
Issues in Informing Science and Information Technology Volume 3, 2006

What Makes Valuable Pre-experience for Students
Entering Programming Courses?

Edward Holden and Elissa Weeden
Golisano College of Computing and Information Sciences,

Rochester Institute of Technology, Rochester, NY, USA

eph@it.rit.edu emw@it.rit.edu

Abstract
For the past several years, the authors have been studying the impact of prior experience on per-
formance in introductory Information Technology (IT) courses. Since 2002, data has been col-
lected on all incoming freshmen and performance has been measured by the grade received in
initial courses. The grades are expressed in the traditional four-point scale used at most US col-
leges and universities.

Prior studies (Holden & Weeden, 2003, 2004, 2005) have used an experience index to determine
the level of prior experience possessed by students entering the IT undergraduate program. The
index has also been used to place students in appropriate classes. This study looks at the compo-
nents of the formula used to calculate this index as well as some informal experience information
that is collected as part of the survey. It concludes with a revised version of the experience index
formula which will be used to place students into cohorts in the future.

Keywords: Computers, Education, Information Technology (IT), Information Science Education,
Computer Science Education, Curriculum, Information Systems Education

Introduction
In the Information Technology (IT) department at Rochester Institute of Technology (RIT), the
authors started looking at retention in initial programming courses in the IT undergraduate pro-
gram. It was observed that certain students seemed to be unintentionally intimidated by other stu-
dents who appeared to have more experience. This caused the students without prior experience
to not become fully engaged in the course. A formula was developed to predict performance in
the first course in the programming sequence (Holden & Weeden, 2003).

It was then decided to group incoming students into cohorts based on their score using the for-
mula, under the assumption that the students without experience would not be intimidated. This
series of studies was used to examine student performance as measured by the grade received in

the class (Holden & Weeden, 2003,
2004, 2005). An earlier study by Wilson
and Shrock (2001) indicated that stu-
dents performed better when they are
comfortable in class. One way to in-
crease comfort would be to have a more
homogeneous group.

Since 2002, data has been collected on
all incoming freshmen students begin-
ning the Information Technology pro-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Valuable Pre-experience for Students

280

gram at RIT. This data has shown the types and level of experience possessed by these students.
Course performance has been measured by the grade received in initial courses. These grades are
expressed in the traditional four-point scale used at most US colleges and universities.

The formula was developed and used in our prior studies (Holden & Weeden, 2003, 2004, 2005)
to analyze the experience level of students entering the program. The formula has been used to
determine the depth of experience of each incoming freshman. The formula focused on the formal
experience that a student can encounter before entering the program. The formula included formal
high-school courses, college courses, work experience and exposure to object-oriented concepts
only and is documented in Appendix A. It did not include informal activities. This is similar in
concept to the formula developed by Wilson and Shrock (2001) to determine experience level
except that they included other factors that we did not consider relevant for our study. Other fac-
tors are evaluated separately later in this paper. These include other ways to gain experience that
are not included in the formula and include programming for enjoyment, self teaching, summer
camps or other short programs, and clubs.

This paper will layout the results of prior
studies (Holden and Weeden, 2003, 2004,
2005) and report on the sources of prior
experience both inside and outside the for-
mula mentioned above, and how this ex-
perience impacts the performance, as meas-
ured by grade in the first programming
course, Introduction to Programming I
(4002-217). This course is the first of a
three or four course sequence, as docu-
mented in prior studies (Holden and
Weeden, 2003) and is illustrated in Figure
1.

Methodology
Since 2003, a survey has been sent to all
students in the summer before their fresh-
man year. Students were asked to return the
survey before they would be registered for
their programming courses. This survey
investigated five areas.

• General computing background
• Computer programming experience
• RIT and program affiliation
• About yourself
• Learning styles

Only the first two areas are covered in this study. This study was aimed at gaining insight into
prior student experience in programming and individual motivation to program. The survey data
was collected for later analysis when course grades were available. The questions related to this
study are included in Appendix B.

Part I of the survey was designed to determine the students’ comfort using computers and asked if
they had any prior programming experience, either academically, in a work environment or for

Intro. to
Prog. I

4002-217

Intro. to
Prog. II

4002-218

Intro. to
Prog. III
4002-219

Intro. to
Prog. IIA
4002-220

Intro. to
Prog. IIB
4002-221

Figure 1: Introductory Programming Sequences

Standard path

Alternative path

Intro. to
Prog. I

4002-217

Intro. to
Prog. II

4002-218

Intro. to
Prog. III
4002-219

Intro. to
Prog. IIA
4002-220

Intro. to
Prog. IIB
4002-221

Figure 1: Introductory Programming Sequences

Standard path

Alternative path

 Holden & Weeden

 281

fun. Students with no prior experience did not complete part II of the survey. Students with ex-
perience completed part II, which gave more insight into the nature of that experience.

Student performance as measured by grade on a four point scale in the first courses in the pro-
gramming sequence was compared to the data gathered in the survey.

The remainder of the survey is used in other studies.

The 2002 survey was less formal and contained only the first two sections. It was conducted dur-
ing the first quarter of the freshman year.

Results of Prior Studies
In anecdotal discussion of the impact of prior experience, faculty members have been mixed on
their attribution of value of prior experience. Some say that it is a good predictor of success while
others have said that it was actually detrimental because students had to unlearn bad practices.

Other studies have looked at the impact of experience on performance in computing courses, but
most of theses have been focused on Computer Science courses rather than IT (Byrne & Lyons,
2001; Franklin, 1987; Hagen & Markham, 2000; Taylor & Luegina, 1989).

Several studies have concluded that prior experience does have an impact on student performance
(Byrne & Lyons, 2001; Hagan & Markham, 2000), while others have had the opposite result
(Bergin & Reilly, 2005; Ventura & Ramamurthy, 2004)

Wilson and Shrock (2001) differentiated between programming experiences from formal course
work compared to informal experience. In earlier studies (Holden & Weeden, 2003, 2004, 2005),
only formal and work experience was considered, not informal experience. Informal experience
will be considered as a separate item in this report. Wilson and Shrock found that programming
experience, both formal and informal, as part of their model, did not have a significant impact,
but previous programming coursework did.

Prior results found by Holden and Weeden (2003, 2004, 2005) include:

• Prior programming experience has an impact on student performance in the first course in
the programming sequence; however it does not have a significant impact on student per-
formance in subsequent courses. By the end of the sequence, students seem to have
equivalent performance.

• Students with prior experience are more likely to complete a faster three course sequence
than their inexperienced peers. The alternative is a four course sequence covering the
same material.

• The hurdle in learning programming appears to be learning the basic concepts such as se-
quence, iteration, and decision. Once these are learned, students are able to master the
more advanced concepts covered in later courses.

• The depth of programming experience does have an impact in the first course although
there are diminishing marginal returns for going from minimal experience to higher lev-
els, but these returns are not statistically significant. Once the key hurdles mentioned
above are overcome, other material is more easily learned.

• Students exposed to the concepts of inheritance, encapsulation and polymorphism have
significantly better performance in the first course. This may be because these students
had a more rigorous prior programming experience.

• This study has shown that there is a positive difference in performance for students who
have prior experience, particularly if the experience covered more advanced concepts.

Valuable Pre-experience for Students

282

This has some broad implications for IT programs. Institutions should consider designing
their early curriculum around the experience level of their entering students. They may
consider designing more intense courses for experienced students or transitional courses
for those who do not have experience.

• They may also want to organize students into cohorts, based on experience. This could
eliminate the frustration of early students who complain that a course is either too fast or
too slow. It may also eliminate the frustration felt by students who believe that they are
the only ones who have difficulty with the material. This latter point is currently being
investigated.

• Students’ indication of “comfort level” with computers is not an indication of future per-
formance in programming courses.

• One programming language used in the prior experience does not seem to indicate future
success more than others.

• Formal educational experience does improve performance in the first course in the se-
quence.

In this paper, the authors examine the components of the formula used in the prior studies to see
if one component has more impact than others. It will also be used to modify the method of de-
termining experience as outlined in Appendix A.

Where Do Students Get Prior Experience?
A survey done in 1987 found the 34% of 321 students had prior experience in a high school
course (Franklin, 1987). In 2002 Holden and Weeden (2003) found that 53% of 159 students
sampled had prior experience through a high school course, an increase of 19% in fifteen years.

In the combined survey from 2002 to 2005, the authors have surveyed 525 students. Many of
these students indicated that they had prior experience in programming. It was found that 56% of
the incoming freshman gained programming experience in a high school course.

In addition 10% had experience in a college course before entering our first programming course.

The Information Technology department also had 8% of incoming students entering with pro-
gramming experience from work.

The surveys used also included questions about informal experience that has not until now been
analyzed. The questions asked if the incoming students programmed for enjoyment, taught them-
selves to program, learned to program as part of a club, or learned to program at a summer camp
or other short program.

From this data it was found that 38% of our incoming students programmed for enjoyment, 31%
taught themselves to program, 6% learned to program as part of a club, and 6% learned to pro-
gram as part of a summer camp or other short program. These results are summarized in Table 1.

All-in-all a large percentage of the incoming students have some experience before they arrive in
the Introduction to Programming I course.

Prior studies by Holden and Weeden (2003, 2004, 2005) have indicated that the formal experi-
ence does have a positive impact on performance. We will now isolate the types of experience to
see what the impact of each component is.

 Holden & Weeden

 283

Dissecting the Experience Formula
The experience formula documented in Appendix A is broken down into four parts, high school
experience, college experience, work experience and exposure to advanced concepts. The analy-
sis began by looking at the first three parts since advanced concepts exposure was a result of the
first three. When the formula was dissected, some interesting results were found.

A total of 525 students who entered the Introduction to Programming I course, using Java, from
2002 through 2005 were included in the study. Of these students, 318 fell into the experienced
categories while 207 had no experience. The average grade of students in the experienced group
was 2.86 while those with no experience only averaged 2.33, 0.53 points lower than the experi-
enced. An independent sample t-test showed a significant difference (p=0.000) between the non-
experienced group and the experienced group in the first course and is consistent with the results
of the prior research.

To isolate the components, the experienced group was further broken down into the type of ex-
perience used in the experience formula, high school only, college only, work only and a mixture
of high school, college or work. An ANOVA comparing the grades earned in the Introduction to
Programming I course showed no significant difference between the experience types used in the
experience formula (p=.336).

A total of 233 students had only high school experience. These students averaged 2.91, which
was also consistent with the overall experienced students. Similarly, the 64 students with a mix-
ture of experience had a 2.75 average, again consistent with the experienced group.

The 12 students in the college only group only scored an average of 2.25. These results are not
significant due to the small sample size. The evaluation of experience was done from the students'
perspectives. The sample size is low here due to two factors. First, most of the students who enter
this course are first-time college students who have not taken a college programming course.
Second, students who have had a college experience equivalent to this course, as determined by
the department’s undergraduate coordinator, are allowed to waive this course. This would cut the
number of students even further. The lower average is explained by the fact that the undergradu-
ate coordinator determined that students taking this course had a less rigorous experience than the
other students who had a college-only experience.

The nine students who had work-only experience scored higher than the overall experienced
group, with an average grade of 3.11. This result however is not significant due to the small sam-
ple size. Again, the sample is small because most entering students come from high school, and

Table 1: Where students get prior programming experience.
Note that students may have more than one type of experience.

Student Category Number of
Students

Percentage of
Students

Total students in survey 525
Formal experience
 High school experience 294 56%
 College experience 50 10%
 Work experience 41 8%
Informal experience
 Programmed for enjoyment 197 38%
 Self taught 165 31%
 Clubs 32 6%
 Summer camp or other short program 33 6%

Valuable Pre-experience for Students

284

have not entered the work force as programmers. These students often represent non-traditional
students who have entered our program. These results are shown in Table 2.

The fourth factor in the experience formula was exposure to the advanced, object-oriented pro-
gramming (OOP), concepts of polymorphism, encapsulation and inheritance. The 2002 survey
had a slightly different question than the 2003 though 2005 surveys. The 2002 survey only asked
if the students had "learned" the concepts (Yes or No). The 2003 through 2005 survey asked stu-
dents to describe their level of understanding: not at all, weak, moderate, or strong. The 2002 stu-
dents were considered to have had exposure to OOP if they selected "Yes", while the 2003
through 2005 students were considered to have had exposure to OOP if they selected a moderate
or strong understanding.

The results showed that all experience categories had higher average grades if they had exposure
to OOP concepts than those who did not. Of the 233 students who had high school only experi-
ence, 42 had exposure to OOP concepts. Those 42 had an average grade of 3.23, 0.32 above their
peers without the OOP exposure. A 1-tailed independent sample t-test indicated that a students
that had programming experience in high school and were exposed to OOP concepts performed
significantly higher in Introduction to Programming I than students that had programming experi-
ence in high school but were not exposed to OOP concepts (p=.04).

The students with college-only experience who had exposure to OOP concepts averaged 2.33,
0.08 above their inexperienced peers. The sample was small (3/12) and the difference between the
groups was not significant (p=.46) given a 1-tailed independent sample t-test. Likewise, those
with only work experience and exposure to OOP concepts finished with a 4.00, 0.89 above their
peers without OOP exposure. But again, the sample is small (2 / 9) and the results using a 1-tailed
independent sample t-test indicated that there was no significant difference (p=.051). College-
only experience will no longer be included because of the introduction of the undergraduate coor-
dinator's process mentioned earlier, which causes a downward bias on the grades.

The 16 students who had a mixture of types of experience, who also had exposure to OOP con-
cepts had a significant improvement over their 64 peers without exposure to OOP concepts. The
former averaged 3.31, 0.56 above the latter. The results where shown to be significant through a
1-tailed independent sample t-test (p=.038).

In general, the 318 experienced students averaged 2.86. The 63 students who had exposure to
OOP concepts demonstrated better performance (3.24) than the 255 who did not (2.76). This dif-
ference is shown to be significant through a 1-tailed independent sample t-test (.005). These re-
sults are summarized in Table 3.

Table 2: Average grade in Introduction To Programming I by type of experience

Type of Experience Number of Students Average Grade in
Introduction to Programming I

(4.0 scale)
High School Only 233 2.91
College-Only 12 2.25
Work-Only 9 3.11
Mixture 64 2.75
Total Experienced 318 2.86
No Experience 207 2.33
All Students 525 2.65

 Holden & Weeden

 285

Other Factors Outside the Experience Formula
The experience formula detailed in Appendix A does not include informal experience like self
training, clubs, summer camps or other activities. The surveys did collect information on these
areas.

When looking at these informal factors, some interesting results were found. Of the 318 experi-
enced students, 217 students (68%) were involved in one or more of the informal activities. The
experienced students had an overall average of 2.86. Of these students, 174 said that they wrote
programs for enjoyment. These students had an overall average of 2.97, 0.11 above the average
for the experienced group. Similarly the 142 experienced students who taught themselves to pro-
gram had an average of 2.99, 0.13 above the experienced group.

The opposite results were seen when the non-experienced group was examined. Only 27 (13%) of
the 207 students took part in these informal activities. The 207 students who had no prior experi-
ence had an average of 2.33. The 23 students who programmed for enjoyment had an average of
2.48, 0.15 above the non-experienced group. The 23 students who were self-taught had an aver-
age of 2.65, 0.32 above the non-experienced group.

This may have indicated that these students had more motivation than the others to learn to pro-
gram.

The 31 experienced students who belonged to a club fared no better in the first programming
course that their experienced group as a whole. They averaged 2.87 compared to 2.86 for the lar-
ger group.

The questions concerning learning to program at a summer camp or other short term program
were not included in the 2002 survey, so these results are from the later surveys.

The experienced students who learned to program as part of a summer camp or other short pro-
gram actually fared worse than the whole experienced group. These 30 students averaged 2.47,
0.39 less than the larger group.

The sample was too small for the non-experienced students who belonged to a club or attended a
summer camp or other short program to make judgments about the results. Only one of these stu-
dents belonged to a club and three went to a summer camp or other short program. Table 4 sum-
marizes these results.

Table 3: Average grade in Introduction To Programming I for experienced students
with and without exposure to advanced OOP concepts.

Type of
Experience

Number of Students
w/Advanced

Concepts

Average Grade
in

Intro to Prog I
(4.0 scale)

Number of
Students w/o

Advanced
Concepts

Average
Grade in
Intro. to
Prog. I

(4.0 scale)
High School
Only

42 3.24 191 2.83

College-Only 3 2.33 9 2.22
Work-Only 2 4.00 7 2.86
Mixture 16 3.31 48 2.56
All Types 63 3.24 255 2.76

Valuable Pre-experience for Students

286

Restating the Experience Formula
When the components of the experience formula documented in Appendix A were examined
more closely for possible refinement, it was noted that various weights based on the type of ex-
perience that the student had were not always appropriate. For example, more weight was given
to college courses than high school and much more weight was give to work experience over high
school. The formula was based on some assumptions derived from discussions with faculty and
students. The assumptions were then added together. One assumption was that these factors were
additive, implying that the more, different types, of experience the better. The data suggest that
for placement in an introductory programming course, these factors are not always be additive as
can be seen in Table 2.

As shown in Table 2, all 318 students that indicated they had programming experience received
an average grade of 2.86, 0.53 above 2.33 that the non-experienced students received. The aver-
age for the 233 students who had only high school experience was 2.91, slightly above the total
experienced group, but consistent with the overall average for the whole experienced group. The
group of nine students who only had work experience had an even higher average (3.11). The 64
students who had a mixture of experience averaged 2.75, slightly below the average for the total
experienced group, but consistent with the experienced group.

One conclusion that can be drawn from this is that experience is not additive since the average
grade for students who had only one type of experience was consistent with those with a mixture
of experience.

Students with only college experience were left out of this discussion. This was because of the
way transfer credit is handled within the department by the undergraduate coordinator, as de-
scribed earlier.

Based on this analysis, either high school or work experience will be counted as determining an
experienced student, but not both, since they do not appear to be additive. College experience will
no longer be used in this situation, as it does not apply for the reasons mentioned earlier. This
exclusion of college experience may not apply at other institutions.

The old formula added one point if the student had experience with the advanced concepts of
polymorphism, encapsulation and inheritance. The new formula will continue this. This is based
on the results shown in Table 3. In all types of experience the students averaged higher that those
without the concepts.

Table 4: Average grade in Introduction To Programming I
by type of informal experience

Experience Type Number of
Students

Average Grade in
Intro. To Prog. I

All Experienced 318 2.86
Experience - Program for Enjoyment 174 2.98
Experience - Self Taught 142 2.99
Experience - Club 31 2.87
Experience - Summer Camp 30 2.47
No Experience - Program for Enjoyment 23 2.48
No Experience - Self taught 23 2.65
No Experience - Club 1 2.00
No Experience - Summer Camp 3 3.67
All No Experience 207 2.33

 Holden & Weeden

 287

The old formula did not include the informal activities shown in Table 4. Experienced students
that programmed for enjoyment or taught themselves to program averaged 0.12 and 0.13 higher
than the overall average for experienced students, respectively. These additional factors will be
included in the new formula.

The New Formula
With this new information, a new formula has been developed to assess the experience level of
each individual in the sample.

• The high school experience will continue to be assessed the same way. Students received
a maximum of two points for their high school experience. If they had a one semester
course, they received one point. For two or more semesters they received two points. If
the programming was only part of another course, the score was multiplied by 0.5.

• For the reasons mentioned above, college experience will not be included. For other uni-
versities, this may be a factor that should be included if they do not do the same screening
that is done by the undergraduate coordinator.

• Work experience will continue to be assessed the same way but with the weights assigned
for time worked reduced. First, a factor was assigned based on the type of position: Full
time = 1 point, part time = 0.5 point, and less than part time = 0.25. This was multiplied
by a factor reflecting the number of years they held a job: Less than six months = 0.5, 6
months or more but less than 18 months = 1, 18 months or more = 2.

• The experience index will be the maximum of the high school score or the work score,
plus one point if the student had learned about the object-oriented programming concepts
of polymorphism, encapsulation and inheritance.

• One-half point will be added if the student has informal experience from programming
for enjoyment or being self-taught. This was not included in the original formula.

• This index will be used as the experience index for each individual, with a maximum
possible total of 3.5.

This formula is closer to the reality that different types of experience are not as radically different
as indicated in the old formula. It recognizes that students with college experience are removed
from the sample by the undergraduate coordinator if their experience is equivalent to the intro-
ductory course. It also recognizes that the different types of experience are not necessarily addi-
tive as shown through the ANOVA performed across the experience types shown in Table 3.

We defined student experience levels differently in terms of the calculated experience index as
follows:

• No experience: experience index = 0

• Average experience: 0 < experience index <=2

• High experience: 2 < experience index

Using this new formula, the experience levels for students in the sample ranged from 0 to 3.5 out
of the maximum possible index of 3 points. The average is 1.1. Out of the 404 students, 142 had
no experience, 178 had an average level of experience and 84 had a high level of experience

Valuable Pre-experience for Students

288

Conclusion
Based on the new evaluation of this analysis, IT departments may want to consider cohorting stu-
dents into groups based on the new experience formula, which gives a more realistic view of the
students' prior experience. This will allow tailoring of course material and pace to individual stu-
dent needs.

This, of course, will depend on the number of course sections being offered. In some situations it
may be necessary to combine groups for logistical reasons.

Future Study
In future studies we will continue examine and refine the experience formula. In addition, other
experiences that may impact student performance should be examined and considered. This in-
cludes the items in Table 3 as well as other factors that are included in the survey.

Also, a separate study is examining the cohort data to determine if cohorted students actually per-
form better than non-cohorted students.

References
Bergin, S., & Reilly, R. (2005). Programming: Factors that influence success. Proceedings of the 36th

SIGCSE Technical Symposium on Computer Science Education, 37(1), 411-415. Retrieved February 9,
2006, from ACM Digital Library database.

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. Proceedings of
the 6th Annual Conference on Innovation and Technology in Computer Science Education, 33(3), 49-
52. Retrieved February 9, 2006, from ACM Digital Library database.

Franklin, R. E., Jr. (1987). What academic impact are high school computing courses having on the entry-
level college computer science curriculum? Proceedings of the Eighteenth SIGCSE Technical Sympo-
sium on Computer Science Education, 19(1), 253-256. Retrieved February 9, 2006, from ACM Digital
Library database.

Hagan, D., & Markham, S. (2000). Does it help to have some programming experience before beginning a
computing degree program? Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science Education, 32(3), 25-28. Retrieved February 9, 2006,
from ACM Digital Library database.

Holden, E., & Weeden, E. (2003). The impact of prior ecperience in an information technology program-
ming course sequence. In Conference on Information Technology Education. Proceedings of the 4th
conference on information technology education (pp. 41-46). New York: ACM Press. Retrieved Feb-
ruary 9, 2006, from ACM Digital Library database.

Holden, E., & Weeden, E. (2004). The experience factor in early programming education. In Conference on
Information Technology Education. Proceedings of the 5th conference on information technology edu-
cation (pp. 211-218). New York: ACM Press. Retrieved February 9, 2006, from ACM Digital Library
database.

Holden, E., & Weeden, E. (2005). Prior experience and new IT students. The Journal of Issues in Informing
Science and Information Technology, 2(1), 189-204. Retrieved February 9, 2006, from http://iisit.org/
IssuesVol2v2.htm

Taylor, H. G., & Mounfield, L. C. (1989). The effect of high school computer science, gender, and work on
success in college computer science. Proceedings of the Twentieth SIGCSE Technical Symposium on
Computer Science Education, 21(1), 195-198. Retrieved February 9, 2006, from ACM Digital Library
database.

 Holden & Weeden

 289

Ventura, P., & Ramamurthy, B. (2004). Wanted: CS1 students, no experience required. Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education, 36(1), 240-244. Retrieved Feb-
ruary 9, 2006, from ACM Digital Library database.

Wilson, B. C., & Shrock, S. (2001). Contributing to the success in an introductory computer science course:
A study of twelve factors. Proceedings of the 32nd SIGCSE Technical Symposium on Computer Sci-
ence Education, 33(1), 184-188. Retrieved February 9, 2006, from ACM Digital Library database.

Appendix A -
The Current Experience Formula Used in this Study

People with prior programming experience filled in part II of the survey included in Appendix B.
This data was used to examine the depth of their programming experience. The following ques-
tions on the survey were used to assess how deep the experience was.

• Did you learn about the concepts of encapsulation and inheritance?

• High School – Did you learn to program as part of a high school class (either formal or
informal)? If yes, how many semesters did you take courses involving programming?
Was this programming experience part of another course (e.g. Math, Business, Sci-
ence…)?

• College – Did you learn to program as part of a college course? If yes, how many semes-
ters (quarters) did you take courses involving programming? Was this programming ex-
perience part of another course (e.g. Math, Business, Science…)?

• Work – Did you program as part of your work? If yes, was your work programming ex-
perience full time, part time or less that part time? Roughly how long did you have this
work programming experience?

With this data, a formula was developed to assess the experience level of each individual in the
sample.

• Students received a maximum of two points for their high school experience. If they had
a one semester course, they received one point. For two or more semesters they received
two points. If the programming was only part of another course, the score was multiplied
by 0.5.

• A similar approach was used for college experience. The students could score a maxi-
mum of three points for college coursework. For one semester they received 1.5, for two
or more, they received three points. Again, if the programming was only part of another
course, the score was multiplied by 0.5.

• Work experience was handled a little differently. First, a factor was assigned based on the
type of position: Full time = 1 point, part time = 0.5 point, and less than part time = 0.25.
This was multiplied by a factor reflecting the number of years they held a job: Less than
one year = 1.5, one year = 3, Greater than one year but less than or equal to two years =
4, Greater than two years = 6.

• Finally, students who had learned about the object-oriented programming concepts of
polymorphism, encapsulation and inheritance received an additional point.

• The sum of these scores was used as the experience index for each individual, with a pos-
sible total of 12.

The formula is somewhat arbitrary, but is designed to reflect the assumptions that work experi-
ence (application) is worth more than educational experience alone and that there were diminish-

Valuable Pre-experience for Students

290

ing marginal returns for additional experience over a certain level. The extra point for studying
encapsulation and inheritance reflects the assumption that courses covering this material would be
more rigorous than other courses.

The experience levels for students in the sample ranged from 0 to 7.0 out of the maximum possi-
ble index of 12 points.

Student experience levels were defined in terms of the calculated experience index as follows:

• No experience: experience index = 0

• Minimal experience: 0 < experience index <=2

• Medium experience: 2 < experience index <=4

• Very experienced: experience index > 4

Appendix B - Survey Questions

Part I – General Computing Background

1. Choose the statement that best describes your level of comfort with using computers.
a) I am very comfortable and have used computers extensively.
b) I am comfortable but have not used them extensively.
c) I am moderately comfortable with computers.
d) I am a little uncomfortable using computers.
e) I am very uncomfortable using computers.

Enter your level of experience on each of the following computer platforms:

2. Windows (any version) a) none b) a little c) some d) a lot
3. Macintosh a) none b) a little c) some d) a lot
4. Linux/Unix a) none b) a little c) some d) a lot
5. Other a) none b) a little c) some d) a lot

6. Do you have programming experience (excluding HTML)? a) YES b) NO

If you answered NO to question #6, please skip to Part III of the survey now.

If you answered YES to question #6, please continue with Part II of this survey.

Part II – Computer Programming Experience

Do not answer these questions unless you answered YES to question #6 in Part I above.

Choose the phrase that best describes your level of experience with each of the following lan-
guages:

7. C Language a) none b) a little c) some d) a lot
8. C++ a) none b) a little c) some d) a lot
9. Java a) none b) a little c) some d) a lot
10. Visual Basic a) none b) a little c) some d) a lot
11. Pascal a) none b) a little c) some d) a lot

 Holden & Weeden

 291

12. Fortran a) none b) a little c) some d) a lot
13. Other (excluding HTML) a) none b) a little c) some d) a lot

Choose the phrase that best describes your understanding of the programming language topics
below.

14. variables, constants a) not at all b) weak c) moderate d) strong
 and data types
15. logic structures: sequence a) not at all b) weak c) moderate d) strong
16. logic structures: decision (if) a) not at all b) weak c) moderate d) strong
17. logic structures: iteration (loop) a) not at all b) weak c) moderate d) strong
18. methods or procedures a) not at all b) weak c) moderate d) strong
19. arrays a) not at all b) weak c) moderate d) strong
20. encapsulation, inheritance & a) not at all b) weak c) moderate d) strong

polymorphism

High School

21. Did you learn to program as part of a high school class (either formally or informally)?
a) YES b) NO

If you answered YES to question # 21, please answer the following three questions about your
high school classes.

22. How many courses did you take that involved some computer programming?

a) one
b) two or three
c) more than three

23. Did you have at least one course that focused primarily on computer programming?

a) YES b) NO

24. Did you take an Advanced Placement (AP) Computer Science course?
a) YES b) NO

College

25. Did you learn to program as part of a college course?
a) YES b) NO

If you answered YES to question # 25, please answer the following two questions.

26. How many courses did you take involving programming?
a) one
b) two to three
c) more than three

27. Was this programming experience part of another course (e.g. Math, Business, Science, etc.)

a) YES b) NO

Valuable Pre-experience for Students

292

Other Educational Experiences

28. Did you learn to program as part of a summer camp or other short program?
a) YES b) NO

If you answered YES to question # 28, please answer the following question about your experi-

ence.

29. Estimate how many days you spent programming.
a) less than 3 days
b) 3 to 5 days
c) 7 to 14 days
d) more than 14 days

30. Did you teach yourself to program? a) YES b) NO

31. Did you program as part of a computer club? a) YES b) NO

32. Do you program for enjoyment? a) YES b) NO

Job Experiences

33. Did you have a job that involved programming? a) YES b) NO

If you answered YES to question #33, please answer the following two questions about your

work.

34. How many hours a week did you program?
a) full time (roughly 30 hours or more per week)
b) half time (roughly 20 to 30 hours per week)
c) less than half time (less than 20 hours per week)

35. How long did you program at work?

a) less than 3 months
b) 3 to less than 6 months
c) 6 to less than 12 months
d) 12 to less than 18 months
e) 18 months or more

 Holden & Weeden

 293

Biographies
Ed Holden is an Assistant Professor in the Information Technology
Department of the Golisano College of Computing and Information
Sciences at Rochester Institute of Technology (RIT). He teaches
courses in programming, database management, technology transfer,
needs assessment, e-commerce and process management. Prior to join-
ing RIT full-time, Ed spent 28 years in the Information Systems busi-
ness at a major corporation. In his last positions he served as the man-
ager of Global Infrastructure Development for Messaging and Group-
ware and worked on a special assignment to integrate digital business
efforts with back office systems and operations. Prior to this he was the
manager of Messaging and Groupware for US and Canada where he

supervised the outsourcing of email and groupware and the migration of 30,000 users to a new
email and groupware system. He also worked on the preliminary design and requirements defini-
tion for the company’s business-to-business e-commerce initiative.

Ed has performed all phases of the systems life cycle from proposal through continued support
and the negotiation and management of outsourcing contracts. His clients have included finance,
marketing, sales, research and development, and supply chain management.

Ed holds a BA in Mathematics from SUNY Oswego (1972) and an MBA, Finance, from RIT
(1995).

Elissa Weeden is an Assistant Professor in the Information Technol-
ogy Department of the Golisano College of Computing and Informa-
tion Sciences at Rochester Institute of Technology (RIT). Her areas of
expertise are in database design and implementation as well as applica-
tions programming. She consults professionally and regularly within
those areas. Her research and teaching interests include: data modeling,
database implementation and administration, active learning, and as-
sessment methods.

Elissa holds a BS in Information Technology and a MS in Software
Development and Management, both from RIT. She is currently work-

ing towards her Ph.D. in Computing Technology in Education from Nova Southeastern Univer-
sity.

