
Issues in Informing Science and Information Technology

Teaching System Access Control

Juan R. Bauer Mengelberg
Colegio de Postgraduados

Montecillo, Edo. de Mexico, Mexico

jbauer@colpos.mx

Abstract
Many specialists believe that more emphasis on system infrastructure is needed, including the
protection of the system’s data against unauthorized use or updates. This paper proposes a way to
teach future information system specialists the main concepts involved, using a powerful yet very
flexible method to implement access control. Constraints, widely known as context constraints,
which depend on the value of a variable or data item, are included. We discovered it was ex-
tremely difficult for students to understand, let alone adopt, a model as general as the one we use
to explain the necessary ingredients of an Access Control model. However, the order in which the
concepts were introduced produced a very significant increase in the degree of understanding on
the part of the students. Rather than just provide another method, the paper’s objective is to pro-
mote discussion as well as further study of the subject.

Keywords: teaching, access control, information systems, security, context constraints

Introduction
An information system has a number of components which complement and support its main
functions, those which update and use its data. We could include security features, good and fast
backup procedures, items which make the system easier or safer to use and certain attributes
which individual designers may include to decrease several types of risks associated with made-
to-order systems. Many specialists consider that such components of information systems, re-
ferred to as their infrastructure, need to be strengthened and have proposed ways to achieve this
goal. We have approached this matter in two different ways: teaching specialists the concepts and
needs, but also designing tools for system developers to include powerful and robust ready to use
components in their systems. These tools turned out to be useful teaching aids. Though the
method we present is based on its concepts, we did not include a detailed description of the tool-
set, which contains the data structures and routines to provide a system with access controls such
as we describe here.

Even though this paper is addressed to teachers, we do not present it as didactical material or even
reference for students in a course, nor will we try to persuade anybody that this is some kind of a

solution to one of the difficult prob-
lems of teaching these types of con-
cepts. Its purpose is to show yet an-
other example of how changing the
way in which we explain a topic – in
this case altering the order in which
we introduce certain concepts – can
produce surprising increases in com-
prehension on the part of the students.

Material published as part of this journal, either on-line or in print,
is copyrighted by Informing Science. Permission to make digital or
paper copy of part or all of these works for personal or classroom
use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first page.
It is permissible to abstract these works so long as credit is given.
To copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:jbauer@colpos.mx

Teaching System Access Control

140 140

Though we have only used it with graduate students, there is no reason why it should not be use-
ful with others. We would like to make a comment which will sound a bit out of place in a paper
such as this one. We have often felt that exposing students to an oversimplified version of a topic
tends to vaccinate them againt the real thing. Thus we prefer to present rather complete models or
explanations of the topics even though they might seem much too complicated for most applica-
tions. We are sure the reader will agree that the model we present here falls within this category.
We might quote our students complaints that we tend to add complexity to a situation: our re-
sponse usually is that we are not adding it, but reflecting the nature of the phenomenon.

We have used our method teaching “non-IT” students as well as IT students, the main topics of
what has been called Access Control (AC) of an information system (IS). We separate the design
of a system’s protection functions from the technical aspects of implementing them. We think of
the latter as being the competence of IT students, a category which we define so as to include
anybody who wishes to participate in such activities. The division is made in order to offer stu-
dents the possibility of not having to deal with purely technical aspects such as database design,
programming interfaces and processes, studying and implementing data scramblers and other
concepts which we could roughly label as pertaining to the Computer Sciences. Though of course
our method includes some ways to implement solutions, we will hardly mention them here. How-
ever, due to several suggestions in this sense, in the Appendix we have included a relational data-
base schema to show how the model’s entities could be implemented.

We use a brief description of system security focusing mainly on its objectives, to point out the
scope of the presentation. A sequence of entities involved in the protection schemes follows. The
whole point of our paper is to relate how a necessity and solution type of description greatly in-
creased the very limited success we had previously achieved, when we tried to explain the model
to our students. We have tried to limit remarks to the really helpful ones, a technique which might
produce a sense of incompleteness in some readers. Since we think of these as colleagues –
teachers – we assume that anybody interested enough in the matter will easily provide all the ad-
ditional, or missing, detail using his own experience or most of all, thought.

We have omitted some of the main related topics for several reasons. We will not mention the
topic of authentication, since we feel all students understand the need for it and know quite a bit
about the ways to implement or achieve it. And we will only state that some type of data must be
scrambled appropriately, meaning at a sufficient level of security, but shall not go into details
even though we think of it is a fascinating subject.

A diagrammed non-technical description of our data model presents the main entities necessary to
store information connected with the data protection devices. No database concepts are assumed
or used, since no type of storage and access methods is implied or recommended. Finally, after
presenting an example meant to remove some very likely doubts, brief mentions on some ways to
implement such protection in the implementation of a system were included.

System Security
We define system security as everything that can be done to protect our data from unauthorized
updates and use, including the detection of violations before it is “too late”. We divide security
into 2 main groups:

• restricting the use of the system’s functions, meaning any use of the data which is performed
through the application programs

• protecting the system’s data from use by other programs or utilities.

 Bauer Mengelberg

 141

In Figure 1 we show these 2 types of protection. In the paper we only discuss the devices built
around the “application” itself, which are components of what is often called Access Control. Da-
tabase security and protection of communications are of course just as important, but will not be
discussed here. In other words, we will focus on a user’s access to the functions of the system,
which we could identify with routines of programs or objects through which certain functions are
invoked.

We might point out that we have avoided using more powerful or general terms such as referring
to subjects and objects. This was part of the strategy chosen for our teaching model: to stay away
from other types of classifications which, though important or even essential, could divert atten-
tion from the main concepts we attempt to transmit. The reader will discover that throughout the
paper we will not label our models or methods according to the increasingly used AC terminol-
ogy, especially referring to RBAC (Role Based Access Control), though of course our model is
just another example of that type of models. However, we feel that in many such models, the em-
phasis is on the “role” part of the model, whereas in our case this is not as important as the other
concepts involved.

APPLICATIONS (FUNCTIONS, INTERFACES)

USER OF THE SYSTEM

VIOLATORS

ACCESS
CONTROL

DATABASE
PROTECTION

SYSTEM DATA (DATABASES, FILES)

PROTECTION DEVICES

POSSIBLE VIOLATIONS

AUTHORIZED USE

REQUEST DENIED

NON-USER

COMMUNICATIONS SECURITY

Figure 1 Protection devices and their goals

Teaching System Access Control

142 142

Access Control Components of a System
We have used successive layers, which we call levels, to present a working model which has
proved to be adequate in many systems. Only the most significant data items of each entity - be-
sides those which define it - are mentioned. The diagrams of the data models in the following sec-
tions should shed additional light on them. Additionally, the Tables illustrate our approach, in
which we state a necessity and provide the solution or the entity defined to respond or address it.
The sequence of concepts is crucial: presenting them in a different order repeatedly led to confu-
sion and ultimate rejection of some of the main ideas by all our students. This is only partly due
to the fact that the model differs from all others encountered before 2002. However, a recent pa-
per which presents some of our concepts as part of their models is quoted as part of the comment
on our DVDC terminology. When we say our model is different, we include published works,
SW packages, developers tools and especially, the study of access control components found in
many actual information systems.

As far as determining the cause of our difficulties on the part of our students, we blame previous
knowledge of the subject, since they have been in touch with systems where they have a profile,
in other words, they can do some things but are barred from others. When a new component is
introduced at the wrong moment, the openness is at most very small, if not null.

Table 1 shows the first limitations we wish to impose as part of our access control and what we
include in a system to address these needs.

Table 1 Access control entities of a system – level l

NECESSITY SOLUTION

Not everybody should be able to use the system We introduce USERS (authentication)

Distinctions are needed in order to be able to limit users
to certain functions

We define AC-FUNCTIONS: they are
the ones we authorize or prohibit

A user may or may not be authorized for a function We specify USER+AC-FUNCTION:
User may use this function (true/false)

A list of AC-functions must be prepared for every system. We have used the prefix to differenti-
ate them from other uses of the term function in a system. Of course we could have used the more
traditional designations used in the Access Control literature: subjects and objects. We wanted to
distinguish our model clearly from others, since we thought these might have added confusion.
Naturally in a class we could call attention to this fact or even provide both sets of terms. We
found a very concise note on classifications and widely used terminology (Hiemstra, 2004).

An AC-function may, but does not have to, coincide with a function of the system or of the pro-
grams or procedures of the application. An AC-function can be very broad (use an entire subsys-
tem) or quite particular (change the shipping date of today’s orders.) Determining these functions
should be based on their need, which we could describe by saying that a function is necessary if
there is are at least two users of the system of which only one of them is authorized to use the
function. Later on you may discover this specification might not be sufficient, but we think at this
point it serves its purpose.

A user will have some privileges or permits, and as a consequence will be prohibited to use the
other functions. This might be implemented the other way around, that is, including his con-
straints or prohibitions in the AC-data. In practice, often specifications for every one of the func-

 Bauer Mengelberg

 143

tions are included, typically with a True-False value, the value of a numeric variable or even an
old-fashioned bit indicator.

Introducing Constraints which Depend on the Value of a Data
Item or Variable
A situation which often arises is that a user may be authorized for certain functions, but only
“sometimes”. This might depend on some external data, or the value of a data item of the system
itself. For example, he might be able to use ac-function #23

Only in the morning or from a given terminal
Only for data concerning his department
Only for students of his courses
Only for his specialty (his topic, expertise)

In table 2 we indicate our solution to this type of need: we introduce a new type of constraints.

Table 2 Access control entities of a system - level 2

NECESSITY SOLUTION

For certain combinations of a USER
and an AC-function, privileges or
prohibitions may depend on a data
value

We introduce the entity: USER-ID + AC-FUNCTION + a
particular DATA VALUE.

For this function the user will be assigned either an Au-
thorization or a Prohibition, which applies only to that
data value.

Remarks
We have called these constraints Data Value Dependent Constraints (DVDC). We cling to this
terminology even though these are now widely referred to as context constraints. When we first
formulated them and included them in our model, around 1986, we found no literature on the sub-
ject. Further research led to the same results in 1998, and finally when we first drafted this paper
in 2002. However in 2003 a significant paper (Neumann & Strembeck, 2003) appeared which
dealt with context constraints in RBAC models, though they mention another work dating further
back (Nitsche, Holbein, Morger, & Teufel, 1998). A partial justification could be that we think of
these constraints in the context of an Information System, hence related to values of variables
which are related to system data, whilst context constraints include these – data-dependent ones -
in the larger set of circumstances, environment, time period or other constraints.

In the models, every DVDC has an identifier, which we call its key, indicating to what it applies,
and an indication which specifies “A” for authorized or “P” for prohibited (since either way of
imposing these constraints are supported), and a data value. The key will have additional compo-
nents after we allow for groups and roles. Though we explain this quite thoroughly below, an ex-
ample at this point might be helpful. The “key” U25 + F37 + “P” + “OAK” would indicate that
our user 25 cannot (note the “P”) use AC-function number 37 if the value of the variable is
“OAK”. In the technical model, we solve uniqueness requirements arising from the fact that sev-
eral values could share the same key. Applicable value descriptions including wild characters
might be useful in some cases.
These constraints seem necessary, even essential, in some situations. The topic is central to our
model, but constitutes the greatest challenge as far as explaining it, and therefore will be dis-
cussed further in the rest of the paper.

Teaching System Access Control

144 144

Later discussion will deal with the identification of the type of data involved. For example
“OAK” will mean something only to the persons who defined the constraints, not the AC-
programs: these will simply check values. Thus furnishing the correct value to be compared with
a DVDC is usually included in the application programs, where this term pretends to separate
them from the infrastructure components.

Several values for the same user-function combination
Often instead of just one value being allowed, there might be a list of such values. Of course the
dual situation will also arise - several values have to be prohibited. Thus a DVDC may have a set
of values which apply to the same key. We might think of a list of values to be allowed or prohib-
ited for a given key. Again the use of wild characters may sometimes shorten such lists.

A criterion will be necessary to deal with the possibility of several different values applying to the
same instance. We introduce the rule:

If a “P”-type constraint is present for a combination of a user and an AC-function, any value not
also present as a “P” constraint will be ALLOWED (i.e. not prohibited). Conversely, if an “A”
DVDC is present, any value not included with an “A” will be prohibited for that combination of
user and function.

This implies another rule – the reader probably has formulated it for himself: If a “P”-type con-
straint is included for a user-function combination, no “A”-type constraints can be added for the
same combination.

We shall see below that DVDC’s can be introduced in such a way as to apply to several cases:
many functions or several users.

Groups of AC-functions
In a large system and especially in modern totally integrated systems, the number of such AC-
functions might be very large. Many users will only be associated to certain parts of the system,
so we introduce a subdivision of the functions into subsets, which we shall call groups. We define
a group of functions as a subset of AC-functions. Groups constitute a partition of the functions,
and are mutually exclusive. We like to number the groups, but of course they may have a label or
a name. The functions of a group are numbered within the group. When using groups, it will be
meaningless to refer to a function number without specifying the group to which it belongs.

In Table 3 we describe the entities added to our model to include groups of functions.

Table 3 Access control entities of a system - level 3

NECESSITY SOLUTION

It might prove useful to subdivide the functions We introduce GROUPS of AC-FUNCTIONS

We want to limit users to certain groups We introduce the USER-GROUP entity

We want to limit the users to use only certain
functions of each group

We introduce USER-GROUP-FUNCTION:
may use (True/False)

Remarks
The groups do not increase the functionality of our AC model in any way: they will only make it
more manageable in many ways.

 Bauer Mengelberg

 145

We emphasize that a user may be associated to many groups, meaning he may be authorized to
use functions of several groups.

Groups have an unfortunate by-product: it is easy to talk about a user being a member of a group,
thus implying that a group is a subset of users. Actually it is quite difficult to stay away from this
terminology, which fortunately is only confusing when studying the subject, not in applications.
We could say that a group is both a subset of the functions and a subset of the users, but this kind
of statement does not contribute to understanding and actually acts against a correct application of
the concept. In many references the term domain is used to signify these groups, though not nec-
essarily in exactly the same sense in which we use it, a fact that led us not to adopt that terminol-
ogy.

The model at this stage
Of course the introduction of groups of functions has an effect on our DVDC’s. The function will
now be qualified by the group number. Thus, the key is now user-id + group # + function #.
This in turn makes it possible to introduce a constraint without a function number, that is, it will
apply to every function of the group. Thus, user-id + group 5 + function 0 would apply to any
function of the group. The diagram in Figure 2 shows the AC-entities included in our model, and
how they relate to each other. Neither this diagram nor the one presented later in Figure 3 implies
a particular data model. It might help the reader to think of some of these entities as tables of a
relational database, though the files in a given application may be different from those indicated
or implied here. Notations in the diagram follow no standards; we thought it might help to indi-

Figure 2 Use of DVDC’s in model with groups

Teaching System Access Control

146 146

cate a type “1 to many” relationship, for example, to show that 1 user will (or can) be in several
groups. Every rectangle simply represents an entity of the access control method; for each entity,
we have italicized a potential primary index should relational database tables be used. A word
about the DVDC boxes might be useful. We have just included them every place where they
could be appropriate, but this association is logical, meaning you probably will not have a table in
a database which contains “user and group DVDC’s”. Instead, you might have some of these con-
straints which may apply to one particular combination of a user and GROUP, meaning to all
functions of the group.

Introducing roles within the groups
Since many users of a system may need similar privileges, roles have become popular to assign
them on a collective basis. As we have said before, we will not discuss the many advantages and
attributes of such Role Based Access Control models, though of course we have the same reasons
to use roles. We must warn the readers that we use this term in a different context than many
RBAC models. We define a ROLE as a subset of users within a particular group. Some groups
may use these roles while others may not need them. In Table 4 we add the entities which will
allow us to use such roles.

Table 4 Access control entities of a system - level 4

NECESSITY SOLUTION

For each group, are there many users with the
same privileges?

We introduce Roles of a group

We must authorize “roles” instead of individual
users for the functions of that group

We introduce authorizations for GROUP-
ROLE-AC-FUNCTION May use(True/False)

Every user of a group which uses roles must
“belong” to one and only one of the roles

We use the USER-GROUP entity to specify
the role of a user in a group

Remarks
If a group uses roles, no authorization at the user-group-function level can be assigned. The user
inherits the privileges from his role in the group. We repeat that you may use groups which do not
use or need roles. Of course this not only generalizes the model, but also complicates it a bit.

We number the roles within groups. As usual, labels or names are recommended for them as well.

Remember that it does not make sense to talk about a role without mentioning the corresponding
group.

Figure 3 reflects the impact of the use of roles on our model.

Roles not only will save work when assigning authorizations or allow for consistent updates - the
latter of course being one of the main reasons to use such roles. They may also constitute a valu-
able way to constrain certain privileges via DVDC’s associated to these roles, as will be seen in
the final model, which we present below, where the key to a DVDC assumes its final form:

 user-id + group # + role # + function-#

 Bauer Mengelberg

 147

The role number will be zero if the group does not use roles. Of course it will also be zero if the
user is specified. But now we could prepare a DVDC for an entire role of a group:

 No user specified + group 5 + role 2 + function 5

would apply to any user of that role (#2) of that group (#5). The function could also be zero.
Note that even if a group uses roles, a DVDC can still be formulated for one of its functions for
only one particular user.

The following diagram shows the impact of the use of roles on our model. Groups which do not
use roles were not shown, but of course can occur.

AC Designer Activities for a System
There are two basic approaches to the design of the AC components for a particular system using
our suggested model and procedures. The designer may see how he applies the model, and then
decide which components he will use, and assign the particular values for the system. Or he may
design his protection scheme and then see how he uses the model to implement it. Of course in
this case he might not be able to do so, if he uses entities or relations which are not supported by
the model.

Figure 3 DVDC’s when roles are used

Teaching System Access Control

148 148

We recommend the first way, since we think that adherence to the model will simplify the task,
thus improving the chances of producing a good AC-system, even without a lot of experience in
the matter. However, it is neither easy nor practical to try to define things in the order in which
we introduced them, since this ordering was especially conceived to explain them. First define
your groups of AC-functions – of course you can think of it as a first version, since you might
change your mind. Next you can tackle roles, where it makes sense to decide initially for which
groups you will need them, based primarily on the number of users associated with each group.
Even though we have not included it in our topics, these roles may be especially useful in con-
junction with DDL “grants” or “revokes” implemented via the database software.

Finally, those constraints which involve the value of a data item or variable should be studied. Of
course there are many ways to introduce such constraints. A straightforward alternative to our
DVDC’s is to subdivide the AC-functions into others, depending on the value of some data item.
For example “update credit limits of customers” might be replaced by “update credit limits of
customers of Division A” and another similar one for Division B. But this would not be a good
alternative if you had to provide a function for every city in a nationwide business enterprise.

Another way to introduce such constraints is to include them in the programs. Thus the authoriza-
tion to use the function would be added to the validation of the data value associated to the trans-
action. We separate this type of validation from the functions of our access control model, since
we would like to implement the latter without intervention, even knowledge, of the programmers
who develop the application itself.

In the example below we shed additional light on these possibilities. Furnishing several examples
to illustrate different situations and the consequent changes in the approach to the designs was not
only impossible due to the format of the paper, but also considered unnecessary.

We add a comment about the explanations provided in the example. We feel that many addi-
tional explanations of the somewhat cryptic indications would make the example easier to read,
but not necessarily contribute to understanding it. Since we have directed this paper to potential
teachers or perhaps some system designers who could use the model outlined here, we have left
the burden of understanding some pretty concise indications to the reader, though we have not
assumed any specific knowledge except the concepts contained in our paper. Thus, it might be
useful to be able to refer to a diagram of the model when reading some descriptions or examples,
instead of just trusting one’s memory.

An Example
We used a system where we could show examples of most of the entities without having to in-
clude lengthy, detailed or complete explanations of concepts and relations involved. Let us point
out that we use quotes, whenever a term is used with the precise meaning it has in the system. We
are to design the AC-components of a system for a large bus company, which has many routes
and each of these offers a number of “trips”. Besides the assignment of drivers and buses to every
trip, and the scheduling of the trips, the system allows all personnel involved to report any ab-
normal or modified circumstance concerning the availability of any of the resources, but also
about driving conditions, street or highway repairs or temporary noteworthy information – such
as large holes or depressions, slippery conditions and others. Of course anything regarding the
buses’ mechanical condition is also reported through the same system.

We start thinking about the actors of the system: in the AC context, they will probably constitute
types of users. BUS DRIVERS will notify their availability or lack of such due to holidays, ill-
ness or other factors. They may tentatively schedule themselves for a particular set of trips,

 Bauer Mengelberg

 149

though the official schedulers can change these assignments. And they will report anything inter-
esting they have to say.

SCHEDULERS introduce routes and trips, assign vehicles (buses) and drivers, and handle all
kinds of exceptions, besides reading and processing all the reports either by taking some actions
or by forwarding them to the appropriate department of the company.

PERSONNEL department employees will update driver data, and the EQUIPMENT division will
indicate the availability of the buses.

Finally, SYSTEM ADMINISTRATORS and some other “users” will be in charge of the AC
components themselves, typically assigning or updating privileges and prohibitions.

Anybody belonging to one or more of these “actor categories” will have to be a USER of the sys-
tem in the AC sense of the word. Bus drivers, besides being such users, are also entities of the
system itself: there will be a table of bus drivers. This allows us to include some AC functions as
part of the programs themselves, a delicate matter which should not be used too often. Of course
we will have to establish a connection between the data of the AC user and the bus driver, since
being the same individual obviously does not furnish this connection. For example, in the USER
file we might include a data item indicating the identification of the bus driver, as such, in the
system, and upon sign-on we would make this data available to the application programs.

Some of the AC-function groups could be (we usually number them for easy reference and use):

1. Route and trip data

2. Bus driver data

3. Equipment (buses) data

4. Driver assignments to trips

5. Assigning buses to trips

6. Observations about trips, equipment

7. Updating AC data (administration)

8. other groups not used in the example.

Group 2 could contain the following functions (they will not be used in the example, but are pro-
vided precisely as an example of such functions.)

2.1 Introduce new drivers

2.2 Eliminate drivers from the system

2.3 Update general information (address, phone)

2.4 Update availability

2.5 Assign holiday periods

We could use ROLES in groups 2 through 6, since there might be a considerable number of users
who will have to be granted permission for the functions of that group. This is what we mean by
being associated with the group. The roles seem attractive if only to save a bit or work. For ex-
ample, in group 6 (Observations about trips, equipment) we could formulate the following
ROLES:

schedulers

bus drivers

Teaching System Access Control

150 150

mechanics and other equipment inspectors

special task force to follow up tips and needs.

Note that these roles sometimes will, but do not have to, coincide with the descriptions of the
functions. Remember that the roles are just a shortcut to individual user-group-function authoriza-
tion: we assign privileges to the roles of the group and then indicate to which role the user be-
longs as a member of that group. Please avoid the confusion resulting from different uses of the
term roles in other models, where a user often is assigned a unique role. Here he will have a role
in every group with which he is associated, but of course only if the group uses roles.

We could constrain the bus drivers to their own data in two ways. We could ask the developers of
the system to include constraints in their programs, through which any bus driver would be pro-
hibited to use any function if it involves any other bus driver, i.e. he can only see and update his
own data. Actually, in many systems these validations are performed by the functions of the sys-
tem itself, rather than through AC-prohibitions. This is probably the reason why few people have
used what we have called DVDC’s in their AC-devices and they have taken so long to appear in
the literature. The need to plan for changes or additional constraints if obvious, and is precisely
the reason for the inclusion of a DVDC:

User: the user-id of the bus driver (his AC user id)

Group: 0 this indicates the constraint applies to all groups

Role 0 all roles of the group or “not applicable”. If a user-id is specified for a DVDC, no
role number is used, and vice-versa.

Function 0 it has to be 0, since the function number is nested within the groups. 0 means all
functions.

“A” meaning: authorize when the data value coincides with the requested one

data value the bus driver’s id as a system data item, that is, his bus driver number or what-
ever the system uses.

The programs would include the data value in any request associated to a bus driver made to the
authorization function, which is described in the next section.

Similarly, in order to limit a scheduler’s privileges to trips of certain routes we could include 3
DVDC’s, one for each group:

User the AC user-id of the scheduler

Group 1 or 4 or 5 (only 1 value in 1 DVDC)

Role: 0 (all roles or the group uses no roles)

Function 0 (all roles of the group)

“A”

data value: route1, route2 the routes he manages. We can supply a list of values.

Whenever the application programs would have to validate the user’s privilege to schedule a trip,
the route of the trip would be added to the validation request. Once again, please refer to the vali-
dation function, since we only included it to allow such references to clarify our descriptions.

 Bauer Mengelberg

 151

The Authorization Function
To make sure that the main concepts have been interpreted in their proper context, an access vali-
dation function is described. We may suppose here that somebody furnished this routine to the
developers of the application, together with the file structure to store the AC data and the pro-
grams used to update such data, or it might be part of a program library.

FUNCTION MAY_HE_DO_THIS (user-id, group, function, Optional: data_value)

RESULT: an integer according to the following table

0 = permission granted (meaning, of course, he is AC authorized)

1 = function is prohibited for the user

2 = the data value not included, but other values appear as “A” value

3 = the data value appears as a “P” value applicable to the user-function

The function returns the cause of denial to the calling program because often it might be incorrect
to tell a user he may not use a function, when he is only limited to certain data values.

Note that the first three parameters are required. On the other hand, the presence of a non-null
value of the (optional) data value parameter will indicate that the DVDC’s are to be checked.
Though probably unnecessary, let us remark that the applicable role is not included in the pa-
rameter list, since it is determined by the combination of the user-id and group number.

The function will first check if the user is associated to that group (of course, if he is not, the user
may not use the function.) If he is, there are 2 cases. If the group does not use roles, the value of
the user’s authorization for that particular function number of the group is found. Should the
group use roles, the user will have a “role number” in that group, which is used to find the YES-
NO value of the group-role-function number. If the result is 1 (denied) or the data value parame-
ter is null, the function ends.

If the result is 0 (user is authorized) we must check the data value parameter. If the function is
invoked including a particular data value, it will look for applicable DVDC’s, where of course
this applicability means: any DVDC none of whose key items violate the ones furnished as pa-
rameters of the function. We ask you to note the inverse formulation, which is inherent to the
model.

There are 3 possibilities. Here we use the term applicable to indicate that none of the items of the
key of the DVDC differs from the ones in the request.

No applicable DVDC exists for the combination of user, group and function: this means we return
the value of 0 (granted), since no contrary evidence was found. Observe that “user” will be re-
placed by role if appropriate (for this combination of user and group).

An applicable DVDC of the “A” type was found. We look at all such constraints (only the ones
which apply, naturally) until we find one with the same data value as the one invoked. The result
will be to grant permission if we find it (result = 0), and to prohibit the value (result = 2) if we
could not come up with the correct constraint. The underlying principle is: if a set of values is
authorized, all others are – implicitly - prohibited.

An applicable DVDC of the “P” type was found. Now we look for a constraint with the same data
value, except that now we will PROHIBIT (value 3) if we find a matching constraint, but author-
ize (result 0) if we cannot find one. Values not expressly prohibited are allowed implicitly.

Teaching System Access Control

152 152

Reminder: we will never find a “P” and an “A” type constraint both applicable to the same user-
group-function combination. We will mention a connected issue in the section regarding the ad-
ministrator of the AC components and data.

Impact of the DVDC’s on Related Activities
Introducing constraints that depend on the value of a variable or data item modifies the way we
invoke AC-devices in an application program. Though some of the situations are mentioned, de-
tails are left to the interested reader.

Two ways are frequently used to include prohibitions in a transaction:

• check for permission when the user tries to invoke a certain function of the system (and in-
form the user of a denial)

• only offer choices for which the current user has permission.

We add two different situations which arise when the choices are offered (a menu, options, but-
tons or even selection of a certain value):

• the system knows the value which will be checked for a DVDC, and thus the constraint can
be taken into account

• this value will be updated or obtained later.

This affects the design of the transactions and probably, the amount of programming and atten-
tion necessary to invoke the protection devices. The very popular process of disabling disallowed
options - for example menu items or other objects of a form - at load time, would now have to
check for additional prohibitions. Another way is to postpone enable-disable decisions until the
value which will affect the choice is known, or alternatively determine that value before the deci-
sions have to be made. In some cases this is easy or even natural, as in our example when a bus
driver signs on and thus provides the system with the data it needs about him, typically his driver
number. But this might not be the case with the supervisors, who may have several routes and
thus authorization can only be checked after the system knows which route is involved in the par-
ticular transaction.

The other rather significant effect of the use of DVDC’s is regarding activities which will be per-
formed by the administrators of the system. During the design we should take into account that
updating the data used by the AC procedures might be quite a task, especially if frequent changes
occur or the model requires complicated privileges. During this design, we like to remember that
the system administrators (let’s call them that)

• are not experts on the subject

• have many other tasks and assignments, and therefore will not remember everything you
ask them to know

• make mistakes, just as we would

• handle this very delicate data

• and might be led into temptation…

The usual “that’s what he gets paid for” argument is not a very productive alternative. The inter-
face programs should, of course, be flexible and provide ways to avoid errors wherever possible.
Presenting a screen we encountered recently, where the user has to indicate TRUE or FALSE for
a set of 154 items, is a nasty thing likely to irritate anybody. Even if each item has a description
or tool-tip, it is not a good idea. Our division in groups was initially motivated by a (very large)

 Bauer Mengelberg

 153

system which, even after trimming, ended up with more than 200 functions to be authorized or
not. Labeling groups, roles and functions might be quite a task, but it is very worthwhile, espe-
cially when we compare it to the use of a printed (or screen-displayable) catalogue.

The biggest difficulties arise in conjunction with the awkward but necessary DVDC’s. The pro-
grams do not know the meaning of the data values: they don’t have to. But the administrators bet-
ter know what they mean, or at least some other person who requests the changes. A good AC
system will include descriptions of the type of variable or data item associated to them. Since an-
other problem consists in preventing invalid values, especially contradictory values of DVDC’s –
a matter that poses some interesting program design questions – the SW provided for such up-
dates has to be perfect in this sense. For these and several other reasons it might be a good idea to
use existing SW instead of designing, coding and debugging your own. A good AC system for a
large IS is not only delicate, it’s a lot of work!

Conclusions
The method proposed may arouse the interest of students in this topic, which traditionally is only
covered very slightly. Teachers know that some ideas are hard to transmit, mainly due to different
attitudes toward the subject. We hope that other researchers and teachers will add to our sugges-
tions. Many topics were not included in the paper though they have been the object of a lot of
research. How to implement some of these security devices in modern systems, where users have
access to the data coding their own inquiries and updates, and with the ever increasing flexibility
and mobility of systems and the access to its data, should be a fascinating subject to many stu-
dents in the IT field. We do not provide many references since this is not the purpose of this pa-
per.

One of the main topics of our paper is the inclusion of privileges or prohibitions which depend on
some value of a data item, or perhaps a variable (it could be the name of a terminal, the time of
day or even the weather conditions.) The term context constraints has recently been used in this
sense. One could easily say that in most instances, the need for this type of constraint is very
closely associated to the functionality of the system, rather than to security considerations. We
heartily agree with this argument, but also recognize the danger of allowing the application to
handle all such situations, since we are always concerned about the power or potential ways the
developers of a system may have or plan to violate protection devices or validations of the system
in their benefit.

Let us state this from a different point of view: the owners of the system – as we like to call those
who will suffer directly from malfunctions or violations – should protect themselves as much as
possible from insiders and IT specialists. By increasing the functions performed by an AC sub-
system and controlling the quality and confidentiality of this component they may achieve a sig-
nificant reduction of certain risks. But who will protect the system which protects the AC compo-
nents of a system? In the typical database protection, another database is used to store the privi-
leges or constraints; this has to be protected against unauthorized updates, of course, and usually
the same DBA (database administrator) will perform these functions, which sheds some light on
our concern about it.

We recommend using third party SW for the security aspects of a system. For example, our own
design of such components is not only totally secret, meaning nobody knows the entire scheme,
much less the details of the algorithms used to scramble texts, but also personalized so that own-
ing a copy of the SW will not enable you to attempt – even with great computational effort – to
violate the system somewhere else.

Teaching System Access Control

154 154

References
Hiemstra, J. (2004). Access control models. Retrieved November 4, 2004 from

http://www.techexams.net/technotes/securityplus/mac_dac_rbac.shtml

Maciaszek, L. A. & Owoc, M. L. (2001). Designing application authorizations. Proceedings of the 2001
Informing Science Conference, June 19-22, 2001.

Neumann, G. & Strembeck, M. (2003). An approach to engineer and enforce context constraints in an
RBAC environment. Proceedings of the 8th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT), Como, Italy, June, 2003

Nitsche, U., Holbein, R., Morger, O., & Teufel, S. (1998). Realization of a context-dependent access con-
trol mechanism on a commercial platform. Proceedings of the 14th International Information Security
Conference (IFIP/Sec'98, part of the 15th IFIP World Computer Congress) (Vienna/Budapest, Aus-
tria/Hungary, 1998), Austrian Computer Society, Vienna, pp. 160-170.

Osborn, S., Sandhu, R. & Munawer, Q. (2000). Configuring role based access control to enforce mandatory
and discretionary access control policies. ACM Transactions on Information and System Security, 3(2),
85-106.

Appendix
In order to provide a guideline towards the implementation of the model, we provide the design
of the tables. This in no way conveys an acceptance of this as a good way to do things, since we
never use such structures when some amount of secrecy is involved. The model we actually in-
clude in our toolset will be available in August 2005 on our “Mopsite” (now in the process of re-
location, where MOP stands for “My Own Publishing site”, is a computer software we devel-
oped). The model is based on a mixture of database tables and random files, which we consider
better for such purposes though they imply more programming and design loads. Interested read-
ers should get in touch with the author who will provide the exact name of the site.

We feel we should warn the reader that the diagrams of Figures 2 and 3 in the paper – which were
kept simple for the benefit of making them less awkward – do not correspond to this model. This
should be obvious since the “entity” DVDC appears several times in the diagrams, as we pointed
out in Figure 2.

An Implementation of the Model Using a Relational Database
Figure 4 shows a possible set of relational database tables which might be considered for an im-
plementation of the model.

Just in case, we will comment briefly on each table, and shall seize the opportunity to indicate
other data items (fields, columns) which must or might be included.

USERS: every user will be associated to a unique “id” (this may or may not be a numerical item)
and we like to provide him with a “Nickname”. Thus he can sign in either with his id or keying in
the nickname, which he picked out himself. Additionally, we will want to store some information
about the way the user will prove he is the one who is starting a session, so we add a field (or
more than one) to store whatever information we will need. Of the course the best known would
be a password, but questions and answers, the name of a file which contains a voice-print, finger-
print or other biometrical data may be stored. Naturally all these items should be stored in some
very adequately scrambled manner. We usually add what we call an AUDIT field, where we in-
clude a number which is obtained by performing some calculations (or other algorithms) on sensi-
tive data so as to detect any non-authorized changes.

http://www.techexams.net/technotes/securityplus/mac_dac_rbac.shtml

 Bauer Mengelberg

 155

Optionally, we may add options (the language he prefers, if he wants to be treated on a first name
basis or not, if he wants to use pull down menus or not, whatever the system designers choose to
include.) The user’s name, address or place of work and many other information items may or
should be added, but they play no real part in our access control functions.

GROUPS: we store the group number (remember the AC-functions are introduced as members of
one of the groups.) If a system should not need such groups, the group number 1 (the only one,
alas) is used. A label is useful, of course, in order to guide those that will assign functions, and
later the administrators or whoever assigns privileges to users and avoid having to refer to notes.

As we pointed out, the use of roles associated with every group is optional, so we include a field
“Uses_roles” (typically a True-False field) to indicate precisely that. As you already know, a
value of FALSE (indicating no roles will be used in this group) means that users will be assigned
their privileges for this group one by one (every user individually.)

GROUPFUNCTION. Remember function numbers are nested within their groups. Again we add
a label or function name to serve as a reference when assigning authorizations to users for the
function.

GROUPROLE: For each group, we define ROLES. We just store a label or role’s name, remind-
ing you that this role is used only for this particular group. Please see USERGROUP for more
detail.

USERGROUP: we will include a record (row of the table) for every group for which the user is
authorized to use at least one of the group’s functions. If that group “uses roles”, we will indicate
the user’s ROLE in that particular group. At this point things start getting confused, and we rec-

Figure 4 A relational database implementation of the model

Teaching System Access Control

156 156

ommend referring to the diagram presented in Figure 3 (do not use Figure 2, since it has NO
ROLES!) This should also help you realize a user “plays” a unique role in every group.

AUTHORIZATIONS: at last we arrive at this one, which in many access control models seems to
be the only table (when combined with the user.) It will specify the functions for which a user is
authorized, but in a somewhat awkward way. First we provide the function, preceded by its group
since the function number does not make sense by itself. Then we say: if there are roles in the
group, the permit is assigned to the role (and therefore, to every user of that role in that group). If
not, we will include a user-id and assign the permit to that user.

In the past we used the “prohibition by absence” way of indicating authorizations, thus saving a
field. We have long ago adopted the criterion of including an indicator (yes-no) to indicate that
the user (or role) can use the particular function. Of course everybody will implement this the
way he likes better, or more frequently, in a manner with which he is familiar as well as asking
that it works.

DVDC’s: here we include all the Data Value Dependent Constraints. The large key has an advan-
tage (there are no other fields!) but of course requires explanation, especially since we never ex-
pect people – much less students - to remember what we have said or written.

This way of storing the constraints allows all kinds of combinations. You could for example in-
clude a constraint that one particular user can only use a function of a group (any one of them) if
the value of a particular variable is equal to his NICKNAME. Or you could bar a role from a
function if the value of another variable were not “TODAY”.

The only mandatory data, besides the ALLOW_PROHIBIT field is the GROUP NUMBER. This
was imposed by the model’s creator, since we could actually allow “0” for that field, meaning
any. But this in turn would imply assigning a particular user, since roles do not make sense with-
out confining them to one group (mind you, in OUR model, not in other ones you might encoun-
ter elsewhere.)

Look at the key, and imagine that Function, Role and user-id may be “null” (we use a zero or
blanks, but you can adapt this to your DBMS.) Function 0 of course means “all functions of the
group”.

Now let’s consider the other fields of the key. ALLOW_PROHIBIT is the type of data item
which has made this author extremely unpopular amongst his programmers, since they tend to
have difficulty working this way, though its use is extensive in modern computing, for example in
the many include-or-exclude facilities of software products. If we provide a DATA VALUE and
indicate a “P” (prohibit, watch the initial, since you might think of permission) then the user (or
users of the role) will not be able to use the function or functions referred to by this constraint for
that data value. On the other hand, if this field has the value “A”, the opposite is true: he has been
granted specific permission for this data value. At first glance, or even at some subsequent super-
ficial ones, this constraint seems to be “obviously redundant” since should it be absent, the user
could use the function anyway. However, the presence of an “A” (authorize) constraint has ex-
actly the opposite effect: it will exclude the user’s ability to use the function for other values.

We have mentioned in the paper that you can include several data values for the same key (mean-
ing the other items of the main key). You may “of course” NOT include a “P” and “A” constraint
applicable to the same user-function combination, even though may not be immediately obvious
by the keys. The reason you may not do this is left to the reader.

Finally, we may use “patterns” instead of data-values. Suppose you are working in a store, and
the owner does not wish you (user-id number 12345) to mess around with his copper pipes. All
pipes have a code that starts with “PI” followed by a number, and then end with the MATERIAL

 Bauer Mengelberg

 157

used to manufacture them (copper, plastic, whatever.) The copper ones all end with “CU”. We
would include a constraint (please suppose there are 3 groups, but you only have to do with func-
tions of group 2).

GROUP: 2 FUNCTION: 0

ROLE: 0 USER-ID: 12345

ALLOW_PERMIT: “P”

Data-value: “PI*CU” where * stands for a string of characters of any length.

Should he include plastic bags as well, he would add another constraint where the only difference
would be data-value “PLABAG” supposing this is what they call them.

Note that this means that for any function you “have” (before checking for a DVDC, the system
will find out if you can use a particular function of the system) you will be allowed to use it for
any other data value, provided there is not another such constraint active.

We say this to make you think a bit. You may not include an “A” type constraint for the user,
since doing so will allow all other values, which will be inconsistent with the prohibition you just
introduced via the “P” constraints. Let me point out that this transforms the interfaces needed to
update (include) the DVDC’s into quite interesting design problems.

A comment on the database design: we have already stated that we do not like this schema very
much, not only because it does not conform to any standards at all. Actually we use “vectors” to
completely eliminate any semblance of normalization. Let us describe but one such string of val-
ues. Instead of creating a record or row for each combination of USER and GROUP (as in our
model shown above) we use a field which contains a string of digits, or if necessary, of numbers.
Each one represents the ROLE which the user has in that group. We actually include this string in
the USER entity. Let me give you an example since after reading this I discovered a) I did not
understand what it meant, and b) I could not explain it better.

Suppose your system uses 18 groups, and the greatest role number you use is 14. (I don’t like that
many groups myself, but YOU created it.) Then the user-group-role string will look something
like that:

User-group-role = “030600001300000707030200000402050000”

 Refers to group 1 2 3 4 5 6 7 8 ….

You may separate this into 18 2-digit numbers. The meaning will be group 1: role 3, group 2:
role 6, groups 3 and 4, not authorized, Group 5: role 13.

Then group number to which the roles refer are pointed out below for our ease. Of course this is
not part of the data we would store.

In the specific problem of storing DVDC’s, we usually use vectors or we concatenate several val-
ues with a separator. Neither is a good idea if you want to avoid programming and confusion, but
both are very good ways to avoid huge tables if you have a very large system, with lots of con-
straints. The first time I needed such a model was in an Accounting System where almost every
user had all kinds of constraints, and even the use of patterns did not avoid the presence of several
tens of thousands of constraints. Oh, we forgot to mention, the users (actually a set of administra-
tors of the accounting data) introduced these constraints themselves. Believe us they did not know
or care how we stored them, but the machine did, and thanked us profusely via excellent perform-
ance.

Teaching System Access Control

158 158

Biography
John Bauer Mengelberg, after obtaining a degree in Mathematics at
the Universidad de Buenos Aires, Argentina, got a PhD in Statistics
and Operations Research at the University of Wisconsin, at Madison,
where he also taught courses in the area of Stochastic Programming.
He has since worked in Mexico, where besides teaching at the Colegio
de Postgraduados, a school primarily involved in the field of
Agronomy but which has departments of Statistics and of Applied
Computing, he has held several positions, always connected with the
field of Information Systems, in which he has also been a consultant all
his professioinal life. He is primarily conerned with the subject of
“systems that work”, a concept he has extended to signify that they
work even in abnormal circumstances. He has created and

implemented many computer packages, and is currently working on several software products
involved with publishing papers or books in the electronic media, and what he calls subsetting in
very large data collections. He has often complained he has to work by himself, and his main
interest in attending conferences seems to consist in finding ways to change this.

