
Issues in Informing Science and Information Technology Volume 3, 2006

The Development, Use and Evaluation of a
Program Design Tool in the Learning and

Teaching of Software Development

Stuart Garner
Edith Cowan University, Joondalup, Australia

s.garner@ecu.edu.au

Abstract
The learning of software development is difficult for many students. Given a problem statement,
students have to be able to: design a solution to the problem; implement a solution in a program-
ming language; and test the solution. Often students miss out the design step and start writing
programming code immediately. And yet instructors aim to encourage their students to develop a
design in, for example, pseudocode. This helps students think carefully about their program de-
signs without getting bogged down in the intricacies of a programming language. However stu-
dents do not like writing pseudocode. Reasons for this include: it is another language to learn;
they do not think that they are actually programming; they cannot test their designs as the designs
are not executable; there is not a rigid syntax and so students are unsure whether their pseudocode
meets an instructor's expectations. This paper concerns the development of a simple tool that
helps students create pseudocode. The tool has been used and evaluated in an introductory pro-
gramming unit of study. The results suggest that the tool was easy for students to use and that it
helped support their learning.

Keywords: learning, programming, design, pseudocode, tools.

Introduction
This paper concerns the development, use and evaluation of a tool that helps novice programmers
generate pseudocode designs for programming problems. It discusses: the difficulties of learning
to program; what is meant by pseudocode; the development of the tool; and the evaluation of the
tool with students.

Difficulty of Learning to Program
Learning to write computer programs is
not easy (e.g., Scholtz & Wiedenbeck,
1992) and this is reflected in the low
levels of achievement experienced by
many students in first programming
courses. Jenkins (2002) suggests that the
learning of programming is a perennial
problem. Students struggle as they try to
master the subject and it is not uncom-
mon for a student's first experience of
programming to be so negative and

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Development, Use and Evaluation of a Program Design Tool

254

stressful that it leads to academic failure or withdrawal. In a study into the teaching and learning
of first year programming, it was found that the main concerns were high failure rates, a low flow
of students into higher degrees, and a perception of a wide variation of teaching skills (Carbone et
al, 2000).

Programming is a complex process involving many steps (e.g., Winslow, 1996). The process
comprises:

• Studying a given problem statement / set of requirements and producing an algorithm, often
in pseudocode, to solve that problem;

• Translating the algorithm into the programming code of a certain programming language; and

• Testing and amending the program until it meets the original set of requirements.

Frequently students combine steps one and two above and attempt to produce algorithms in the
programming language that is being utilised in their course of study rather than in a design lan-
guage such as pseudocode. Many instructors do not encourage the use of pseudocode with stu-
dents and the majority of introductory programming texts include few, if any, references to pseu-
docode.

What is Pseudocode?
Pseudocode is:

A detailed yet readable description of what a computer program or algorithm
must do, expressed in a formally-styled natural language rather than in a pro-
gramming language. Pseudocode is sometimes used as a detailed step in the
process of developing a program. It allows designers or lead programmers to
express the design in great detail and provides programmers a detailed template
for the next step of writing code in a specific programming language (TechTar-
get, 2005).

The following are two examples of pseudocode used to stipulate the algorithm for converting a
Celsius temperature to Fahrenheit (Villanova University, 2005).

Example 1
prompt user for a celsius temperature to be converted
get input from user and store in a variable called celsiusTemp
calculate: (celsiusTemp * (5/9)) + 32 and store in a variable called
 fahrenheitTemp
display fahrenheitTemp

Example 2
BASE = 32
CONVERSION_FACTOR = 9/5
prompt user for celsius temperature
input celsiusTemp
fahrenheitTemp = (celsiusTemp * CONVERSION_FACTOR) + BASE
output fahrenheitTemp

As seen above, the algorithms differ in the syntax that is used to describe the particular algorithm.
Robertson (2003, p.7) points out that:

There is no standard pseudocode at present. Authors seem to adopt their own
special techniques and sets of rules, which often resemble a particular program-
ming language.

 Garner

 255

The fact that there is no standard is one of the reasons that many students bypass using it in their
program designs and move directly to coding their solutions. Another reason for students dislik-
ing pseudocode is that the code is not executable and direct feedback of a design cannot therefore
be obtained.

There are also reasons why some instructors do not use pseudocode. The first reason is that an
instructor may have their own "standard" pseudocode syntax that they wish to use and yet that
standard is probably different to the format used in the available textbooks. A second reason is
that many of pseudocode languages do not reflect the event driven nature of programming that is
in use today.

However research suggests that the use of pseudocode in the design of programs helps students in
their learning of software development. Ramadhan (2000) synthesised certain empirical results
(Gilmore & Green, 1988; Jones, 1984; Norman, 1983) and concluded:

• The underlying programming constructs can be learned independently of the
surface structure or syntax of the programming language; and

• When users are introduced to programming using a pseudocode language
they perform more accurately during problem solving and their program-
ming knowledge is more transferable to other programming languages, and
the languages that involve simple and few programming concepts to be
learned reduce the mental load on users and help them in the process of pro-
gram understanding and debugging.

Development of a Program Design Tool
A technology supported tool to help students create pseudocode for the design of programs was
developed by the author. The main aims of the tool were that:

• It should be easy to use.

• It should include a library of "standard" constructs to reduce the amount of typing required.
An example of such a construct is the IF/Then/Else/EndIf construct.

• There should be a facility to change the "standard" constructs so that an instructor or students
can utilise a different syntax.

• There should be a facility to gradually add pseudocode constructs to the tool thereby allowing
for a reduced cognitive load on students in the earlier stages of their learning.

The inspiration for the pseudocode tool came from a tool that is being used to help students learn
scripting languages (Gibbs, 2002). The tool developed by Gibbs makes use of a freeware text edi-
tor named NoteTab (2005). NoteTab is much more than a text editor as it includes: a "clipbook"
feature that lets a user create and organize textual clips; and macros that can range from text re-
placement to complete mini-applications that use a simple built-in scripting language.

Such a "clipbook" library was created by the author for use with NoteTab. The library was spe-
cifically designed to support the production of pseudocode for introductory programming in an
event driven environment, eventual implementation being in Visual BASIC. The interface of
NoteTab with the pseudocode library loaded is shown in Figure 1.

Development, Use and Evaluation of a Program Design Tool

256

The left-hand window contains the pseudocode li-
brary and the right-hand window contains an ex-
ample of the pseudocode that can be "generated".
When students use the system, they double click on
an item in the library and a macro is executed. The
macros prompt the user for relevant information,
generates text and then places that text in the right-
hand window. For example, double clicking on the
library item "Input data from textbox into a vari-
able" causes the dialogue box shown in Figure 2 to
be displayed. Note that data has been entered into
the dialogue box. When the "OK" button is clicked,
pseudocode is generated as shown in Figure 3.

The design tool supports the standard statements
that are necessary to create algorithms that will
eventually be implemented in a programming lan-
guage including: input and output statements; as-
signment statements; the selection and control
structures; procedures and functions; etc. A com-
plete example of the pseudocode that was created
by a student in an introductory programming class
is shown below.

===
 Event Procedure Name: cmdClassify_Click
 Purpose: Classify the yob

 This code is to be executed when the Click event takes place
 on the object called cmdClassify
 ===

 Variable personName is needed and will contain string data
 Variable yob is needed and will contain whole numbers

Figure 1: Program Design Tool Interface

Figure 2: Dialogue Box

Figure 3: Generated Line of Pseudocode

 Garner

 257

 Open the text file called YOB.TXT so we can input FROM it
 Open the file called SENIORS.TXT so we can output TO it
 Open the file called JUNIORS.TXT so we can output TO it
 While the condition (it is not the end of file of YOB.TXT) is true, do the following
 Input data into personName, yob from the text file YOB.TXT
 If yob > 1940 Then
 Output the data personName, yob to the text file JUNIORS.TXT
 Else
 Output the data personName, yob to the text file SENIORS.TXT
 End If
 End of the while loop
 Close the text file called SENIORS.TXT
 Close the text file called JUNIORS.TXT
 Close the text file called YOB.TXT

There is also a library item "Convert to VB Comments" that, when double clicked, places a sin-
gle quote in front of every line of pseudocode. The pseudocode can then be copied and pasted
into a Visual BASIC program for self-documentation purposes.

The pseudocode shown above uses a syntax that has been created by the author. The aim of the
particular syntax utilised is to help students gain a better understanding of what particular state-
ments in an algorithm "do". A selection of statements, their Visual BASIC equivalent, and the
rationale for the syntax chosen is shown in Table 1.

Table 1: Selection of Pseudocode Statements

Pseudocode Statement Visual BASIC Statement Rationale
Variable price is needed and will contain
numbers with decimal places

Dim price As Double There is a need for students to under-
stand the types of data to be used in an
algorithm

Place the data from the text property of
txtPrice into price after converting it to a
number

Price = CDbl(txtPrice.Text) Students have problems understanding
assignment statements and the need to
change string data to numeric data

Put counter + 1 into the variable counter counter = counter + 1 Students have difficulty with this type of
assignment statement and its mecha-
nism needs to be made explicit as to
what is happening

While the condition (X = 9) is true, do the
following

End of the while loop

Do While X = 9

Loop

For counter going from 1 To 5 in steps of
1

Next value of counter

For counter = 1 To 5

Next

Loop mechanisms need to be made
more explicit

Open the text file called yob.txt so we
can input FROM it

Dim sr As IO.StreamReader =
IO.File.Opentext("yob.txt")

Some students have difficulties under-
standing the different modes that files
can be opened in

As mentioned earlier in the paper, it should be possible to amend the macros so that the generated
syntax meets the requirements of different instructors. The macros are programmed in an inter-
preted "Clip" language. Examples of the macros for two statements are shown in Table 2.

Table 2: Examples of the "Clip" Programming Language

Library Statement Macro
Define a new variable ^!SET %variableName%=^?{What is the name of the new variable?=^%variableName%};

%variabletype%=^?{What type (kind) of data will the variable contain=String|Number
(with decimal values)|Integer (whole number)}
;Do the testing
^!IF ^%variabletype% = "String" stringPart
^!IF ^%variabletype% = "Number (with decimal values)" numberPart
;Must be integer

Development, Use and Evaluation of a Program Design Tool

258

Variable ^%variableName% is needed and will contain whole numbers
^!GoTo end
:stringPart
Variable ^%variableName% is needed and will contain string data
^!GoTo end
:numberPart
Variable ^%variableName% is needed and will contain numeric data
:end

Input data from textbox into a variable ^!Set %textBoxName%=^?{Name of the text box containing the data=^%textBoxName%};
%variableName%=^?{Name of the variable into which you want to put the
data=^%variableName%}; %convertToNumber%=^?{Do you want to convert the data to a
number ?=Yes|_No}
^!IF ^%convertToNumber% = "No" NoConvert
Place the data from the text property of ^%textBoxName% into ^%variableName% after
converting it to a number

The above table suggests that the "Clip" language is not the easiest to use, however it would be
expected that a programming instructor should be able to make any necessary changes.

Initial Evaluation of the Program Design Tool
The tool has been used over a number of semesters in an introductory programming unit at an
Australian university. The unit is within a major in Information Systems and the programming
language used is Visual BASIC. An initial evaluation was conducted via a questionnaire with a
group of 21 students and Table 3 contains some initial results together with their interpretation.

Table 3: Questionnaire Results and Interpretation

Question Result Comment
How easy was the pseudocode generator
to use?

76% of students indicated that the pseu-
docode generator was straightforward or
easy to use.

Any tool, especially one designed for
novices, should be easy to use and have
a small learning curve.

How often did you create the pseudocode
before you created the Visual BASIC
code?

67% of students indicated that they usu-
ally created the pseudocode before the
Visual BASIC code.

It is well documented that a majority of
students do not create pseudocode be-
fore they create their programming code.
In this context, the result of this question
is pleasing.

How often did you feel that the creation of
pseudocode before the Visual BASIC
code helped your understanding?

82% of students indicated that the crea-
tion of pseudocode usually helped their
understanding.

This confirms the usefulness of good
algorithm design that is encouraged by
the use of the pseudocode generator.

Did a pseudocode statement such as:
"Put 6 into the variable hours" help your
understanding of how the assignment
statement works?

76% of students indicated that the syntax
of this statement helped their understand-
ing of how the statement worked.

Did a pseudocode statement such as:
"Put the data "Bob" into the property
named text of the object txtName" help
you understand how assigning data to
properties worked?

90% of students indicated that the syntax
of this statement helped their understand-
ing of how the statement worked.

Did a pseudocode statement such as:
"Execute the general procedure Add-
Numbers passing arguments X, Y" help
you understand how general procedures
worked?

62% of students indicated that the syntax
of this statement helped their understand-
ing of how the statement worked.

One of the aims of the pseudocode gen-
erator was to help students gain an un-
derstanding of the purpose and mecha-
nism of statements required in computer
implementable algorithms and this ap-
pears to have been successful.

Would you have preferred NOT to use the
pseudocode generator?

35% of students replied "Yes" to this
question.

It was pleasing that around two thirds of
students were comfortable using the gen-
erator. It still appears however that a
sizeable minority prefer coding algorithms

 Garner

 259

Question Result Comment
directly in a programming language.

Students were also asked to comment on the use of the pseudocode generator. The positive com-
ments included:

It helped me go through all the things needed in the question.

The pseudocode in general was very straightforward and easy to follow. The indentation
of certain statements was useful as it reminded me to indent the statement when writing
the actual Visual BASIC code.

It helps you to think about the sequence of the program statements;

It forces you to organise your thoughts in a clear logical manner. Without this I find I
tend to go back and forth between deciding what I do and do not want in my code. The
creation of the pseudocode gave me the necessary preparation time before commencing
the programming task.

Using the pseudocode helps in understanding what is needed to do in the VB code.

It makes me think more carefully about the question and the variables I need for each
question.

Well... lets me organize a bit in computer instead of the brain. It reduced the typing work
required.

The comments strongly support the use of the pseudocode generator as a tool that helps in the
design process of algorithms that can then be implemented in a programming language. It seems
to have helped students think about the problems to be solved and organise their solutions and
designs in a coherent manner.

There was one negative comment:

It is useless!! Because, if we get the pseudocode wrong, we will not know if the program
is correct. Using VB directly, we can monitor our mistake.

This comment concerns the fact that pseudocode is not executable and clearly this student be-
lieved that the cycle of coding and testing in a program development environment was more use-
ful in his or her learning. This reflects the fact that some students always prefer to skip the careful
thought processes required in program design and use trial and error techniques in their algorithm
design.

Conclusions
This paper has discussed the design and use of a tool to support the generation of pseudocode for
novice programmers. It has been used and evaluated with students in an introductory program-
ming unit within an Information Systems major at an Australian university. The tool has been
well received by students who believe that it is very useful in their learning and that is helps scaf-
fold them in the program design process.

The results of the evaluation suggest that possible changes to the tool and its use might include:

• The actual programming language statements could be generated in addition to the pseu-
docode statements.

• A help file that includes information on all of the pseudocode statements could be included.

Development, Use and Evaluation of a Program Design Tool

260

• A facility could be made available that allows students to easily change the wording, or syn-
tax, of statements generated by the macro library. Such a facility should not require students
to have to amend scripts that form the basis of the macro library.

References
Carbone, A., Hurst, J., Mitchell, I. & Gunstone, D. (2000). Principles for designing programming exercises

to minimise poor learning behaviours in students. Paper presented at the Fourth Australasian Comput-
ing Education Conference, Melbourne, Australia.

Gibbs, D. C. (2002). An interactive introductory programming environment using a scripting language.
Paper presented at the Ed-Media 2002, Denver, Colorado.

Gilmore, D. & Green, T. (1988). Programming plans and programming expertise. Journal of Experimental
Psychology, 40A(3), 67-82.

Jenkins, T. (2002). On the cruelty of really teaching programming. Paper presented at the 2nd LTSN-ICS
one day conference on the teaching of programming, University of Wolverhampton, UK.

Jones, A. (1984). How novices learn to program. Paper presented at the First IFIP Conference on Human-
Computer Interaction, London.

Norman, D. (1983). Some observations on mental models. In D. Gentner & A. Stevens (Eds.), Mental mod-
els (pp. 34-39). NJ: Erlbaum.

NoteTab (2005). NoteTab. Retrieved November 16, 2005 from http://www.notetab.com

Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, (16), 83-93.

Robertson, L. (2003). Simple program design. Thomson.

Scholtz, J. & Wiedenbeck, S. (1992). The role of planning in learning a new programming language. Inter-
national Journal of Man-Machine Studies, 37, 191-214.

TechTarget (2005). TechTarget. Retrieved November 14, 2005 from
http://whatis.techtarget.com/definition/0,,sid9_gci213457,00.html

Villanova University (2005). Villanova University. Retrieved November 14, 2005 from
http://www.csc.villanova.edu/~map/1051/pseudocode.html

Winslow, L. (1996). Programming pedagogy - A psychological overview. SIGCSE Bulletin, 28(3).

Biography
Stuart Garner has been a college and university lecturer for over 30
years and has also spent time working in industry as an analyst pro-
grammer. His main research interests include: the teaching and learn-
ing of programming; the teaching and learning of systems analysis and
design; eLearning; personal knowledge management; and web based
development.

Stuart is currently a senior lecturer in information systems at Edith
Cowan University, Western Australia. His profile is available at:
http://www.business.ecu.edu.au/schools/mis/staff/sgarner.htm

