
Issues in Informing Science and Information Technology

The Performance of Web-based 2-tier
Middleware Systems

Johnson Dehinbo
Tshwane University of Technology, Pretoria, South Africa

Dehinbo.j@tut.ac.za

Abstract
The overall aim of this study is to determine the performance of selected web-based dynamic
middleware systems that are used for designing and implementing dynamic web application sys-
tems. This is necessary in a world where more applications are moving to the web, and slow per-
formance of such applications can discourage users, thereby reducing profit, and reduce pro-
grammers’ productivity and quality of applications due to slow testing and execution.

Java Servlets, Java Server Pages (JSP), Microsoft Active Server Pages (ASP), and Personal Home
Page (PHP) were used to perform some operations on the server, like retrieving all records from a
database stored on the server. The time taken since the query is initiated from the browser, to the
time the query result is displayed on the client browser were measured for each of the four mid-
dleware systems as an estimate for their performance. Records were increased in multiples of
thousands to estimate scalability along with the performance. PHP proved to be more efficient
and more scalable.

Keywords: Performance, Latency, Web-based, middleware, platforms

Introduction
There are many web based dynamic middleware systems for implementing the dynamic programs
on the World Wide Web, and new designers have the big task of choosing the most appropriate
implementation. The choice made may have an effect on the speed of execution of the web appli-
cations thereby affecting the performance or efficiency of the designed system.

Web application developers will not perform at their best capacity level if the middleware chosen
by their management is slow during testing. For the industry, inadequate testing and debugging
due to low speed of execution and access to stored objects could also lead to low productivity. It
could as well lead to low quality of developed applications. The result is that some web applica-
tions development takes longer time than budgeted leading to inflated costs.

This is also applicable to students that need to test and debug their programs. A programming
platform with low execution time will lead to frustration due to the slow speed of recurrent testing
and debugging in the lab. This will have tremendous negative impact on adequate software test-

ing and debugging, especially in a
student computer laboratory session,
where the time allocated is limited,
thereby limiting students expertise of
the subject.

Similarly, users will become frustrated
if the web pages and desired informa-
tion are not constantly available, or if

Material published as part of this journal, either on-line or in print,
is copyrighted by Informing Science. Permission to make digital or
paper copy of part or all of these works for personal or classroom
use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first page.
It is permissible to abstract these works so long as credit is given.
To copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:Dehinbo.j@tng.ac.za

Performance of Web-based Middleware Systems

 758

the system slowly responds to users' request. This problem originated from occasional low speed
of access to stored objects possibly due to the implementation modes relating to the efficiency of
web-based dynamic middleware systems being used to develop the web-based applications.
Moreover, the low speed of execution of web applications leads to impatience by users, with dis-
astrous impact for business, as further illustrated by Marshak (2003, p.1) which given by the fol-
lowing statement:

“Impatience with poor performance is the most common reason that makes visitors ter-
minate their visit at web sites. For e-commerce sites, such abandonment translates into
lost revenue” (Marshak, 2003, p.1).

In earlier days, slow web sites were tolerated and expected. Even many users had slow connec-
tions to the network, so they hardly notice if the server was slow. Clearly the expectations have
changed. Sites must be available 24 hours a day and 7 days a week because customers are on dif-
ferent parts of the world and peak time unknown. The system must be fast enough to satisfy in-
creasingly demanding users, because competitive sites are “just a click away” (Treese and Stew-
art, 2003, p.173). This means that while customers visiting a traditional shop may feel reluctant to
leave when not satisfied, customers using the web applications could easily run away. The above
statement is confirmed by Singh (2002), which states that:

“customers who feel they have lost control can simply leave the site without any embar-
rassment - unlike a user who is standing at a checkout till in a supermarket.”

This is because no shop attendant is watching, and he/she doesn’t have to walk some distance to
the next shop. Therefore, as indicated by Marshak (2003, p.1), measuring the delay experienced
by its customers is of high importance to a web site as these measurements are critical for analyz-
ing the site behavior and to size its components.

The Research Question
Web application designers, especially the new and inexperienced ones have the big task of choos-
ing the most appropriate web-based dynamic middleware system that will speed up their system
development processes, and most importantly produce an efficient implementation. An important
question, therefore, is:

“Is there any one web-based dynamic middleware system that will be effective for de-
signing robust, fast and responsive web applications fast?”

Objectives of the Study
In order to answer the research questions, there is the need to formulate the objectives in clear,
measurable and achievable/manageable terms. The objectives of the study are therefore given
below:

1. Review the evolution of web-based dynamic middleware systems

2. Develop experimentation to measure the latency of the designed web-based application
systems in remote retrieval of records from database. This serves to estimate the through-
put of the platform in the recurrent testing (compilation/interpretation-execution) in a
practical class.

3. Estimate the scalability of the platforms.

The Importance and Use of the Study
While this study reviews and investigates the scalability and the overall performance of those
web-based middleware systems, the purpose is not to persuade people that one middleware is bet-

 Dehinbo

 759

ter than the other, but to help you make a more informed decision as to which middleware lan-
guage is more efficient based on certain operating environment.

The main benefit of the study will be the educative analysis in choosing most appropriate web-
based middleware platform to enhance the performance of developed applications leading to
higher productivity in the software development and services industries. It will therefore be of
benefit to institutions in deciding which web-based dynamic middleware systems to introduce to
“beginning students” due to its potential to maximize limited time in the labs. The students them-
selves, especially the Information Technology students in tertiary institutions, will benefit from
the study.

Therefore, the primary beneficiaries will be organizations that desire web applications, software
organizations, web application developers, researchers, postgraduate students and individuals that
utilize web-based dynamic middleware systems in the design of their web-based applications.
Such people will definitely become empowered in making the best choice for their implementa-
tion situation.

The secondary beneficiaries will be users that desire efficient and fast transactions over the web,
as well as individuals that desire a systematic mastery of web-based dynamic middleware sys-
tems. Therefore, the study will contribute immense knowledge to the field of web-based pro-
gramming and distributed computing.

Literature Review

The Need for Analyzing Web Based Dynamic Middleware
Systems
Prechelt (2000, p.1) pointed out that when it comes to the pros and cons of various programming
languages, programmers and computer scientists alike usually hold strong opinions. However,
analyzing programming languages, development platforms and tools is very important as illus-
trated below:

“Comparisons across programming styles, or paradigms, are difficult to carry out, but are
nevertheless important for understanding how different styles of programming affect the
learning of novice programmers” (Wiedenbeck, Ramalingam, Sarasamma, & Corritore,
1999, p.5).

According to Lim (2002, p.2) information systems / computer science departments need to reex-
amine their curricula in order to prepare students to face the challenge of being productive in a
computing world that is now swamped with web technologies. The author perceives that the
choice of web-based dynamic middleware systems need to be backed with evidence from relevant
literatures, information from practicing web developers and empirical experimental programming
results. As confirmed by Apte, Hansen, and Reeser (2003, p.3) there is a real need to make a tech-
nology choice for developing software that would support a Web based service.

Unfortunately, Apte et al. (2003, p.3) noted that a study of existing literature showed varying con-
clusions about the superiority of one technology over the other. Moreover, Prechelt (2000, p.1)
pointed out that when it comes to the pros and cons of various programming languages, pro-
grammers and computer scientists alike usually hold strong opinions.

Finally, Ashenfelter explains the need for analyzing web-based platforms in the statement below:

“web development tool need to be analyzed in terms of its purpose (what it is designed to
do), technology (ease of use, robustness, scalability, security, performance, etc.), support

Performance of Web-based Middleware Systems

 760

(portability, cost, ISP support), and how well it works in the real world” (Ashenfelter,
1999).

Performance, Latency and Throughput
The term “performance” as used in this study, refers to the total time in which the web-based pro-
grams are executed. For many systems, poor performance is often an inconvenience and perhaps
a source of complaints, but the users keep using the system. In internet commerce systems, per-
formance problems are much more than an inconvenience – they can be a disaster for a business,
putting off customers and giving competitors an advantage (Treese & Stewart, 2002, p.177). So,
building sites that are fast, reliable and scalable is probably the most challenging part of creating
internet commerce systems (Treese & Stewart, 2002, p.173).

According to Marshak and Levy (2003, p.1), the central performance problem in the World Wide
Web, in recent years, is user perceived latency. Treese and Stewart (2003, p.177) state that the
performance of a system can be measured in many ways including using metrics that examine
latency and throughput. Latency is a measure of how long it takes to complete a given operation
e.g. how long it takes to download a web page. Throughput is a measure of how many operations
can be completed in a given time e.g. how many web pages can the server deliver in an hour. This
is a measure of transactions per second.

In the comparison of latency and throughput, Treese and Stewart (2003, p.177) further stated that
while latency tells you about the experience of a particular user (on average), throughput tells you
how many users the system can handle. As throughput increases for example, the latency as seen
by any given user may increase. As illustrated by Treese and Stewart:

“This is like driving in heavy traffic: the number of cars moving down the highway is
greater than normal (i.e. greater throughput) but the average speed is lower (yielding
higher latency)” (Treese and Stewart, 2003, p.177).

Therefore, it would be sufficient to measure the performance by using latency, which is estimated
in this study as the time to retrieve stored objects.

Framework for Performance Comparisons
Renaud, Bishop, Lo, van Zyl and Worrall (2003) reported on the works of Hsier and Sivakumar
(2001) and Shousha, Petriu, Jalnapurkar and Ngo (1998) stating that the measurement of software
performance by and for experts is a well known task. From various other previous works,
Renaud, et al. (2003) recalled that various metrics can be used to measure performance of algo-
rithms in distributed systems, namely: response or waiting time, synch delay, number of messages
exchanged, throughput, communication delay, node fairness, CPU cycle usage, and memory us-
age.

Since no single metric can be optimal for all applications, it is necessary to ensure that the devel-
oper can obtain metrics that reflect the need, priorities and workloads of the particular distributed
system. The first four metrics were most suited to specifically measuring algorithm performance.
The fifth metric is more dependent on network load than a specific algorithm, the sixth is difficult
to quantify and the seventh and eighth produce measurement of debatable merit in judging algo-
rithm efficacy (Renaud, et al., 2003).

For this study, the performance metric that will be used is the response or waiting time, which has
also been used by other researchers in their studies such as Cooper (2001).

 Dehinbo

 761

Other Related Studies
In the survey of middlewares by Cooper (2001), it was concluded that ColdFussion is fast to learn
and fast to use, and CGI is also fast to learn. He then mentioned that Servlets are hard to learn and
use - even by someone who already knew Java. We agree with this because in the study (De-
hinbo, 2004b) Java has the highest line of code for a simple solution to the given problem. Bishop
and Hurter (1999) also confirmed that a Java version of a server program in (Bishop, 1998) is
nearly four times as long as its Perl's version.

In an empirical comparison of seven programming languages, Prechelt (2000, p.29) observed that
designing and writing programs in the scripting languages namely Perl, Python, Rexx, or Tcl
takes no more than half as much time as writing it in C, C++, or Java. Moreover, the resulting
program is only half as long. He therefore concluded that the scripting languages offer reasonable
alternatives to other full programming languages, and they may offer significant advantages with
respect to programmer productivity, at least for reasonably small programs.

Marshak and Levy (2003, p.3) propose a new approach to estimate user perceived latency that is
based on server side measurement. The approach uses a new technique in which a special tiny
and practically unnoticeable zero sized inline HTTP object, called the sentry. It is placed at the
end of the HTML document so that it does not add overhead, and it tracks the arrival time to the
user.

In a study to compare the performance of middleware architectures for generating dynamic web
content, Cecchet, Chanda, Elnikety, Marguerite, and Zwaenepoel (2003) evaluate three specific
mechanisms namely PHP, Java servlets, and Enterprise Java Beans (EJB). The study measures
the performance of these three architectures using two applications benchmarks: an online book-
store that stresses the server back-end and an auction site that stresses the server front-end. It was
found out that EJB has lower performance than both PHP and Java servlets, with Java servlets
also having lower performance than PHP (Cecchet, et al., 2003, p.1).

Cecchet attributes PHP’s better performance to the fact that it executes as a module in the Web
server, sharing the same process (address space), thereby minimizing communication overhead
between the Web server and the scripts. This is unlike Java servlets, which run in a JVM as a
separate process from the Web server and so can even be placed on a separate machine. However,
it is observed that the flexible ability of Java servlets to execute on a separate machine from the
Web server and their ability to perform synchronization leads to better performance when the
front-end is the bottleneck (Cecchet, et al., 2003, p.5).

Hartman (2001) examined some tools for dynamic Web sites namely ASP, PHP and ASP.NET.
He mentioned three factors that complicate choosing a scripting environment that will make the
Web site to be fast, database-driven, reliable, and created on time and under budget. First, there is
the issue of culture among developers.

“No matter how rational their programming code might be, most programmer's choice of
scripting technology has a lot to do with the ideological camps to which they belong. If
they love to tinker with source code because it lets them develop solutions that are a tad
more efficient than off-the-shelf products, and if their cubicles are embellished with de-
faced portraits of Bill Gates, it is a good bet that they will prefer to use PHP. If they love
the convenience and efficiency of existing integrated technology solutions, they probably
prefer to use ASP” (Hartman, 2001).

He also mentioned that he has encountered very few developers who are equally willing to use
both, or who can talk about "the other" technology without a trace of disdain.

Performance of Web-based Middleware Systems

 762

Hartman further states that the second factor that complicates choosing a scripting environment is
that a Web site's future scalability and functional requirements, although hard to predict, are nec-
essarily a part of the equation. The choice between JSP, PHP and ASP (or its successor
ASP.NET) might restrict which servers and platforms the site could run on or impact the feasibil-
ity of developing future features, such as database-linked connectivity with extranet partner sites
(Hartman, 2001).

Hartman’s study came up with some conclusions and predictions, which includes the fact that
ASP.NET, promises to be a faster and more efficient environment than ASP, and possibly PHP.
However, this study is considering platforms that can be used by students both in the class and at
home. On this note, ASP.NET is not affordable by students, and therefore we still use ASP rather
than ASP.NET.

Moreover, another way in which this study differs from related studies is that it considers it very
important to relate the performance of the platforms with similar architecture. We consider it nec-
essary to exclude EJB because its architecture does not seem to be in the same category with PHP
and Java servlets, being more of an enterprise multi-server platform. Instead, we include JSP and
ASP, which both embeds code directly into an HTML page like PHP. Moreover, ASP have the
backing of the VB Script language just like JSP and Java servlets have the powers of the Java
language, and PHP also have full programming language capabilities.

Methodology

Experimental Approach to the Latency Estimation
The latency experimentation is required to estimate the execution speed for programs written us-
ing each of the web-based middleware platforms. This is needed in order to have information on
the suitability of the platforms for the recurrent program testing that takes place in a practical
laboratory session. In the experimental approach, a client-server system was set up for each of the
middleware namely Java Servlet, ASP, JSP and PHP.

For this experimentation, programs were written to retrieve all records from a database stored on
the server. The time taken since the query is initiated from the browser to the time the query re-
sult is displayed on the client browser was measured for each of the four web-based dynamic
middleware platforms. This is used as an estimate for the performance or latency of web-based
dynamic middleware systems. A platform that achieves fast execution of programs will shorten
the ‘write-compile-test-debug-recompile’ cycle in the lab.

The System Configuration for the Latency Estimation
The minimum system configuration needed is any computer system capable of being connected
to the Internet and being used as a web server. The server used is a Pentium IV 2.4M.Hz with
256MB RAM computer connected to the Internet via LAN card to the University Network. The
following are the software configuration necessary:

Java Servlet & Java Server Pages Set-up:
Microsoft Windows XP Professional 2002, Microsoft Access 2000, J2SDK (Java 2), Tomcat
Web Server and Servlet/JSP engine.

Active Server Pages (ASP) Set-up:

Microsoft Windows XP Professional 2002, Microsoft Access 2000, Visual Basic, IIS 5
(Internet Information Service 5).

 Dehinbo

 763

Personal Home Page (PHP) Set-up:
Microsoft Windows XP Professional 2002, Microsoft Access 2000, PHP, IIS 5 (Internet In-
formation Service 5).

The architecture adopted is a 2-tier system, with the client browser connecting to the server,
which also hosts the database management system, as utilized in Dehinbo (2004a).

The Database Configuration for the Latency Estimation
In order to estimate the time taken to access and display data from the database, a database was
created using Microsoft Access 2000 for all the platforms. The database consists of the following
structure:

 Studnumber (int), surname (text), initials (text), sex (text), diploma (text)
 subject1 (int), subject2 (int), subject3 (int), subject4 (int), subject5 (int), subject6 (int).

We began the program execution with 10000 records because it is at this point that the estimated
time goes above 1 second. This is necessary due to the limitation of the now () function that
doesn’t measure in microseconds. We then double the size of the database to 20000, and then
40000 and 80000 records. This is simply because it is easier to duplicate the whole records than
to enter new records.

The Procedure Followed to Obtain the Latency Data
For each platform, one program was written to access and display all the stored records in the
database. One program is written as a Java Servlet while another one was written as a JavaServer
page (jsp) program. For the ASP setup, the program is written using VBScript. The fourth pro-
gram was written using PHP. Each of the programs extract the system time at the entry point of
the program as “starttime” and extract as “stoptime” the system time at the end of the program.
The difference between the “starttime” and the “stoptime” in seconds is taken as the estimated
time for the database retrieval operation. This is used as an estimate of the latency value for the
web based dynamic platform because most major web applications usually involve database ac-
cess. The experiment was performed twice and we used the average value.

Latency Hypothesis
The null hypothesis is that there is no significant difference in the performance of each of the web
based dynamic middleware systems. The alternate hypothesis is that there is significant difference
in the performance of each of the web based dynamic middleware systems. Thus users can make
informed choice on web based dynamic middleware systems that is very fast.

Establishing the Reliability of the Latency Experimentation
As observed by (Lerdorf & Tatroe, 2002, p.311), if we reload the scripts above several times,
we’ll see that the time taken may fluctuate a lot, thus affecting reliability of the experimentation.
This is because, as stated by Lerdorf and Tatroe (2002, p.311), the danger of timing a single run
of a piece of code is that you may not get a representative machine load – the server might be
paging as a user starts, or it may have removed the source file from its cache.

Therefore, a way in which the reliability is increased is by following the approach presented by
Lerdorf and Tatroe (2002, p.311), which states that the best way to get an accurate representation
of the time it takes to do something is to time repeated runs and look at the average of those
times.

Performance of Web-based Middleware Systems

 764

Also, in other to ensure accuracy, the database for the web based dynamic middleware systems
are having same structures and same number of records. Moreover, the programs were run with
different number of records, to also test their scalability.

Again, the programs were run on the same computer to ensure same processor speed. The same
computer serves as the client and the server, to minimize any possible effect of congestion on the
university network. Moreover, the programs were executed after minor changes were made to the
programs and the computer is rebooted, to ensure that they were re-compiled and not just re-
loaded from the cache memory and also that the memory is free.

Scope and Assumption of the Latency Experimentation
The programming was limited to data access from relational database, as this is the most common
and most important form of utilization of web based dynamic middleware systems. It is therefore
assumed that the speed of access of database will be proportional to other form of processing
commonly done.

Limitations of the Latency Experimentation
One problem that was encountered was the lack of functions to estimate time up to the microsec-
ond level in ASP. The NOW() function only obtain system time to the latest second. Therefore,
we decided to increase the records until the time taking is at least 1 sec. This made us to therefore
start with 10,000 records for all the platforms.

Latency Results and Discussions

Sample Output Screen Captures
Each of the four programs written was executed on the browser. Sample outputs from the pro-
grams are given below in Figure 1 to 4:

Figure 1. Java Servlet Retrieval Output

 Dehinbo

 765

Latency with Scaling results
According to Treese and Stewart (2003, p.176) scaling is the question of how big a system can
grow in various dimensions to provide more service. It can be measured by total number of users,
the number of simultaneous users, the transaction volume etc. Treese and Stewart (2003, p.176)
further mentioned that Scaling in one dimension typically affects other dimensions e.g. increasing
the size of a database to handle more users may sometimes decrease the performance. Therefore,

Figure 4. Personal Home Page Output

Figure .3. Active Server Pages Output

Figure 2. JavaServer Page Output

Performance of Web-based Middleware Systems

 766

we are going to measure the performance alongside with scaling, by estimating the response time
while increasing the size of the database.

The estimated average time taken for the database retrieval in all the middleware platforms is pre-
sented in tabular form is given in the table 1 below. To estimate scalability as well, the records
are doubled from 10000 to 20000 to 40000 and finally to 80000. This is simply because it is eas-
ier to duplicate the whole records than to enter new records. It is significant to note that ASP and
JSP is unable to cope with 80,000 records using the configuration for this experiment. Though
this can be solved by increasing the RAM, the fact is still noteworthy given that all the programs
are executed on the same computer and that most students may not be able to afford large RAM.

 Table 1. Average time taken for the database retrieval as number of
records increases

 Number of records / Time Servlets JSP ASP PHP

 Time in seconds (10000 records) 2.0 3.0 1.15 0.66

 Time in seconds (20000 records) 5.0 6.0 2.31 2.00

 Time in seconds (40000 records) 9.0 15.0 4.69 5.0

 Time in seconds (80000 records) 20.0 10.5

Discussion of the Latency with Scaling results
From Table 1 above, it is evident that, for the minimum 10,000 records implemented, PHP has
the best performance followed by ASP, and followed by Java servlets. JSP has the worst per-
formance. A pictorial view of this result is given in Figures 5 and 6.

This result is in agreement with Cecchet et al. (2003, p.5) which explains PHP’s better perform-
ance as due to the fact that it executes as a module in the Web server, sharing the same process
(address space), thereby minimizing communication overhead between the Web server and the
scripts. This is unlike Java servlets that run in a JVM as a separate process from the Web server.

JSP’s performance being lower than that of Java servlet could be explained due to the fact that
JSP still have to be converted to Servlet before being executed. This explanation could also be
responsible for the inability of the JSP to process 80,000 records, as the compilation is already
taking part of the available memory and disk resources. Even though ASP is not converting to
other temporary form, the interpretation of the codes in the same way as for JSP, unlike the com-

Chart of Latency with Scaling

0.0

5.0

10.0

15.0

20.0

25.0

10000 20000 40000 80000

Number of Records

Ti
m
e
in
 s
ec
on
ds

Figure 5. Chart for the Latency with Scaling

 Dehinbo

 767

pilation in Java servlet could also be responsible for the inability of the ASP to process 80,000
records.

For the maximum records of 40,000 records executable by all the platforms using the resources of
this experiment’s configuration, ASP seems to be trying to outperform PHP. This could be due to
the mode of fetching the results. While ASP processes the whole results before display, PHP dis-
plays them as it retrieves them sequentially. This would incur some fetch overhead as the number
of records increases.

Summary
This study examines the latency experimentation that measured the time for the execution of pro-
grams using the specified platforms. The essence is to determine platforms that will shorten the
compile-test-debug-recompile cycle in software development, especially in an academic practical
laboratory.

We combined the latency experiment with scalability by estimating the performance for 10000
records, 20000, 40000 and 80000 records. The result showed that PHP has the best performance
for 10000 records, while ASP tries to outshine PHP for 40,000 records. Given that ASP is unable
to cope with 80,000 records using the configuration for this experiment, it is evident that on the
average, PHP has the best performance.

Conclusion
Taking a critical look at this study, it aims at finding ways of “designing fast web applications
fast”. The study is concerned with a measure of how fast it takes to execute developed web appli-
cations. Developing fast applications fast will increase productivity and profit. It will also reduce
the time spent in testing the developed applications, as well as the quality of the developed appli-
cations due to possibility of extensive testing. This is based on the premise that since there is the
need for recurrent testing in a practical software development session, a platform that has mini-
mum latency for executing developed applications will be more desirable.

The study concluded that PHP has the best performance on the average. This is in line with other
studies such as Cecchet, et al. (2003). Moreover, with respect to scalability, PHP still proved to
be very scalable. Therefore, there is significant difference in the performance of the dynamic
web-based middleware systems.

Line Graph of Latency with Scaling

0.0

5.0

10.0

15.0

20.0

25.0

10000 20000 40000 80000

Number of Records

Ti
m
e
in
 s
ec
on
ds

Figure 6. Line Graph for the Latency with Scaling

Performance of Web-based Middleware Systems

 768

References
Apte, V., Hansen, T., & Reeser, P. (2003). Performance comparison of dynamic web platforms. Computer

Communications, 26 (8), 888-898.

Ashenfelter, J.P. (1999). Choosing a database for your web site. NY, USA: Wiley Computer Publishing.

Bishop, J. & Hurter, R. (1999). Competitors to Java: Scripting languages. South African Computer Lectur-
ers Association (SACLA) conference. June 1999. Golden Gate, South Africa.

Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J. & Zwaenepoel, W. (2003). Performance comparison
of middleware architectures for generating dynamic web content. Lecture Notes in Computer Science:
Middleware, 2672, 242-261.

Cooper, R. (2001). Software for managing web sites. South African Institute of Computer Scientists and
Information Technologists (SAICSIT) Annual conference. September 2001. Pretoria, South Africa.

Creswell, J. W. (2003). Research design: Qualitative, quantitative and mixed methods approaches (2nd ed.).
USA: Sage Publications.

Dehinbo, J. (2004a). The impact of web-based middleware systems on training and assessment through
inhouse developed online testing system. Proceedings of the Informing Science + Technology Educa-
tion (InSITE) conference, Rockhampton, Australia.

Dehinbo, J. (2004b). Determining a suitable programming language for the B.Tech. degree. Proceedings of
the Southern Africa Computer Lecturers Association (SACLA) conference, Durban. South Africa.

Hartman, H. (2001). Tools for dynamic Web sites: ASP vs PHP vs ASP.NET. Seybold Report Analysing
Publishing Technologies, 1 (12).

Lim, B. L. (2002). Teaching web development technologies: Past, present, and (near) future. Journal of
Information Systems Education, 13 (2), 117-123.

Leedy, P. D. & Ormrod, J. E. (2001). Practical research: Planning and design (7th ed.). USA: Merrill Pren-
tice Hall.

Lerdorf, R. & Tatroe, K. (2002). Programming PHP: Creating dynamic web pages. USA: O’Reilly & As-
sociates.

Marshak, M. & Levy, H. (2003). Evaluating web user perceived latency using server side measurements.
Computer Communications, 26 (8), 872-887.

Mouton, J. (2001). How to succeed in your master’s & doctoral studies: A South African guide and re-
source book. South Africa: Van Schaik.

Prechelt, L. (2000). An empirical comparison of seven programming languages. Computer, 33 (10), 23-29.

Renaud, K., Lo, J., Bishop, J., Lo, J. van Zyl, P & Worrall, B. (2003). Algon: A framework for supporting
comparison of distributed algorithm performance. Italy: PNDP.

Singh, S. & Kotze, P. (2002). Towards a framework for e-commerce usability. Proceedings of the annual
research conference of the South African Institute of Computer Scientists and Information Technolo-
gists (SAICSIT). South Africa: PE.

Treese, G. W. & Stewart, L. C. (2003). Designing systems for Internet commerce (2nd ed.). USA: Addison-
Wesley.

White, C. J. (2003). Research: An introduction for educators. South Africa: Pierre Van Ryneveld.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore, C.L. (1999). A comparison of the compre-
hension of object-oriented and procedural programs by novice programmers. Interacting with Com-
puters, 11 (3), 252-282.

 Dehinbo

 769

Biography
Johnson Dehinbo is a senior lecturer at the Department of Computer
Studies, Tshwane University of Technology, Pretoria, South Africa
(recent merging of Technikon Pretoria, Technikon Northern Gauteng,
and Technikon North West, to form a dynamic University of Technol-
ogy). Mr Dehinbo joined the Technikon Northern Gauteng as a lecturer
in 1997. Mr Dehinbo has previously worked as a Computer Program-
mer / Analyst at the International Institute of Tropical Agriculture,
Ibadan, Nigeria from 1991 to 1996, and as a Graduate Assistant at the
Ogun State University, Ago-Iwoye, Nigeria from 1990 to 1991.

His area of research interests includes web-based application development, database, e-commerce
and their impact on educational systems.

