
Proceedings of the 2006 Informing Science and IT Education Joint Conference

Salford, UK – June 25-28

Increasing Student Retention and Satisfaction in
IT Introductory Programming Courses using

Active Learning
Keith J. Whittington

Rochester Institute of Technology, Rochester, New York

kjw@it.rit.edu

Abstract
The emerging field of Information Technology is one of several fields that require students to
learn computer programming. A large proportion of the students were having difficulty getting
through the programming sequence and ultimately changed majors or dropped out of college. To
deal with this problem, curricular reforms were implemented and active learning techniques were
added to the classroom. The outcome of which was increased student retention, grades, and over-
all satisfaction. As a result of these encouraging results, an NSF CCLI grant was awarded to for-
mally compare teaching techniques and to create active learning activities specifically designed
for introductory computer programming courses. This paper discusses the preliminary work and
results that led to the grant award and also summarizes the work that is currently underway.

This material is based upon work supported by the National Science Foundation under Award
No. DUE-0442987.

Keywords: Active learning, introductory programming, student retention, curricular reform

Introduction
The Information Technology (IT) Department in the Golisano College of Computing and Infor-
mation Sciences at Rochester Institute of Technology (RIT) began teaching its introductory Java
programming sequence in academic year (AY) 2001-2. Over the past several years, several cur-
ricular and instructional modifications have been implemented with the goal of increasing student
retention and satisfaction.

The changes included an alternative course sequence that provided more time though the pro-
gramming sequence and instructional techniques designed to actively engage the students with
the goal of deepening student understanding of object-oriented programming concepts.

The following sections describe the evolution of the programming sequence and the work cur-
rently underway on the NSF CCLI grant
awarded to evaluate and compare tradi-
tional lecture instruction with active
learning techniques in IT computer pro-
gramming courses.

Alternative Program-
ming Sequence

The IT department developed a three-
course sequence in Java programming in

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Increasing Student Retention and Satisfaction

308

academic year (AY) 2001-2. As the students moved through the sequence, the concepts became
increasingly more abstract (encapsulation, polymorphism, inheritance, OOP design, exceptions,
and IO) and became more difficult for many of the students to grasp. The second course became
the “gatekeeper” course where a significant number of students had difficulty passing the course.
To deal with this problem, the existing second course was expanded into an alternative, double-
length sequence (Whittington & Bills, 2004).

The decelerated option was implemented in AY 2002-3 and was specifically designed for stu-
dents who experienced increasing difficulty in grasping the abstract programming concepts pre-
sented towards the end of the first course. The hypothesis was that these students needed more
time to absorb abstract concepts. These new courses were targeted for students who earned low
B’s and C’s in the first course and had a high risk of failing and leaving the program. Students
with lower grades had to re-take the first course since it was felt that students needed to become
proficient in basic constructs such as decisions and loops before progressing through the se-
quence.

The alternative two-course sequence covered the same material as the original course, but was
extended over two courses. Great care was taken to ensure that these courses were not described
as the “slow” sequence, but rather as an opportunity to build strong foundation skills in program-
ming.

As reported by Whittington and Bills (2004), the decelerated sequence was extremely effective
and resulted in 14.3% more students receiving a grade of ‘C’ or better through the second step in
the introductory programming sequence, decreased the level of intimidation felt from their fellow
students by 40%, and 89% of the students who took the alternative sequence had a strong positive
opinion of this option.

Active Learning
One more change, and perhaps more significant, was the addition of active learning techniques
into the sections taught by the author. Although significant improvements were achieved by slow-
ing down the pace of the courses, a greater impact was seen in the active learning sections over
the traditional sections where lectures were the predominant form of disseminating course con-
tent. Active learning activities were created to enhance student learning, increase self-confidence,
and make a learner-centered classroom. The author felt it was especially critical that these stu-
dents grasp the fundamental concepts of object-oriented programming because they had begun to
struggle with the first programming course as the concepts became more abstract. As course
completion rates improved, it became apparent that active learning was a critical component to
the success of these courses.

Meyers and Jones (1993) in their seminal book on active learning states that learning is by nature
an active endeavor, and different people learn in different ways. Active learning enforces these
assumptions through its opportunities for students to talk, listen, read, write, and reflect while
using problem-solving exercises, informal small groups, simulations, case studies, role playing,
and other activities. It also makes the students apply what they are learning.

A subset of active learning, cooperative learning, was the predominate form used for the active
learning activities. These types of exercises use small groups of 3 or 4 to create genuine commu-
nities within the classroom and promote deep learning through well structured and orchestrated
activities (Millis & Cottell, 1998). Cooperative learning activities were chosen because introduc-
tory programming courses are typically taken by freshman students, and it was felt that these stu-
dents tended to lack the maturity and/or confidence to work collaboratively with other students on
complex projects in which each student is assigned a different responsibility.

 Whittington

 309

Some direct research shows that active learning techniques in computer programming are effec-
tive in reducing course attrition and improving success. Chase (2000) successfully used two
strategies in an introductory computer science course: peer instruction and a cooperative learning
environment. These two techniques reduced the overall number of D, F, or Withdrawals from
56% to 33% and showed even more improvement for female students (from 53% to 15%). In a
similar study that used peer mentoring as a technique, D, F, or Withdrawals were reduced from
34% to 13% (Stephenson, 1996). Plus recently, Jeffrey McConnell (2005) has provided examples
of materials using cooperative learning techniques that he has successfully used in various com-
puter science courses.

Active Course Design
Active learning techniques were intergraded into the traditional classroom in a way that supple-
mented the traditional teaching methods. The course was designed to promote significant learning
by using the following steps for each new topic:

1) Students were given a lecture on a topic

2) A paired-programming exercise was given immediately after the lecture where each pair of
students worked on a simple programming exercise with step-by-step instructions. The pur-
pose of this activity was to lead them into making common mistakes then have them analyze
the mistakes, modify the code, and ultimately come up with a solution to the activity

3) A programming assignment was given where they had one week to complete it

4) After the above activities were completed, a cooperative learning activity was given that fo-
cused on the concepts and reasons for using the current programming constructs.

The purposes of this process were to provide multiple ways of learning and to place an emphasis
on higher order learning and less emphasis on mimicry and memorization.

Cooperative Learning Activities
In these activities (Whittington, 2004), the students were divided into groups of 3 or 4 and asked
to cooperatively work together on a common solution. Activities included posing questions that
asked why particular constructs were used and what purpose they served, developing a code
fragment, analyzing code fragments for errors and output, listing the steps required to perform an
operation, and acting out a programming assignment where each group was a different object in
the program.

Various techniques were used to elicit answers from the students. These methods utilized differ-
ent group interaction models, such as selecting a best answer, iterative answer refinement, and
answer deconstruction and synthesis. Answers were presented by the groups and critiqued by the
rest of the students. Instructor led discussions regarding the answers and alternative solutions
were also suggested. Another technique brought the students together in groups to develop a code
fragment then the code design was discussed and the group presented their answers to the rest of
the class. These activities were followed-up with paired programming exercises, described above,
which were completed in-class. The weekly programming assignments were presented in a se-
quential, iterative manner where each project built upon the previous assignment. This allowed
students more time to refine their previous solutions that had not worked properly.

Results
The initial two sections of the alternative two-course sequence had one section that used active
learning while the other section used traditional teaching methods. These courses covered the
same material and used the same tests, and homework assignments. The active learning section

Increasing Student Retention and Satisfaction

310

had an 8% D, F, W (withdrawal) rate as compared to 28% D, F, W rate in the traditional section.
Although there were no further head-to-head comparisons, the D, F, and Withdrawal rates in the
active learning sections in successive quarters were 7%, 9%, and 8%. The percentage of A/B
grades was also greater for the active learning section (75% to 59%). Additionally, preliminary
student satisfaction with the active learning techniques ranged from 71% to 92% approval rate.
Although there were different instructors in each section, and it was not a fully realized experi-
ment, the data did suggest that active learning techniques effectively reduce student course attri-
tion and increase student satisfaction.

NSF Grant – Current Work
Based on the initial success of the courses that used active learning, an NSF CCLI grant entitled,
Active Learning for Programming in Information Technology, was awarded in 2005.

While the techniques described above have apparently proven successful at RIT though informal
course evaluations and anecdotal evidence, this grant provides the opportunity to systematically
document and capture these techniques for dissemination, and to gather evaluation data that will
help improve the techniques and measure their effectiveness.

The primary goal of this grant is to increase learning and reduce course attrition within introduc-
tory computer programming courses through the use of active learning techniques. This grant tar-
gets disciplines where programming skills are critical but not the predominant required skill, such
as Information Technology. It also supports students who have previously been marginalized in
the educational process and who are typically at-risk of leaving these fields, based on their lack of
success with traditional instruction. The grant provides alternative instructional methodologies
that can enable these students to achieve and succeed.

Evaluation Design and Analysis
The evaluation effort will reflect a quasi-experimental design (Cook & Campbell, 1979), using
treatment and control groups of approximately 25 students per group, who are participating in
Introduction to Computer Programming courses at Rochester Institute of Technology. Each group
will be enrolled in different sections of the same course, but will have the different teachers. The
quasi-experiment will be repeated twice, over two quarters. Those students in the treatment group
will be taught using active learning techniques while students in the control group will not receive
these techniques.

Prior to the collection of the above data, the evaluation team will assist course personnel with as-
sessing the validity and reliability of the instruments used that include pre-tests and post-tests
used for major topic portions of the courses. Further, all survey instruments and interview proto-
cols developed by the evaluation team to gather data on usability and satisfaction with the course
will undergo similar psychometric analyses prior to field use to establish validity and reliability.

Analysis
Descriptive data about the participants, in the form of entry skills, past successes and failures with
programming, and gender will be gathered to help stratify the findings. In addition to general
demographic data related to the participants, descriptive statistics will be calculated for both as-
sessment and satisfaction data, and may be used in a formative manner. Inferential methods, (e.g.,
t-tests, ANOVAs, regression analyses) will be used to identify potential differences between the
control and treatment groups. Further, student demographic data will be incorporated in the
analyses to investigate the impact of active learning techniques on traditionally underserved
populations. Observational data and notes will be shared with faculty for the purpose of refining
and improving the techniques in practice.

 Whittington

 311

Problems Addressed
Active and cooperative learning requires significant rethinking of a course and major adjustments
for the faculty teaching it (Chase, 2000). One of the major problems that keeps faculty from in-
corporating active learning into the classroom is that it requires too much time to prepare the ac-
tivities and the materials and resources are lacking (Mosely & Merritt, 1996). The culture of pro-
gramming instruction is such that few instructors were ever taught using active techniques, and
therefore, they tend to “teach the way I was taught” (Newcomer & Larson, 2001; Zywno, 2003).
Instead, programming faculty will need to be explicitly taught how to use these active learning
techniques.

Another goal of this work is to enable faculty to easily incorporate active learning exercises into
their classrooms by providing specific activities and instructions on how to orchestrate the activi-
ties. This will be especially helpful to those who might otherwise be hesitant or unable to create
their own active learning activities.

Dissemination
Several publishers will be contacted to publish the workbook of active learning techniques fo-
cused on computer programming. Given the current lack of such a document, we believe that it
would be attractive to a publisher. Updating such a workbook would become part of a regular
publishing cycle of the work. A web page will be created that can be used as a point of contact for
interested faculty at other institutions. A series of workshops will also be given to provide instruc-
tion on how to implement these techniques in a classroom.

Conclusion
So far the work with active learning in introductory programming courses is promising. Student
retention through the programming sequence has increased, and student satisfaction and grades
have also improved. If the current work on the grant proves to be successful, it could change the
way introductory programming courses are taught. Also, by providing materials and detailed in-
structions, faculty who have previously hesitated to incorporate active learning into their courses
may be encouraged to try it in their classrooms.

References
Chase, J. D. & Okie. E. (2000). Combining cooperative and peer instruction in introductory computer sci-

ence. Proceedings of ACM SIGCSE, Austin, Texas.

Cook, T.D. & Campbell, D.T. (1979). Quasi-experimentation. Houghton-Mifflin.

McConnell, J. J. (2005). Active and cooperative learning: Tips and tricks (Part 1). Inroads – The SIGCSE
Bulletin, 37(2), 27-30.

Meyers, C. & Jones, T. B. (1993). Promoting active learning: Strategies for the college classroom. San
Francisco, Jossey-Bass.

Millis, B. J. & Cottell, P. G. Jr. (1998). Cooperative learning for higher education faculty. Westport, CT,
Oryx Press.

Mosely, M. (Ed.). (1996). Using active learning in college classes: A range of options for faculty. New Di-
rections for Teaching and Learning. San Francisco, Jossey-Bass.

Newcomer, J. L. & Larson, K. L. (2001). Finding yourself in the classroom: Finding the classroom in your
life. Proceedings of the 2001 American Society for Engineering Education Annual Conference & Ex-
position.

Increasing Student Retention and Satisfaction

312

Stephenson, S.D. (1996). Using a mentor program to reduce course attrition. Paper presented at the 38th
Annual Conference of the International Military Testing Association. Retrieved 5/15/04 from
http://www.ijoa.org/imta96/toc.html

Whittington, K. J. (2004). Infusing active learning into introductory programming courses. The Journal of
Computing Sciences in Colleges, 19(5): 249 – 259

Whittington, K. J., & Bills, D., (2004). Alternative pacing in an introductory Java sequence. Proceedings of
5th Conference on Information Technology Curriculum, SIGITE, ACM Press. 118-121

Zywno, M. S. (2003) Engineering faculty teaching styles and attitudes toward student-centered and tech-
nology-enabled teaching strategies. Proceedings of the 2003 American Society for Engineering Educa-
tion Annual Conference & Exposition.

Biography
Keith J. Whittington is an Assistant Professor in the Information
Technology Department at the Rochester Institute of Technology. His
teaching area currently focuses on programming but has also taught in
the multimedia, HCI, and networking areas. He spent over 20 years in
industry as a computer programmer/systems analyst. His current re-
search interest is teaching programming using active learning tech-
niques, and is currently the PI for an NSF grant entitled “Active Learn-
ing for Programming in Information Technology”.

