-
ciples and practice, and flexibility to move between various computing courses in the Faculty.
We have retained the 2 Mathematics units in the first year of study and moved some of the com-
mon core first year level units where appropriate in the revised BSE course structure. We also
replaced the IT in organization core unit with the Engineering Profession unit from the Faculty of
Engineering to comply with the accreditation requirements of Engineers Australia that students
develop a sense of engineering ethos and understand the responsibilities of being an engineer
from year 1 of their study. With the evolution and maturing of the SE field, languages such as
Java, model based architecture driven approaches have become more mainstream. This is re-
flected in our latest iteration of the BSE curriculum in our Programming, and Architecture & De-

 Ramakrishnan

 79

sign units. In general, students have been positive towards the change to Java as the 1st language
and with the common 1st year core in the Faculty of IT. Apart from changing the programming
language in year 1 & 2 from C++ to Java, and updating the SE Analysis & Design unit, most of
the units are a direct mapping from the 2nd iteration of BSE. Database and Data communication
which were electives in the 2nd iteration have been made core in the 3rd iteration. A couple of
theoretical units such as Operating systems and Formal Methods I have been merged to be of-
fered as Theory of Computation in the 3rd iteration. A mandatory 12 weeks industry placement
has been introduced in 2006 for BSE students and the approved electives include Engineering
Faculty units as per the IE Aust. recommendation. It must be noted that existing cohort of BSE
students are able to complete their program with the old structure (iteration 2) of the course. The
first year of the new structure (iteration 3) was made available to the new cohort of students in
Feb 2006. Year 2, 3 & 4 of iteration 3 will be made available in 2007, 2008 & 2009 respectively.
The BSE program at Monash was accredited by IE Aust. in Feb. 2006 and the full accreditation is
valid till the intake in 2008.

Product Quality Requirements - Course Curriculum:
Structure and Content

Program structure: An overview
The Bachelor of Software Engineering (BSE) Program is available at Clayton Campus of Monash
University, Australia in on-campus mode only. BSE is a four year full-time program. The course
commences with the establishment of a sound foundation in introductory information technology
and mathematics. All information technology units have approximately one-third laboratory-
based programs. In the later years, the introduction of major software engineering projects builds
the students' self-reliance and planning capabilities in both individual and team-based environ-
ments. Project management units strengthen the formal basis of management skills. Elective units
are provided to allow specialisation in some aspect of the field of study, with free electives to
permit broadening of intellectual and personal horizons.

The course structure balances four major strands:

1. Synthesis: software systems construction and design, including methodologies and nota-
tions.

2. Analysis: software artifact analysis including mathematical foundations, evaluation and
measurement.

3. Processes: software and team management including software lifecycle and software pro-
jects.

4. Systems: understanding, abstracting, reusing and maintaining systems and components,
including exposure to the architecture and principles of large systems such as operating
systems and distributed systems.

Some units fall clearly into only one of these strands. Others, particularly early units, may address
several strands. The four-year course is based upon the four-year engineering degree structure,
from which it is derived. In particular, the honours program is integral with the four years of
study and is undertaken in the fourth year, with enrolment in the honours research stream predi-
cated upon students reaching a credit level of performance in the first three-year levels. This stan-
dard of performance is determined from a weighted average of results over the first three levels,
with first level having a weight of one, second level a weight of two, and third levels a weight of
three. These results, together with results in the fourth and final level, are used to determine final

Accreditation of Monash University Software Engineering Program

80

grades, with final- level results having a weight of six and the overall result is graded according
to the honours system (I, IIA, IIB, III).

BSE Curriculum, DoIT, Generic Attributes of a Software Engineer
and Product Quality
We reiterate that the BSE program was first introduced in 1998 at Monash and the structure given
provisional approval by IE Aust. in 1998 until 2003.The program was first offered in 1999 and
was revised (2nd iteration) in 2000. The third iteration of the course structure occurred for the new
intake in Feb. 2006. Next, we list the generic attributes or capabilities that a graduate must de-
velop in a degree program as required by the accrediting body, IE Aust.

Our BSE program must ensure that the graduates develop to a substantial degree the generic at-
tributes or capabilities, (a) – (j) listed below, to satisfy IE Aust. accreditation of professional en-
gineers. The generic attributes are as follows:

a) ability to apply knowledge of basic science and engineering fundamentals

b) ability to communicate effectively, not only with engineers but also with the commu-
nity at large

c) in-depth technical competence in at least one engineering discipline

d) ability to undertake problem identification, formulation and solution

e) ability to utilise a systems approach to design and operational performance

f) ability to function effectively as an individual and in multi-disciplinary and multi-
cultural teams

g) understanding of the social, cultural, global and environmental responsibilities and the
need for sustainable development

h) understanding of the principles of sustainable design and development

i) understanding of professional and ethical responsibilities and commitment to them

j) expectation of the need to undertake lifelong learning, and capacity to do so.

We show how it was covered in our units to show the elements of total learning experiences in
the four year SE program during the accreditation visit in 2003 (see Table 3). As outlined in the
IE Aust. Accreditation Manual, our Software Engineering Curriculum provides an integrated set
of learning activities and experiences to the students and endeavours to capture the following
elements in the kinds of percentages suggested by IE Aust:

• mathematics, science, engineering principles, skills and tools appropriate to the discipline
of study (not less than 40%)

• an engineering discipline specialisation (about 20%)

• integrated exposure to professional engineering practice, including management and

• professional ethics (about 10%)

• more of any of the above elements, or other elective studies, hardware (about 10%).

 Ramakrishnan

 81

Table 3: Elements of total learning experiences in the four year SE program
shown through generic attributes

BACHELOR OF SOFTWARE ENGINEERING DEGREE
(part of Accreditation document, Aug 2003)

Column Keys:
CP Credit points;
A Maths, Engineering principles, skills, tools related to S.E. -relate to SWEBOK
 (not less than 40%)
B Design, Analysis & Projects (about 20%)
C Discipline Specialisation relate to SWEBOK & PMBOK (about 20%)
D Exposure to Professional Practice & Professional ethics (about 10%)
E more of any of the above elements, or other elective studies (about 10%)
F ~%

Levels 1-4 CP <-------A 40%--------> B 20% C 20% D 10% E 10% F ~% Totals

Core units show Math % separately

Level 1 Rest of A% Math%

MAT1841 6 100 (6.0)

MAT1830 6 100 (6.0)

CSE1301 6 100 (6.0)

CSE1303 6 50 (3.0) 40 (2.4) 10 (.6)

CSE1401 6 40 (2.4) 20 (1.2) 20(1.2) 20 (1.2)

CSE1402 6 90(5.4) 10(.6)

(Level 1 core - % denoting proportions of total learning experience)

 36 16.8 12 3.6 1.2 1.8 0.6 36
 47% 33.33% 10% 3.33% 5.00% 1.67%

Level 2

CSE2303 6 20 (0.8) 40(1.6) 40(1.6)

CSE2304 6 50(3.0) 25(1.5) 25(1.5)
CSE2201 6 20 (1.2) 60 (3.6) 10(.6) 10(.6)

CSE2/3324 6 40(2.4) 60 (3.6)

CSE2302 6 30(1.8) 70(4.2)

BUS2176 6 50(3.0) 30(1.8) 20(1.2)

CSE2305 6 40(2.4) 40(2.4) 20(1.2)

CSE2/3325 6 40(2.4) 40(2.4) 20(1.2)

(Level 2 core - % denoting proportions of total learning experience)

 48 17 3.1 17.5 3 1.8 3.6 48

 35% 6.46% 36.46% 6.25% 3.75% 7.50%

Level 3

CSE3213 6 80(4.8) 20(1.2)

CSE3308 6 25(1.5) 50(3.0) 25(1.5)

CSE3391/ 3 80(2.4) 20(.6)

CSE3395 3 80(2.4) 20(.6)

CSE3302 6 30(1.8) 50(3) 10(.6) 10(.6)

CSE3322 6 30(1.8) 70(4.2)

CSE3323 6 100(6.0)

Accreditation of Monash University Software Engineering Program

82

Levels 1-4 CP <-------A 40%--------> B 20% C 20% D 10% E 10% F ~% Totals

(Level 3 core - % denoting proportions of total learning experience)

 36 14.7 11.4 3.3 6.6 36

 41% 31.67% 9.17% 18.33%

Level 4 (Core for Hons. Stream and Pass degree)

CSE4002 12 20(2.4) 20(2.4) 30(3.6) 30(3.6)

CSE4431 6 30(1.8) 30(1.8) 30(1.8) 10(.6)

CSE4333 6 20(1.2) 40(2.4) 40(2.4)

(Level 4 core - % denoting proportions of total learning experience)

 24 5.4 6.6 7.8 4.2 24

 23% 27.50% 32.50% 17.50%

Level 4 (Core for Hons. Stream)

CSE4402 12 95(11.4) 5(.6) 24

 95.00% 5.00%

Overall core CP totals for Hons. Stream
 156 53.9 15.1 39.1 26.7 15 4.2 156
Overall core percentages for Hons. Stream

 34.55% 9.68% 25.06% 17.12% 9.62% 2.69%

Total Core Credit Points (36+48+36+24) = 144 CP for Pass Degree with 48 CP Electives

Overall core CP totals for Pass degree
 144 53.9 15.1 41.5 15.3 14.4 4.2 144
Overall core percentages for Pass degree

 37.43% 10.49% 28.82% 11.88% 10.00% 2.92%

Next, we briefly mention the aims of innovative project, DoIT, that was undertaken in 2001 for
establishing a quality curriculum product and how it was realized.

The BSE curriculum content was checked for coverage of Software Engineering Body of Knowl-
edge by manually checking the details of each unit (week by week lecture notes and assessments).
Then, we produced a customisable in-forming product quality environment called DoIT in 2001.
The digital portfolio available from DoIT enables our BSE students to view their progression in
learning, manages their knowledge capabilities and also contributes to innovation in institutional
quality audit process. More details about DoIT are available in (Ramakrishnan & Cambrell,
2002). DoIT works on a number of levels:

 Innovative learning system for students to learn about what skills they have learnt (as per
SWEBOK) as they move through the course.

 Active curriculum where the students and academics teaching into our BSE can view
whereabouts in the course across all subjects, a theme (knowledge areas as per
SWEBOK) is taught.

 Assist in the accreditation process of our BSE by the accrediting bodies such as ACS and
Engineers Australia as our course is mapped to the core knowledge areas as articulated by
SWEBOK.

 Customizable to produce a curriculum tracking system along the lines of what is required
by Monash Graduate Attributes project (Monash 2020 vision of Monash graduate capa-
bilities) as part of Australian University Quality Agency's (AUQA) audit requirement.

 Ramakrishnan

 83

One can observe from the DoIT output (Ramakrishnan & Cambrell, 2002) that some of our BSE
units have a very focussed content and cover generic attributes (as required by IE Aust.) such as:

a) ability to apply knowledge of basic science and engineering fundamentals
(CSE1301,CSE1303, CSE3391/3395) and

b) ability to communicate effectively, not only with engineers but also with the community
at large (CSE1402, CSE1303);

whereas other units have a broader focus and cover and assess a wider set of graduate attributes,
drawing on knowledge and capability from different units. For example,

c) in-depth technical competence in at least one engineering discipline is covered at various
levels of Bloom’s taxonomy. In Software Engineering (SE) units such as CSE1401 (In-
troduction to SE), CSE2201 (SE Practice), CSE2305 (OOSE), CSE3308 (OO Analysis &
Design), CSE4002 (SE Studio project), CSE4431 (Systems V&V, Quality & Standards)
and CSE3213 (Formal Methods in SE), various SWEBOK areas are covered at different
levels which can be seen in the DoIT output.

d) ability to undertake problem identification, formulation and solution – is part of most of
our BSE units and forms the basis of assessing students’ capability.

e) ability to utilise a systems approach to design and operational performance – a number of
units from level 1 – 4 cover and assess this important aspect from the week by week de-
scriptions of units such as: CSE2201 (SE Practice), CSE2303 (Algorithms & Data Struc-
tures), CSE2/3324 (Computer Architecture), CSE2302 (Operating System), CSE3302
(SE Project), CSE4002 (SE Studio Project) and CSE4431 (Systems V & V, Quality &
Standards).

f) ability to function effectively as an individual and in multi-disciplinary and multi-cultural
teams with the capacity to be a leader or manager as well as an effective team member –
Students work on group projects and learn about various aspects of working effecting in
teams in various roles, employing processes such as PSP, TSP and ISO9000 standards
and are assessed for their role(s) in such team work in CSE2201, CSE3308, CSE3302,
CSE4431 and CSE4002.

g) understanding of the social, cultural, global and environmental responsibilities of the pro-
fessional engineer, and the need for sustainable development – in CSE3323 (Computer
Industry: History, Social & Professional issues), such issues are explored and students are
formally assessed on their understanding of such issues.

h) understanding of the principles of sustainable design and development – A number of our
final year SE Studio projects (CSE4002) have been in the manufacturing sector where the
students are exposed to the requirements of ISO 14001. In CSE4002, we cover “the main
principles of professional management and are based on the cyclical process of ‘plan, im-
plement, check and review’. The structure of ISO 14001 also provides a common basis
for integration with elements of occupational safety and health management, and quality
management systems such as ISO 9000” (Refer http://www.iso14000.org/). Some of
these issues forms part of their Quality manual in CSE4002. In March 2000, Monash
University adopted an environment policy (Refer
http://www.adm.monash.edu.au/ohse/environment/index.html) and has initiated a number
of projects and initiatives since that time. Students are enthusiastic in doing their bit by
double sided printing of journal, conference papers, class notes, drafts of their thesis and
so on.

Accreditation of Monash University Software Engineering Program

84

i) understanding of professional and ethical responsibilities and commitment to them –
Such topics are covered in CSE3323 and students are expected to observe these ideas in
SE Studio project (CSE4002) and in their thesis. Monash is always improving on their
standards in issues such as plagiarism, cheating, copyright and IP issues.

j) expectation of the need to undertake lifelong learning, and capacity to do so – Motto of
Monash is 'Ancora imparo' - 'I am still learning'. In our BSE program, we cover both the
fundamental areas of SE knowledge as well as the applied and new technology areas.
They learn about problem solving skills. By continuing to learn, they keep learning
about how to adapt to new technology and thrive on new situations and problems as they
encounter them. BSE Students undertaking the Honours stream in their final year of
study are required to enroll and successfully complete a solo research thesis component.

We also implemented another innovative project called Monash University Software Engineering
(MUSE) Studio Lab Facility in 2002. MUSE Studio Lab is the hardware/software infrastructure
facility made exclusively available to our final year BSE students for their final year Software
Engineering project. In 2002, we had a MUSE Studio Lab with 14 machines and 2 servers to
house some server software, testing tools and for students’ project assets. In 2003, MUSE Studio
grew to 2 labs with 30 Win XP/Linux dual boot machines with servers to house tools and project
assets as in 2002. The projects are sourced from the industry and students undertake these pro-
jects in groups of 4 –5 over two semesters of study in their final year program (Ramakrishnan,
2003). We also designed a MUSE portal to enable the students in 2003-2004 to manage the soft-
ware assets in student teams’ final year software engineering project (Capstone project). The ac-
crediting body checked our electronic resources such as DoIT, teaching resources as well as
physical facilities such as the MUSE Lab, the Monash library and lecture theatres and was satis-
fied with the infrastructure available.

Our students rate the MUSE Studio project very highly as they are given the opportunity to prac-
tice the SE skills they have learnt in the previous years of study on a team-based project for an
industry client. They also often get to learn new technology in implementing the solution in a
real-world setting. This kind of collaborative industry relevant project in the final year of SE edu-
cation addresses some of the concerns of Computer Science education expressed by some aca-
demics (Arora & Chazelle, 2005; Narasimhan, 2006).

Quality System Process
The Bachelor of Software Engineering program’s curriculum has been designed in such a way as
to support a quality input into the syllabus content of each of the units offered into the program.
The School of Computer Science & Software Engineering (called Clayton School of IT currently)
and the Faculty of IT have quality processes in place regarding program planning, curriculum
development, and regular course curriculum and content review, which is discussed next. The
accreditation panel checked the documentation provided on quality systems in place at Monash
during the panel visit in Aug 2003 and were satisfied with the procedures in place.

Curriculum Development and Review
The Associate Dean, Teaching of the Faculty in consultation with the Head of School and the
Course Director oversees any new course initiatives and curriculum development activities in the
School. Course directors are responsible for leading product group meetings to discuss any new
proposals or revisions to existing units before they are tabled at the Faculty undergraduate educa-
tion subcommittee. Each of the units is proposed by an academic in the school and submitted for
approval using the MONATAR (online unit description template used in the Faculty of IT) sys-

 Ramakrishnan

 85

tem. The Faculty undergraduate program subcommittee (UPSC) members review it and any revi-
sions are recorded in the MONATAR system. It is then forwarded to the Faculty education com-
mittee (FEC) by the chair of UPSC and, after approval by FEC, it is recorded in the university
handbook as a new offering.

Teaching and Learning Environment
Units offered in the Faculty of IT at Monash used to be housed in the courseware web page of the
School offering the Course and was openly accessible by students, Monash community and the
outside world. The content of the unit often consisted of: lecturer’s details, venue, semester &
year of offering, an overview, week by week details, assessment details such as hurdle require-
ments, assignments, exams etc. Some units also offered a feedback facility for discussion
amongst students and/or lecturer, tutors and students. However, since 2004, Monash University
has been piloting the use of Monash University Studies Online (MUSO) which is an internet-
based teaching platform based on WebCT Vista 3. MUSO is a web-based course management
system and the Faculties including the IT Faculty are promoting MUSO as the teaching and learn-
ing environment and repository for storing and managing unit information. It is seen as being
more than a webpage of courseware information about a unit offering, and as an efficient course
management tool for preparing the unit content, for communicating with students, managing as-
sessments and grade, and for improving learning outcome by engaging with students using vari-
ous learning styles that is appropriate for that unit. This standardized unit view has received posi-
tive feedback from students. However, only students enrolled in the unit and the lecturer offering
the unit and his/her tutors can view the content, which means that it is not open for other col-
leagues in the School/Faculty/University other than through explicit permission changes by the
MUSO administrator. So, the teaching and learning environment in MUSO is closed to the out-
side world, which is the current policy of Monash University.

Quality Feedback Processes
The Monash approach to quality matches the Australian University Quality Agency’s (AUQA)
principle that an University needs to identify and define what has be achieved in the University as
a whole and its various areas, and adhere to a quality cycle for continuous improvement to
achieve the objectives. The quality cycle includes: planning, acting, evaluating and improving.
Evaluations are conducted regularly for monitoring short term measures and provide formative
feedback for internal purposes for example using unit evaluations. Evaluations conducted for re-
viewing purposes consider both formative and summative feedback and are overseen by external
parties such as AUQA.

Students enrolled in a unit are given the responsibility of filling Unit Evaluation forms at the end
of each semester of study. Students also evaluate the lecturer’s teaching of the unit by filling in
teaching feedback questionnaires. The University’s Centre for Higher Education Quality (CHEQ)
was established in 2000 to lead and support the development of quality assurance and improve-
ment in all areas of Monash University’s operations. CHEQ processes the Monash Questionnaire
Series on Teaching questionnaires centrally and results are sent to the school and the staff. Such
unit evaluations are meant to be treated seriously by the academics and any comments taken on
board to improve future deliveries. Graduates of Australian Universities are invited, to respond to
the Course Experience Questionnaire (CEQ) and a Graduate Destination Survey (GDS) around
four months after completing a course of study. These are national surveys administered by each
university under the national co-ordination of Graduate Careers Australia. At Monash, CHEQ
checked CEQ for: the quality of teaching, the clarity of goals and standard; the nature of assess-
ment; the level of workload; and the enhancement of their generic skills. This was the regime

Accreditation of Monash University Software Engineering Program

86

under which the SE program operated when the accreditation panel (IE Aust.) visited Monash in
2003.

The need for Monash to have systematic feedback from students was identified by CHEQ and
administered through another questionnaire, Monash Experience Questionnaire (MEQ) in 2003
and in 2005. One of the aims of MEQ was to collect these feedbacks to assist Monash in the
preparation of the audit in Sep. 2006 by AUQA. MEQ is a lead indicator on the course experi-
ence questionnaire which is used as a measure in the learning and teaching performance fund for
the Universities from the federal government.

AUQA panel’s questions with respect to BSE were focused on these quality assurance measures
and our planned improvement strategies. We were not only able to mention the unit evaluation
methods in place but also about performance-based incentive by funding staff for travel to con-
ferences for doing well in unit evaluations. Monash institutional policy and strategic direction for
teaching and learning have had positive impact on AUQA audit in 2006 at Monash, Faculty of IT
restructuring & some of the changes and/or fine tuning of quality processes.

A centre for the advancement of learning and teaching (CALT) was established in 2006 at
Monash to coordinate the University’s strategic direction of instituting systematic quality assur-
ance teaching and learning processes and support for staff and students. The two centers of CALT
and CHEQ work collaboratively with the faculties across Monash as part of systematic continu-
ous improvement strategy in response to unit evaluation data from the students to achieve im-
provements in student learning experiences and student satisfaction levels. This means that from
2006, we have a more stringent and open quality process for in-forming the various stakeholders
including current and prospective students in place for re-accreditation of Monash University
Software Engineering by Engineers Australia (EA) in 2008.

Feedback from Alumni
Some of the comments from BSE alumni are:

“The Testing subject has helped me in my role as a Performance Tester. “ (graduate of 2002)

”The most value I gained from University came from the more pure software engineering subjects
such as our studio project which provided far more experience then I had realized at the time”
(graduate of 2003).

“I particularly enjoyed subjects that involved group work such as Software Engineering Project
and Software Engineering Studio Project” (graduate of 2004).

“I have found that because of my academic background the most demanding tasks that I currently
have - i.e. requirements elicitation, analysis, design and modelling of procedures and processes,
resource acquisition and management of stakeholder expectations etc. are incredibly easy to do
and do well ……. Hoorah for SWEBOK” (graduate of 2005).

Related Work on SE Curriculum
This section looks at a number of papers published in this area of SE curriculum and accreditation
process since 1998. We commence with our paper (Ramakrishnan & Schmidt, 1998) where we
discussed the educational requirements of a software engineering curriculum and showed how we
arrived at a course structure that was suited to our local requirements at Monash University and
with an eye on accreditation requirements from the Institution of Engineers, Australia (IE Aust.)
as well as from the Australian Computer Society (ACS). The course structure and curriculum
conformed to the CMU/SEI or ACM model curricula (Ford, 1990). In 1999, IEEE Software pub-

 Ramakrishnan

 87

lished an article titled “Software Engineering Programs are not Computer Science Programs” by
the eminent academic, Prof David Parnas (1999). Perhaps, his concern that engineering disci-
plines have a well documented body of knowledge for each of its established engineering disci-
plines to meet the guidelines of Engineering accreditation bodies and that a corresponding body
of knowledge is missing for Computer Science has been addressed in Computing (Computer Sci-
ence) Curricula (CC/CS curricula2001). At Monash, we can state that CS and SE units comple-
ment each other and coexist and cooperate in much the same way as science and engineering de-
partments do. However as Prof. Parnas points out, science programs are subject to review mainly
by the Universities for quality assurance purposes, and for science programs, there is no rigid ac-
creditation requirement in North America by the Canadian Engineering Accreditation Board
(CEAB) or by the Accreditation Board for Engineering and Technology (ABET) or by the Ac-
creditation Board Engineers Australia (EA) in Australia. Prof Parnas states that the accreditation
process for engineering programs is an effective way of raising the quality of the educational pro-
grams, and for raising the professional status of SE, SE should be treated as another specialty in
engineering and accorded similar accreditation process. In 1999, Engel reported on Software En-
gineering Coordinating Committee’s initial progress on accreditation guidelines for undergradu-
ate software engineering programs. Prof. Bertrand Meyer presented his view on software engi-
neering curriculum in an IEEE Computer article (Meyer, 2001) and discussed five complemen-
tary elements of a software curriculum as: principles, practice, applications, tools and mathemat-
ics. Meyer argues for a balance between the conceptual and operational aspects in a software cur-
riculum. An IEEE Software article in 2002 (Saiedian, Bagert, & Mead, 2002) try to dispel myths
and conceptions regarding SE programs. They report that instead of pigeonholing SE education
into one model, we should foster stronger communication between various faculty groups, be-
tween universities and industry. They also state the importance of seeking industry feedback
through forums such as industry liaison boards and try to incorporate changes into the programs
in an appropriate fashion. In 2004, Kruchten argued to put engineering into software engineering
in his paper at the Australian Software Engineering Conference (Krutchen, 2004). He argued that
software engineering as a mature engineering discipline has a long way to go. He argued that
software engineering is different from other engineering disciplines: software is not governed by
physical laws such as in Physics, is easy to change, has low manufacturing costs, accommodates
iterative development, and has no international borders. He stated that engineering in the software
world (in bits) cannot compare exactly to engineering in the hardware world (of atoms). Kruchten
wants the SE educators to promote a solution-focused engineering mindset in the SE programs in
order to build software products that satisfy user requirements and not focus just on technology.
He stated that computing curriculum for software engineering (ACM/IEEE Computing Curricu-
lum, 2003) is a step in the right direction. van Vliet (van Vliet, 2005) reported on a few more
myths in SE education and his message was that there is more to software engineering than engi-
neering. In his view, social dimension is equally important and user interface design should not
be relegated to a “related discipline” in both SWEBOK and SEEK. He would also like to see
model-driven development (MDA) and service-oriented architectures (SOA) in SWEBOK and
SEEK.

Summary
In this article, we have discussed how we have developed a SE curriculum and managed an evo-
lution process for our undergraduate Bachelor of Software Engineering program. We have de-
scribed the quality characteristics of the curriculum structure and content, teaching & learning
environment, and quality assurance framework by focusing on five aspects. These five aspects
are: i) using reference frameworks to check against our course structure and content, ii) building a
quality teaching and learning environment, iii) engaging with external bodies such as industry

Accreditation of Monash University Software Engineering Program

88

liaison boards, internal committees such as the school, faculty and university undergraduate edu-
cation committees and with industry clients for capstone projects as part of the quality assurance
process in assisting to deliver professional engineering programs, iv) the accreditation process
with Engineers Australia (EA) and with Australian Computer Society (ACS), and v) CALT &
CHEQ involvement with Faculty of IT during AUQA audit and for improving student learning
experience. We have thus shown evidence of a continually improving, aligned quality product
and process in place for continued accreditation of the Monash Software Engineering Program by
Engineers Australia.

References
ACM/IEEE Computing Curriculum. (2003) Software Engineering. Joint IEEE Computer Society/ACM

Task Force on Computing Curriculum, July 2003.

Arora, S., & Chazelle, B. (2005). Is the thrill gone? Communications of the ACM, 48(8), 31-33.

Barrie, S., Ginns, P., & Prosser, M. (2005). Early impact and outcomes of an institutionally aligned, stu-
dent focused learning perspective on teaching quality assurance. Assessment and Evaluation in Higher
Education, 30(6), 641-656.

Barrie, S.C., & Prosser, M. (2003). An aligned, evidence-based approach to quality assurance for teaching
and learning. Presented at the Australian Universities Quality Forum, Adelaide, June 13-15

Bourque, P. & Dupuis, R. (Eds.). (2001). A guide to the software engineering body of knowledge (trial edi-
tion). Los Alamitos, CA: IEEE CS Press.

Engel, G.L. (1999). Program criteria for software engineering accreditation program. IEEE Software,
16(6), 31-34.

Ford, G. (1990). SEI report on undergraduate software engineering education. Technical-Report
CMU/SEI-90-TR-3. Software Engineering Institute, Carnegie Mellon University.

Krutchen, P. (2004). Putting the “engineering” into software engineering. Presented at the Australian Soft-
ware Engineering Conference (ASWEC’04), IEEE Computer Society, pp. 2-8.

Meyer, B. (2001). Software engineering in the academy. IEEE Computer, 34(5), 28-35.

Narasimhan, L. V. (2006). A second opinion on the current state of affairs in computer science education –
An Australian perspective. Issues in Informing Science and Technology, 3, 445-458. Available at
http://informingscience.org/proceedings/InSITE2006/IISITNara114.pdf

Parnas, D.L. (1999). Software engineering programs are not computer science programs. IEEE Software,
16(6), 19-30.

Ramakrishnan, S. (2003). MUSE studio lab and innovative software engineering capstone project experi-
ence. Proceedings of the 8th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE2003) (pp. 21-25), Thessoloniki, Greece, June 2003, ACM Publication.

Ramakrishnan, S. & Cambrell, A. (2002). An in-forming web-based environment for a bachelor of soft-
ware engineering degree – DoIT. In E Cohen and E Boyd (Eds.), Proceedings of the Informing Science
and IT Education Conference (IS 2002) (pp. 1291-1299), Cork, Ireland, June 19--21, 2002 Available
at http://proceedings.informingscience.org/IS2002Proceedings/papers/ramak053infor.pdf

Ramakrishnan, S., & Schmidt, H. (1998). A study of software engineering education requirements within a
semiotic framework. Proceedings of the Software Engineering: Education & Practice (SE:E&P 98)
(pp.213-220), Dunedin, New Zealand, IEEE Computer Society Press.

Saiedian, H., Bagert, D., & Mead, N.R. (2002). Software engineering programs: Dispelling the myths and
misconceptions. IEEE Software, 19(5), 35-41.

 Ramakrishnan

 89

van Vliet, H. (2005). Some myths of software engineering education. Presented at ICSE’05, St. Louis, Mis-
souri, USA, ACM Publication.

Biography
Sita Ramakrishnan is a senior academic in the Clayton School of IT,
Faculty of IT, Monash University, Australia. She holds a PhD in Vali-
dating Interoperable Distributed Software and Systems. She has active
research interests in modeling and validation of distributed software
components, component-based and service-oriented architectures and
testing, web technologies in education, teaching and learning. She has
published refereed papers in International Journals & Conferences on
software engineering on quality, reuse, software metrics, evaluation,
testing and SE Education. She has been an organizing and Program

committee member of a number of International conferences and reviewed a number of confer-
ence and journal articles. She has played a leading role in the curriculum development of Bache-
lor of Software Engineering course at Monash University. She is Director of Software Engineer-
ing degree program in the Faculty. She managed the process of formal accreditation of the soft-
ware engineering course program by the Institution of Engineers of Australia and Australian
Computer Society. Dr Sita Ramakrishnan is a member of IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

