
Issues in Informing Science and Information Technology

Automatically Generating Questions
in Multiple Variables for Intelligent Tutoring

Tao Li and Sam Sambasivam
Azusa Pacific University, Azusa, CA, USA

tli@apu.edu ssambasivam@apu.edu

Abstract
In our previous research, we investigated the automatic generation of questions with single vari-
able and the application to computer architecture teaching. In the current research, we extend the
previous approach to generating questions with multiple variables on Directed Acyclic Graph
(DAG) knowledge structures. Questions generated with the new algorithm are more complex and
require more mathematical skills to solve. The algorithms can be applied to any discipline for
which the conceptual and analytical knowledge can be represented by a DAG.

Keywords: Intelligent tutor, automatic question generation, difficulty assessment, multiple vari-
ables, guided problem solving.

Introduction
Research on intelligent tutoring has produced many interesting results, for example Frasson,
Gauthier, and Lesgold (1996), Larkin, Chabay, and Sheftic (1990), and Wenger (1987). Web-
based online courses are also being developed at many educational institution and much research
effort is focused on Web-based courses, for example, Boysen and Van Gorp (1997), Culwin
(1998), and Wolz (1993). However, research on automatic question generation and difficulty
analysis based on conceptual structures (Sowa, 1984) and ontological engineer (Heflin; 2001;
“The Simple HTML”, 2000) is still a weak link. Some researchers produced results (Soldatova &
Mizoguchi, 2003; Kunichika, Katayama, Hirashima, & Takeuchi, 2003) using approaches not
based on conceptual structures.

In a previous paper (Li & Sambasivam, 2003), we presented research results on automatic ques-
tion generation and difficulty assessment for intelligent tutoring. That approach was successfully
applied to the computer architecture course using a quantitative hierarchy. A knowledge structure,
the concept graph, based on semantic networks, was used to automatically generate verbal, de-
scriptive questions about computer architecture. That algorithm can only generate a question in a
single variable. In addition, we also presented a quantitative method for assessing the difficulty of

questions.

In this paper, the focus is on relaxing
the restrictions of the previous algo-
rithm. A new algorithm will allow the
generation of a question in multiple
variables. The knowledge structure for
question generation is a Directed
Acyclic Graph (DAG) concept graph.

Material published as part of this journal, either on-line or in print,
is copyrighted by Informing Science. Permission to make digital or
paper copy of part or all of these works for personal or classroom
use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first page.
It is permissible to abstract these works so long as credit is given.
To copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:tli@apu.edu
mailto:ssambasivam@apu.edu

Automatically Generating Questions

472

This paper is organized as follows:

• This section presents an introduction to the subject of the paper. It also outlines the con-
tributions of the paper.

• Section 2 is a review of our approach to automatic question generation. Concepts perti-
nent to the new algorithm are also defined in this section.

• Section 3 presents a new algorithm for automatic question generation in multiple vari-
ables.

• Applications and examples using the new algorithm will be presented in section 4.

• A summary with concluding remarks will be given in the last section.

Our approach needs well-formulated concept hierarchies. The development of a meaning hierar-
chy in a course may take years of experience and much time. Simply following a book or two will
not be sufficient. We allow a combination of fixed object composition and dynamic multiple in-
stantiations of a class of objects. Our approach is applicable to a wide range of subjects that do
not require development of new data structures and algorithms. In other words, our approach, in
its current stage, is not readily applicable to such courses as data structures and algorithm design.

The contribution of this paper is in its development of a new algorithm for automatic question
generation on DAG based knowledge structure with multiple variables. This new algorithm is
also guaranteed to generate solvable questions when the system of linear or non-linear equations
are solvable.

A Review of Automatic Question Generation
A hierarchical functional concept graph is used in our teaching system. Our functional concept
graph is an augmented version of conceptual graphs. A functional concept graph G consists of a
set of nodes V and a set of directed edges E. The edges connect the nodes of V. In this paper, G is
always a directed Acyclic Graph (DAG).

The functional concept graph is a hierarchical data structure: each node ni of the DAG is associ-
ated with a level li. Node ni may have a set of incoming edges {ei,1, ei,2, . . . ei,k}, connecting lower
level nodes. A node without any incoming edge is a source node. A node is also associated with a
value. The value vi of a node ni is computed by a function vi = ψi(vi,1, vi,2, . . . , vi,k), where vi,j is
the value of the input node nj connected by edge ei,j. The set of input nodes form the set of part-
ners for node ni. Associated with each node ni is also a value interval (li,ui), which is empirically
determined by the author of the tutoring system. In automatic question generation, this interval is
used to generate meaningful random value for a node. The description of the concept graph here
is brief. A more detailed description can be found in Li (1997). There, an augmented concept
graph is also defined. The augmented concept graph is what we use in several designs.

The normal direction of computation flow is to compute an output value vi for node ni from its
input node values using the function ψi(vi,1, vi,2, . . . , vi,k). However, we do allow other directions
of computation flow. An inverse function φij is defined, when appropriate, for an input edge ei,j
such that vi,j = φij (ei,1, . . . , ei,j-1, ni, ei,j+1, . . . , ei,n). This value can be assigned to the correspond-
ing partner node nj. The existence of inverse functions may bring an extra degree of flexibility
and allow the system to generate more sophisticated questions.

It is important to note that our definition of concept graphs allows each function to generate a
single output value from a set of inputs regardless of the direction of computation flow.

 Li & Sambasivam

 473

Question Difficulty Assessment
We define the degree of difficulty as D = w1N + w2P + w3M, where N is the number of condi-
tions given in the questions (that is, the number of terminal nodes), P is the number of downward
edges in the paths traversed during question generation, and M is the number of upward edges
traversed during question generation. We use three weight factors w1, w2 and w3 to balance be-
tween the path length and the number of conditions. Typically, w1<w2<w3 because upward edges
traversed represent more difficult concept association and downward edges, and the total number
of edges, which corresponds to the number of problem solving steps involved, carries more in-
formation about the effort needed in problem solving.

This definition of degree of difficulty is based on a concrete knowledge structure. Hence, it is
more subjective and is a more accurate measure of the effort needed to solve a problem. To our
knowledge, this is the first difficulty measurement based on a computation structure and algo-
rithm.

Question Generation Algorithm
For easy understanding and completeness of presentation, we first review the original algorithm
for automatic generation of single variable questions. Due to space limitation, we only present the
top level of the question generation algorithm. The Generate procedure in the algorithm is not
included here. Interested readers are referred to Li and Sambasivam (2003).

Algorithm Question Generation:
1. Randomly choose a question type (either 1 or 2);

2. Randomly select a node nd from the functional concept graph as the destination node at
which a result is to be computed;
Initialize all the node flags to “off”;

3. If the question type is 1, call procedure Generate(nd);
collect the generated conditions and paraphrase the question;

4. If the question type is 2, call procedure Generate(nd);
collect the generated conditions in set S1;
call procedure Generate(nd) again;
collect the generated conditions in set S2;
paraphrase the question from S1, S2 and the comparison operator;

We are able to show that given the DAG, the node functions and the inverse functions, the above
algorithm produces only solvable questions. This is a fundamentally important result, for the us-
ers will not waste time to tackle an unsolvable problem and will not suffer from the frustration of
not being able to solve a problem after devoting a significant amount of time. A guided learning
approach using DAG concept graphs is also found in Li (1997).

Definitions for Multiple Variable Questions
A direct graph is a graph in which the edges have directions. Each edge leads from one node to
another. A direct acyclic graph (DAG) is a directed graph that contains no directed cycles.

Automatically Generating Questions

474

A node with multiple edges coming from other nodes is said to have multiple fan-ins. If some of
the multiple fan-in paths converge in the same node again, these are paths are reconvergent. Our
algorithm uses multiple fan-in paths to generate questions with multiple variables.

If two paths from node z lead to node x and node y, then z is the common ancestor of x and y.
This definition also includes the case when x is an ancestor of y or y is an ancestor of x. When z
is different from x and y, it is called a proper ancestor of x and y. The concept of proper ancestry
is very important in question generation with multiple variables.

Automatic Question Generation in Multiple Variables
In science and engineering application, a question of two or three variables is considered difficult
to solve although solving a system of equations with two or three variables in a math course is
common. The difficulty arises from understanding the problem concept and setting up the equa-
tions. Solving the equations is just one step in the overall exercise. In this section, we consider the
automatic generation of questions with two variables.

Generally speaking, two variable questions can be generated using the common ancestor relation-
ship. Specifically, we consider two classes of two variable questions as described below.

• The two nodes n1 and n2 representing the two variables have two or more proper com-
mon ancestors ai and aj, and further more neither is ai an ancestor of aj nor aj is an ances-
tor of ai.

• One node is the ancestor of another.

The two classes of questions need different algorithms to generate and the latter class typically is
easier to solve than the former.

The difficulty of a question is given in a variable credit. The amount of credit is distributed
among the nodes descending from the common ancestor, including the terminal nodes of the
question. The algorithm below generates questions for the case when one node is the ancestor of
another.

Algorithm Multi-variable Question Generation1:
1. Select a node x in the DAG graph such that x must have more than one edge leading to other

nodes. (That is, node x has multiple fan-outs.) Use the name of node x as one variable.

2. Following one path leading from x to a descendant y that also has descendants. Use the name
of node y as another variable.

3. Distribute the total credit to node x and node y proportionally as credit_x and credit_y.

4. Call GenerateOne(y, credit_y). This procedure recursively descends the DAG until the
amount of credit is exhausted. It also generates random values within the ranges specified in
the terminal nodes. This process is similar to that in Li and Sambasivam (2003).

5. For each descendant w of x

a. Allocate credit_w from credit_x;

b. Call GenerateOne(w, credit_w);

6. Append the verbal question strings generated from all the GenerateOne() calls.

 Li & Sambasivam

 475

The GenerateOne() procedure marks the nodes it visited during its recursive calls. It must also
avoid nodes that have been marked. The pseudo code of the GenerateOne procedure is shown
below.

Procedure GenerateOne(n, credit):
1. remaining_credit = credit – n.credit;

2. Mark node n;

3. If remaining_cedit <= 0, return;

4. Find the set d = {n1, n2, …, nk} of unmarked descendants of node n;

5. Randomly allocate the remaining_credit to the set of unmarked descendants as {c1, c2, …,
ck};

6. For each ni in d, GenerateOne(ni, ci);

For guided problem solving,

• one starts from the terminal descendants of node y and performs computation in a node
when all its inputs are available.

• This process proceeds recursively until a value for y is computed.

• Recursively compute values for ancestors of y until a node which is a direct descendant
of x.

• Recursively compute values for other descendants of x.

• Compute a value for x from the values of all its descendants.

Proposition1: The algorithm Multi-variable Question Generation1 always generates two vari-
able questions that are solvable.

The following algorithm generates questions for the case when two nodes have two or more
proper common ancestors. The algorithm requires a preprocessing step that finds all the least
common ancestors of the nodes in the DAG and tabulates the least common ancestors in a table
Tab.

Algorithm Multi-variable Question Generation2:
1. Mark all the nodes in the DAG that have multiple fan-ins as “I”.

2. Mark all the nodes in the DAG that have multiple fan-outs as “O”.

3. Select, from the table Tab, two nodes x and y that have two proper common ancestors a
and b where a and b are two least common ancestors (LCAs) of x and y.

4. Set the name of node x as one variable and the name of node y as another variable.

5. Allocate credits to the nodes x, y, a, b as credit_x, credit_y, credit_a and credit_b.

6. Call GenerateOne(a, credit_a). This call must terminate if x or y or a marked node is en-
countered.

7. Call GenerateOne(b, credit_b). This call must terminate if x or y or a marked node is en-
countered.

Automatically Generating Questions

476

8. Append the verbal strings from the above four GenerateOne() calls to form the question.

There are many known algorithm for finding all least common ancestors in a DAG, for example
Eppstein (1995), Harel and Tarjan (1984) and Schieber and Vishkin (1988). For this second algo-
rithm, the problem generated can be solved with a numeric iterative algorithm. If the algebraic
operations involved are complex, it becomes difficult to use guided problem solving. We do not
yet have a way to map it to an intuitive GUI design for guided learning.

Guided problem solving is well-developed for the single variable algorithm, as discussed in Li
(1997). For the second multiple variable algorithm, however, guided problem solving is not yet
clearly defined.

Proposition2. When two least common ancestors are available for two nodes in the DAG, the al-
gorithm Multi-variable Question Generation2 always generates two variable questions that are
solvable.

The above algorithms can be extended to generate questions with three or more variables. How-
ever, the extension is a non-trivial task.

Examples will be presented to illustrate the operations of the above algorithms in the next section.
These examples will help to clarify some key points of the algorithms.

Applications
Our algorithms can be applied to many subjects in science and engineering, for example, physics,
electronics, computer architecture, computer networking, etc.

This approach does not lend itself readily to programming and algorithm courses. Algorithm ani-
mation is effective in programming and algorithm design courses.

A combination of algorithm animation and our approach will be effective to a wide range of
courses. For example, Operating Systems and Local Area Network (LAN) are two subjects that
would benefit significantly from a combination of the two approaches. We are currently develop-
ing ontologies and algorithm simulators for the following subjects.

• Local Area Networks (LAN). An online teaching web site is under development for our
LAN course. Many algorithm simulators have been developed to assist the learning of
protocols and algorithms.

• Operating Systems (OS). We are designing algorithm simulators for OS course. We are
also developing an upper ontology for OS.

• Database Design. An upper ontology has been extracted for database principles from Rob
and Coronel (2003). We are also developing ontology for query design.

• Computer Architecture. A comprehensive upper ontology has been developed for quanti-
tative computer architecture based on the work of Hennessey and Patterson (1996). Algo-
rithmic simulators are being considered.

A simplified concept graph for computer architecture is shown in Figure 1. We illustrate the
working of our algorithms with a few examples.

 Li & Sambasivam

 477

Example 1. In this example, we will focus on the equation generation part of the algorithm Multi-
variable Question Generation1 and leave out the credit assignment details. Consider the path from
(CPU cycles) → (CPU Time i) → (Weighted Exec Mean).

The algorithm may select (Weighted Exec Mean) as the first variable and (CPU Time 1) as the
second variable. A call GenerateOne(CPU_Time_1) assigns (Cycle time) to 10 (ns), CPU cycles
to 12,000,000, (Memory stall cyclces) to 75,000 cycles. A second call Gener-
ateOne(Weighted_Exec_Mean) assigns (Frequency of program 1) to 0.8. The algorithm termi-
nates after generating these values.

The algorithm effectively forms the following equations,

• CPU_Time_1 = Cycle_time * (CPU_cycles + Memory_stall_cycles) = 10ns * (12,000,000 +
75,000), and

• Weighted_Exec_Mean = 0.8 * CPU_Time_1.

The first variable (CPU Time i) can be computed from the terminal node values. (Weighted Exec
Time) can then be computed from (CPU Time i) and (Frequency of program i = 0.8).

Example 2. Again, we focus on the question generation part and leave out the credit assignment
details. Assume that we have two programs Prog1 and Prog2 in a test-bench to estimate the per-
formance of a machine. The two variables nodes are (CPU cycles 1) and (CPU cycles 2) for
Prog1 and Prog2, respectively. The two least common ancestor nodes are the (Weighted Exec
Mean) and the (Arithmetic Mean).

Weighted
harmonic mean Arithmetic

mean

Weighted Exec.
mean

Geometric
mean

Performance
machine time

Frequency of
program i

CPU time i
(program i)

Frequency of
Program j

CPU time j
(program j)

Cycle time CPU cycles Memory
stall cycles

CPI

Instruction
Count (IC)

MSC1 MSCn

CPI1f CPInf

IC1 ICn

CPU cycles
for inst 1

CPU cycles
for inst n

CPI1 CPIn

* *+

* +

* +

+

+*

/ /

*

+

MIPSi MFLOPS

Speedup
Overall

Fraction
Enhance

Speedup
Enhance

Weighted
harmonic mean Arithmetic

mean

Weighted Exec.
mean

Geometric
mean

Performance
machine time

Frequency of
program i

CPU time i
(program i)

Frequency of
Program j

CPU time j
(program j)

Cycle time CPU cycles Memory
stall cycles

CPI

Instruction
Count (IC)

MSC1 MSCn

CPI1f CPInf

IC1 ICn

CPU cycles
for inst 1

CPU cycles
for inst n

CPI1 CPIn

* *+

* +

* +

+

+*

/ /

*

+

MIPSi MFLOPS

Speedup
Overall

Fraction
Enhance

Speedup
Enhance

Figure 1. A Simplified Ontology for Computer Architecture.

Automatically Generating Questions

478

The call GenerateOne(Arithmetic_Mean) yields the assignment of Cycle_Time = 10ns, Mem-
ory_stall_cycles1 = 4000, Memory_stall_cycles2 = 7,500, and Arithmetic_Mean = 232,500.

The call GenerateOne(Weighted_Exec_Mean) yields the assignment of Frequency_Prog1=0.6,
Frequency_Prog2=0.4,and Weighted_Exec_Mean = 218,000.

The algorithm effectively forms the following equations in two variables,
• CPU_cycles1 * Frequency_Prog1 + CPU_cycles2 * Frerquency_Prog2 = Weighted_Exec_Mean, and

• (CPU_cycles1 + CPU_cycles2) / 2 = Arithmetic_Mean.

Let CPU_cycles1 be x1 and CPU_cycles2 be x2. Substitute known values into the above, we ob-
tain the following simultaneous equations,

• 0.6x1 + 0.4x2 = 218,000, and

• (x1 + x2) / 2 = 232,500

The variables can be computed by solving the above equations using either substitution or any
numerical method.

Summary
In this paper, we extend previous research to automatic question generation with multiple vari-
ables. The algorithms are guaranteed to generate questions that are solvable. A credit assignment
method is applied to control the complexity of the generated questions.

This approach is being applied to several subjects. In the future, we will develop Web-based
courses using a combination of this approach and algorithm simulation. We hope our methods
will produce fruitful results for science and engineering education.

For future research, we will focus on provided guided learning and related GUI for questions with
multiple variables.

References
Boysen, P. &Van Gorp, M.J. (1997). CLASSNET: Automated support of web classes. ACM SIGUCCS

XXV.

Culwin, F. (1998) Web hosted assessment – Possibilities and policy. ITiCSE 98 Conference, Dublin, Ire-
land.

Eppstein, D. (1995). Finding common ancestors and disjoint paths in DAGs. Technical Report 95-52. De-
partment of Information and Computer Science, University of California at Irvine.

Frasson, C., Gauthier, G. & Lesgold, A. (Eds.). (1996). Intelligent tutoring systems, LNCS-1086. 3rd Inter-
national Conference on Intelligent Tutoring Systems (ITS’96), Montreal, Canada, June 1996.

Harel, D. & Tarjan, R.E. (1984). Fast algorithms for finding nearest common ancestors, SIAM J. Comput-
ing, 13 (2), 338-355.

Heflin, J. (2001). Towards the semantic web: Knowledge representation in a dynamic distributed environ-
ment. Ph.D. Thesis, University of Maryland, College Park, 2001. Retrieved from
http://www.cs.umd.edu/projects/plus/SHOE/pubs/#heflin-thesis

Hennessy, J. L, & Patterson, D.A. (1996). Computer architecture: A quantitative approach (2nd ed.). Mor-
gan Kaufmann.

http://www.cs.umd.edu/projects/plus/SHOE/pubs/#heflin-thesis

 Li & Sambasivam

 479

Kunichika, H, Katayama, T, Hirashima, T & Takeuchi, A. (2003). Automated question generation methods
for intelligent English learning systems and its evaluation. Proceedings of ICCE2004, Dec 2-5, Hong
Kong.

Larkin, J., Chabay, R. & Sheftic, C. (Eds.). (1990). Computer assisted instruction and intelligent tutoring
systems: Establishing communication and collaboration. Erlbaum.

Li, T., (1997). Question Generation and Guided Problem Solving for Intelligent Tutoring, Technical Report
CUCS97-IT1, Department of Computer Science, Concordia University, Montreal, QC, Canada, 1997.

Li, T. & Sambasivam, S. (2003). Question difficulty assessment in intelligent tutor system for computer
architecture. In Proceedings of ISECON 2003, San Diego.

Rob, P. & Coronel, C. (2003). Database systems: Design, implementation and management. Boston, MA:
Course Technology.

Shieber, B. & Vishkin, U. (1988). On finding lowest common ancestors: Simplification and parallelization,
SIAM J. Computing, 17, 1253-1262,

The Simple HTML Ontology Extensions (SHOE language specification). (2000 April). Available at
http://www.cs.umd.edu/projects/plus/SHOE/spec.html

Soldatova, L & Mizoguchi, R. (2003). Test Generation Systems. Proceedings of SIG-IES-A203-09, pp51-
56, Japan.

Sowa, J. (1984). Conceptual structures: Information processing in mind and machines. Reading, MA: Ad-
dison-Wesley.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Morgan Kaufmann.

Wolz, U. (1993). Providing opportunistic enrichment in customized on-line assistance. Intelligent User
Interface, 93.

Biographies
Dr. Tao Li is at the Department of Computer Science, Azusa Pacific
University, Azusa, CA 91702. Dr. Li graduated from the University of
Utah in 1985 with a Ph.D in computer science. He taught at Adelaide
University and Monash University in Australia and Concordia Univer-
sity in Canada. He has offered a wide range of computer science
courses. Dr. Li has done research in parallel computing, VLSI design,
neural networks and data networking. He served on the editorial board
of International Journal of Computer-Aided VLSI Design and on orga-
nizing committees of international conferences as well as session
chairs of international conferences. He was also invited speaker at con-
ferences and various institutions. His research focus is currently on
intelligent systems for computer science education and on hardware
based systems for networking.

http://www.cs.umd.edu/projects/plus/SHOE/spec.html

Automatically Generating Questions

480

Dr. Samuel Sambasivam is the chairman of the Department of Com-
puter Science of Azusa Pacific University. Professor Sambasivam has
done extensive research, publications, and presentations in both com-
puter science and mathematics. His research interests include optimi-
zation methods, expert systems, Fuzzy Logic, client/server, Databases,
and genetic algorithms. He has taught computer science and mathemat-
ics courses for over 24 years. Professor Sambasivam has run the re-
gional Association for Computing Machinery (ACM) Programming
Contest for six years. He has developed and introduced several new
courses for computer science majors. Professor Sambasivam teaches
Database Management Systems, Information Structures and Algorithm

Design, Microcomputer Programming with C++, Discrete Structures, Client/Server Applications,
Advanced Database Applications, Applied Artificial Intelligence, JAVA and others courses. Pro-
fessor Sambasivam coordinates the Client/Server Technology emphasis for the Department of
Computer Science at Azusa Pacific University.

