
Issues in Informing Science and Information Technology

A Web Services-Oriented Approach to
Unlock Information

Youcef Baghdadi
Sultan Qaboos University, Al-Khod, Oman

ybaghdadi@squ.edu.om

Abstract
This work proposes to use Web services to turn information into actions by leveraging and
unlocking the informational assets of an organization. Indeed, Web services allow cost-
effective composition and re-engineering of business processes because of their ability to
connect applications, systems, and organization partners through the Internet-based standards
(XML, SOAP, UDDI). The work consists of developing a process to generate interfaces to
the knowledge in terms of information an organization possesses. These interfaces, imple-
mented as Web services, are callable through the Internet. The proposed process is based on a
new concept called factual dependency. Factual dependencies allow aggregations of attributes
describing business objects and coordination artifacts that are affected by the same business
events. Each resulting aggregation leads to a lowest level of granularity Web services. These
Web services are then registered in a private or public UDDI to be discovered and (re)used at
request to compose or re-engineer any internal or external business process. Unlike the ap-
proaches and tools that generate, in a spontaneous way or on a case-by-case basis, Web ser-
vices from the complex and redundant elements of the information system, the proposed
process generates Web services for the business objects and coordination artifacts as identi-
fied at the highest abstraction level of a business model. Indeed, the elements of the highest
abstraction level that is the universe of discourse are unique and not redundant. The unique-
ness and non-redundancy allows a generation, in a top-down-incremental approach with
fewer analysts’ intuition, of a comprehensive set of Web services reflecting the actual and the
potential activities of the organization.

Keywords. Leverage and Unlocking Informational Assets, Factual Dependency, Web Ser-
vices Generation, Integration, Business Process Composition and Re-engineering, Dynamic
e-Business

Introduction
Web services, due to their ability in cost-effectively connecting applications, systems and
partners, are leading to major change to business processes (e.g., improvement, re-
engineering, composition, e-business and B2B). They are expected to effectively enable dy-
namic e-business (Maruyama, 2002). This requires IT organizations to evaluate their systems

architectures and determine how
they will deliver Web services
(Chen, 2003). However, the de-
ployment of Web services is still
hindered by some technical and
methodological issues. Technical
issues are related to security,
availability and performance.

Material published as part of this journal, either on-line or in print,
is copyrighted by Informing Science. Permission to make digital or
paper copy of part or all of these works for personal or classroom
use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first page.
It is permissible to abstract these works so long as credit is given.
To copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org

mailto:ybaghdadi@squ.edu.om

A Web Services-Oriented Approach to Unlock Information

586

While methodological issues concern with approaches, processes and methods to deploy Web
services. This work deals with approaches of identifying, designing, implementing, and de-
ploying Web services. Indeed, we still lack a coherent framework that allows guidance to-
wards a method (including process, models and tools) to deploy such a revolutionary tech-
nology (Box, 2003). There are a number of potential approaches (e.g., top down, bottom up,
incremental) that can be used to deploy Web services. However, major vendors use generally
a bottom up approach (and to a less extend an incremental approach) that consists of map-
ping/wrapping existing applications, components or classes into Web services. The genera-
tion approach is generally performed through two steps. The first step consists of generating a
callable interface of a component. The callable interface is defined in a Web services defini-
tion language (WSDL) file (similar to CORBA IDL file). For instance tools such as wsdlgen
(http://longhorn.msdn.microsoft.com/lhsdk/indigo/conwsdlgentool.aspx) and GLUE
(http://www.webmethods.com/docs/glue/guide/index.html) are used to generate Web services
interface from existing Java classes. The second step consists of generating, for each WSDL
file, the portion of the code that is used by the client applications to invoke the Web services.
Tools such as Axis (http://ws.apache.org/axis), or WSIF (Web Service Invocation Frame-
work: http://ws.apache.org/wsif/) are used to generate a stub (proxy) code from a WSDL file.
That is, Web services are generally deployed:

• In ad-hoc, and spontaneous way, which makes them brittle (Altman, 2003).

• For a limited category of services (e.g., xMethods: http://www.xmethods.net).

• For tests, tutorials, etc.

Therefore, this kind of a case-by-case basis approach yields Web services that are not fully
potential and useful. Moreover, the generated Web services are IT-perspective oriented.
There is a lack of framework, or guidance to deploy a comprehensive and multipurpose set of
fully useful and potential Web services. That is, Web services that are used for: interfacing
legacy systems and components, integrating applications, B2B integration, and dynamic e-
business.

This paper proposes a process to generate a comprehensive set of Web service from the
knowledge an organization has on its elements at the highest-level abstraction level of a busi-
ness model that is the universe of discourse. This knowledge is the information related to two
types of elements: (i) the unchangeable and perpetual business objects, which are mainly
products/services, raw material, parts, customers, accounts, and partners/suppliers; and (ii)
the coordination artifacts representing the state of the business processes. Indeed, elements
identified at the universe of discourse are sound and complete. That is: (a) any formal knowl-
edge (information or processes) is derived from these elements; (b) these elements trigger the
relevant business events or are affected by business events to which the organization is sensi-
tive. For instances: the business event ‘shipment’ is triggered by the a state ‘accepted order’
of the coordination artifact ‘portfolio’ used to coordinate the ‘order entry’ business process.
While the business event ‘customer order’ affects the balance of the business object ‘cus-
tomer’. Each business event involves many operations. For instance, the business event ‘cus-
tomer order’ involves operations such as ‘keying order’, ‘keying credit card number’, ‘trans-
ferring credit card’, ‘requesting payment’, and so on. The chain of operations forms a busi-
ness process (e.g., payment processing, fulfillment).

The process is based on a concept we introduce and call factual dependency, which we define
as: “two attributes X and Y describing business objects or coordination artifacts are factually
dependent if they are concerned by the same business event”. In fact, the concept of factual
dependency allows aggregation of attributes concerned by any create, retrieve, update or de-
lete (CRUD) operation fired by the business event. These types of operations constitute a

 Baghdadi

 587

framework to identify the lowest level of granularity Web services we can master with least
ambiguity. Indeed, each distinct operation is readily specified in terms of input/output pa-
rameters, which eases the generation of Web services and their respective WSDL. That is, the
Web services messages encoded in XML and conveyed by SOAP.

The process allows us to interface the relevant element of information as Web services. These
Web services are then registered in a public or private UDDI to be dynamically discovered,
invoked and used in the composition or re-engineering of internal as well as external business
processes. Accordingly, we can dynamically build business processes at request by compos-
ing the existing Web services. This way, any unlocked information is turned into actions.

The next section presents the state of art and related work to interfacing and integration tech-
nology including approaches to deploy Web services. Section 3 introduces the concepts used
in the generation process namely: factual dependency, business model, universe of discourse,
information system, business object, business process, business event and coordination arti-
fact. Section 4 develops the steps of the proposed process to generate and compose Web ser-
vices. Finally, a conclusion section presents the results and further developments and issues.

Interfacing and Integration Approaches
The problem of interfacing and integration deals with technology that makes heterogeneous
databases and applications “speaking” different languages interoperable (e.g., COBRA,
DCOM, RMI), e-services and SOA model, to Web services and their composition in order to
internally or externally integrate applications involved in business processes. Each technol-
ogy is concerned with a specific aspect of the problem.

Traditional Integration Approaches
Heterogeneous databases (Batini, Lenzirini, & Navathe, 1986) deal with approaches to shar-
ing data among databases designed with different data models, and implemented with differ-
ent DBMS (Network, relational or object-oriented DBMS). It deals with heterogeneity and
interoperability of structured data.

Object-oriented approach makes applications interoperable provided that we install a bus as
mechanism of discovery and invocation. Despite the fact that they allow tightly coupling
because they are built on their own technology (CORBA objects communicate using IIOP,
DCOM heavily depends on Windows platform, RMI depends on Java Platforms), they yield
great returns and quality productivity (Chen, 2003). However, this object-oriented model was
designed mostly from an IT perspective in order to help IT operate more effectively (Wong,
2001). In the last years, the model has been extended with the introduction of the Service-
Oriented-Architecture (SOA) model, which helps to separate business intent from IT imple-
mentation. This allows sharing business services across the enterprise and to support B2B
initiatives. For instance, the e-services model is composed of a set of business services, a set
of business components, a set of IT elements, and a set of business rules (Wong, 2001).

Web services come in the scope of SOA architecture. Unlike RPC, CORBA, DCOM and
RMI, which require tight communication, Web services are built on loosely connected Web
model.

Web services Integration Approaches
There exist a number of definitions of Web services. Business-oriented definitions focus on
their role in timely connecting partners with reduced cost (Box, 2003; Maruyama, 2002).
While, technology-based definitions focus on the standards on which they rely such as XML,

A Web Services-Oriented Approach to Unlock Information

588

SOAP, WSDL, UDDI (Aoyama, Weerawarana, Maruyama, Szyperski, Sullivan, & Lea 2002;
Ethan, 2002; Kreger, 2001), or BPEL4WS (Jablonski, 2003; Leyman, 2002). W3C/WS Ar-
chitecture Group defines Web services as “software system identified by URI, whose public
interface and bindings are defined and described using XML. Other software can discover its
definition. These software may then interact in a manner described by its definition using
XML-based messages conveyed by Internet protocols” (Austin, Barbir, Ferris, & Garg,
2002).

There are a number of potential approaches (e.g., top down, bottom up, incremental, in-out-
incremental) that may be adopted to develop Web services. However, tools developed by ma-
jor vendors and adopters of Web services are implicitly a bottom up, and to a less extend an
incremental approach.

1. A bottom up and incremental approach consist of:

• Generating Web services from existing classes, components or stored proce-
dures or wrapping existing applications. For instance, having an existing Java
class, tools such as GLUE and wsdlgen generate a Web services interface for
this class. The interface is described using WSDL standard and stored in a
WSDL file (similar to CORBA IDL file) accessible as Web resource.

• Once the interface is described, tools such as Axis, Glue, and WSIF generate
a stub (proxy) code that is a portion of code to be used by any client applica-
tion to invoke the Web services.

The bottom up approach as actually used to deploy Web services looks like a kind of a case-
by-case basis, ad-hoc, or a spontaneous way. The resulting Web services are depending on
specific technology, or limited to a certain category of services such as those found in
xMethods (http://www.xmethods.net). Moreover, this approach lets more intuition to the ana-
lysts instead of assisting them. Deploying Web services in this way yields Web services that
are brittle (Altman, 2003), ambiguous and not fully useful.

2. A top down approach consists of:

• Identifying the potential services, which are candidate to be Web services.

• Defining their respective WSDL files.

• Providing stub/skeleton code to access the services.

• Composing applications and business processes using the specified Web ser-
vices.

A top down approach yields a comprehensive set of Web services that are independent of any
developing technology unless it is a standard.

3. In-out-incremental approach (Chen, 2003) consists of an internal implementation of
Web services to be then expanded outward as standards and technologies mature, that is:

• Deploy first Web services internally to improve operational efficiencies and
gain a unified view of complex business processes. It is easy to ensure that
standards are available.

• After Web services are successfully utilized internally, organization can ex-
tend these services to customersThe approach described in this paper is a

combination of a top down and an in-out incremental approach. It is in touch with the e-
services and SOA model. However, it is mainly based on the concept of factual dependency
that allows aggregation of attributes describing the business objects and coordination artifacts

 Baghdadi

 589

as identified at the highest abstraction of a business model. This approach allows identifica-
tion, a definition and a specification of Web services that are not intuitive to the analyst for
less ambiguity. Moreover, the Web services are specified independently of any technology.

Factual Dependency
Our approach to turn data into business processes through Web services is based on the con-
cept of factual dependency between the attributes that describe the elements of the universe
of discourse. This section introduces firstly the concepts used to model a business, which are
universe of discourse, information system, business object, coordination artifact, business
event and business process; then the concept of factual dependency; and finally, the process
to generate Web services.

Business Model
A business is an open system that seeks some goals or responds to events. There exist several
models of business (Zackman, 1996). We consider a business as composed of the following
components of:

1. Business Events, Input, and Output.

2. Production System.

3. Logistic System.

4. Partners.

5. Business Management/Control System.

6. Information System.

Elements of the Universe of Discourse
The business events, the input/output, the production system, the logistic system and the part-
ners are parts of the universe of discourse (or the reality). The universe of discourse contains
four types of elements:

1. Business objects are perpetual tangible as well as intangible elements. These ele-
ments are the managerial resources on which an organization focuses. They are real
and unique. For example, raw material products/services, parts, are the main tangible
elements, while the accounts (e.g., customer account, bank account) are intangible
elements.

2. Business Processes transform business event/input into output. The processes are the
decompositions of the value chain (Haag, 1999). Each process has a life cycle i.e. a
sequence of activities fired by the business events.

3. Coordination Artifacts. They are managerial or organizational artifacts that represent
the relevant states of the business processes. Indeed, decomposition of the value
chain requires artifacts to coordinate and to interface the business processes.

4. Business events are identified in space, and time. There are two types of business
events. External and internal business events. External business events effect busi-
ness objects and coordination artifacts by changing their states (e.g., the business
event ‘customer order’ adds new order and changes the balance of the customer),
while internal business event are triggered by the state of business objects or coordi-
nation artifacts (e.g., the business event ‘shipment’).

A Web Services-Oriented Approach to Unlock Information

590

Business objects, coordination artifacts, business processes and business events are differ-
ently represented in the information system. The representation is not unique and consistent.

Elements of the Information System
The information system is a technology-based representation of the elements of the universe
of discourse that are business objects, business processes and coordination artifacts. This rep-
resentation consists mainly of data, applications and integration middleware. Hence, it should
contain only one representation of each element identified in the universe of discourse. How-
ever, the actual information system contains different representations of the same element.
This is mainly due to three factors: (i) our different intuitions and perceptions of the reality,
(ii) the different languages we use to communicate, and (iii) the variety of abundant imple-
menting technologies. For instance, the business object ‘customer’ may be perceived as an
account (for the accounting) and a partner (for the management). A track of this perception is
kept in different database tables, flat files or XML documents. Similarly, a business process
may be implemented differently (e.g. application, component, class, procedure or manual).
This breaking in the representation requires integration mechanisms (e.g., middleware, ERP,
EAI, B2B) for multiple reasons namely: (a) the continual need of reconstructing the entire
representation, b) some processes involve more than one tier, and (c) the need to interact in
real-time or (near real-time) with partners.

Therefore, we have two abstraction levels:

1. The universe of discourses where the elements are real and unique. That is, we have
only the original of the elements there is no clone. If we damage or lose an element,
we cannot reconstitute it.

2. The information system where the elements have various representations/images.
That is, we may have various technology-based copies of the same element. If we
damage or lose the copy, we can reconstitute it

It is obvious that the information system is more complex and ambiguous than the universe of
discourse as the same element of the latter has various heterogeneous images in the informa-
tion system.

Therefore, integrating elements in the information system is more complex. It is mostly influ-
enced by IT rather than by some business perspectives. This is especially more evident in the
case of e-business, where new business processes are more and more innovated, re-
engineered, generated or completely built from scratch for some specific business events.

An approach to dynamically compose business processes at request by composing them from
comprehensive ready-to-use services is required. We propose a process based on a new con-
cept that is factual dependency, which we detail in the next section.

Factual Dependency Definition
A factual dependency is a dynamic-oriented constraint between two attributes X and Y de-
scribing an element of the universe of discourse (business object or coordination artifact).
The constraint stipulates that two values x of X and y of Y are in-
serted/update/deleted/retrieved at the same time when a business event occurs.

The concept of factually dependency allows an aggregation of attributes describing tangible
as well as intangible elements of the universe of discourse with respect to the business events
they undergo or they trigger. The attributes having their values created, deleted, updated or

 Baghdadi

 591

retrieved by the same business event are grouped together to be further interfaced by the same
interface.

Formally, an attribute Y is factually dependent on an attribute X if the attributes X and Y are
concerned with the same create, update, retrieve or delete operation.

A factual dependency between attributes X and Y is denoted X � Y to keep the similarity
with the concept functional dependency used in the relational database model (Codd, 1990).

Table 1 shows the following factual dependencies assuming that the business object ‘cus-
tomer’, element of the universe of discourse, is described by the attributes: id, name, address,
balance, and mode of payment.

• FD 1: {name, address, balance, mode of payment} is used for new customer.

• FD 2: {id, balance} is used to update the balance when the business event
‘customer order’ occurs (the balance is increased with the total amount of the
order). It is also used when the business event ‘customer pays’ (the balance is
decreased with the paid amount).

• FD 3 {id, balance} is used to inquiry the balance in order to trigger a busi-
ness event.

• FD 4: {id, address} is used to update the customer address when the event
‘customer changes address’ occurs.

Table 1: Some factual dependencies that aggregate the attributes describing a customer

Factual Dependency Attribute

CRUD Operation

Id Name Address Balance mop

FD 1 Create

X X X

X X

FD 2 Update X X
FD 3 Retrieve X X
FD 4 Update X X

In a nutshell, each combination of attributes may be regarded as an operation. This is particu-
larly true for the retrieve operation where each project operation (in the sense of the relational
algebra) on a set of attributes is a retrieve operation. Moreover, a factual dependency as ag-
gregation generates several interfaces (e.g., FD 2). Therefore, criteria to select relevant and
formalized combinations are required. We propose to use first some rules and the relevant the
business events as defined in the universe of discourse (e.g., customer order, payment).

Rules for Factual Dependencies
The concept of factual dependency is different from the well-known concept of functional
dependency used in the relational schema design (Codd, 1990). Therefore, not all the infer-
ence rules used for the functional dependency are applicable for the factual dependency.
However, factual dependencies respect certain rules, which are:

Rule1: Reflexive

X � Y if Y is strictly included in X. Each attribute is aggregated with itself or a part of itself.
This is trivial factual dependency.

Rule 2: Commutative

X � Y then Y � X.

A Web Services-Oriented Approach to Unlock Information

592

If X � Y, that is the attributes X and Y are concerned by a CRUD operation ‘o1’ then Y �
X, that is Y and X are concerned by the same operation ‘o1’.

Rule 3: Transitive

X � Y and Y � Z then X � Z

When the sets {X, Y} and {Y, Z} are concerned by the same operation ‘o1’, then set {X, Z}
is also concerned by that operation ‘o1’.

Rule 4: Augmentation

X � Y and X � Z then X � {Y, Z}

If the of attributes {X, Y} and the set {X, Z} are affected by the same operation ‘o1’ then the
set {X, Y, Z} is affected by the operation ‘o1’. For instance {Id, name} and {Id, address} are
affected by the operation ‘add new customer’ then {Id, name, address} is affected by this
same operation.

Rule 5: Multiplicity of interpretation of factual dependency

Two attributes X and Y may be involved in a set with different meanings. That is X � Y
may have different interpretations. For instance {Id, balance} may generate more than one
interface. Indeed, we may generate an interface {Id, balance} to query the balance, and a sec-
ond interface {Id, balance} to update the balance. That is, we may have the same aggregation
of attributes, which may be concerned by many distinct CRUD operations. Each operation
corresponds to a business event. Theoretically, each combination of attributes is a factual de-
pendency that leads to an operation. However, not all the factual dependencies are relevant.
We will consider only those corresponding to the actual business events as described in the
universe of discourse.

Relationship of Factual Dependency to Business Event
A CRUD operation is applied only when a business event occurs in the universe of discourse.
We update (create, modify or delete) the states of the elements of the universe of discourse
when business events occur in this universe. Similarly, we attempt to retrieve information
related to business object or state of the coordination artifacts in order to trigger events. How-
ever, there is a multitude of business events that occur in the universe of discourse. We con-
sider only the events that affect the business objects or the state of the coordination artifacts.
That is, there exist a relationship of business event to factual dependency (Figure 1). Business
events allow us to determine the aggregation of attributes they affect. Indeed, a business
event is captured as a value of attributes that it affects. For instance, a customer order is cap-
tured as a value <oid = 100, cid = 125, date = 12/12/12, item = 1250, quantity = 5>. Simi-
larly, a factual dependency, as aggregation of attributes, allows us to specify the potential
business events. Table 2 shows that the business event order is related to FD 1 {id, name, ad-
dress, balance payment} and FD 2 {id, balance}, while the factual dependency FD 2 {id, bal-
ance} is concerned with three business events (customer orders, customer pays and call cus-
tomer for payment}.

To validate the set of generated factual dependencies that will lead to Web services, we con-
front each factual dependency to an actual business event as shown in Table 2. For that pur-
pose, we proceed in a reverse manner. That is, we first generate a list of business events from
the set of factual in an automatic fashion. Indeed, factual dependencies are easier to specify as
aggregations attributes describing perpetual elements of the universe of discourse. While the
events are characterized by space and time making their perception and capture harder. Then

 Baghdadi

 593

we confront the generated list of business events to the actual business events as identified in
the universe of discourse.

Table 2: Factual dependencies and corresponding business events

FD Attribute

Operation

Id Name Address Balance Payment Events

FD 1 Create

X X X

X X Order

FD 2 Update X X Order
FD 2 Update X X Payment
FD 2 Retrieve X X Call for

Payment
FD 4 Update X X Change Ad-

dress

Web Services Generation
Web services provide a standard way for any user, through an application, to access the ele-
ments of the universe of the discourse. Indeed, once we keep track of a representation of the
element of the universe of discourse in a legacy database, a flat file or XML databases, we
can interface it provided we get the business events that affect it or are triggered by it. In fact,
the business event fires a set of operations. Each operation described in term of input /output
parameters is identified as interfaces that can be described using XML, and implemented as
Web services with respect to a specific technology (e.g., stored procedure in the case of the
relational database, class, application). The Web service in turn is accessed by any applica-
tion (e.g., Java application running on a Web server), which presents the information to the
end user. Therefore, the specification of the Web service can be generated from the set of
validated factual dependencies and business events.

To keep a very low level of granularity, each factual dependency leads to one-many CRUD
operations depending on the number of business events related to this factual dependency.
The operation will require input parameters/output parameters. In general an update operation
(create, update and delete) requires only input parameters. Whereas, a retrieve operation re-
quires input parameter (generally the identifier of the element of the universe of discourse)
and output parameters.

Table 3 shows an example of the Web services that may be generated by the factual depend-
encies FD 1, FD 2 and FD 4.

Factual Dependency Business Event
M:N

Figure 1. Relationship of Factual Dependency to Business Event.

A Web Services-Oriented Approach to Unlock Information

594

Table 3: Factual dependencies and corresponding Web services

FD Operation Web Service Input Parameters Output Parameters

FD 1 Create

New Customer name, address, balance =
0, mode of payment

FD 2 Update

Customer Order

name, order amount

FD 2 Update Customer Payment name, amount paid

FD 2 Inquiry Balance Inquiry

Id or name balance

FD 4 Update Mode of payment

Id, mode of payment

Process of Turning Data into Business Processes
The proposed process is based on the concept of factual dependency. It consists of:

Part 1: Turning Data into Web services
This part consists of the following five steps:

1. Selection of the business objects and coordination artifacts. That is, pick up the busi-
ness objects/coordination artifacts as described in the universe of discourse. Indeed,
working on the elements of the universe of discourses, rather than the elements of the
information system (more business perspective-oriented than IT perspective-oriented)
minimizes the analyst’s intuition and leads to less ambiguity in specifying the Web
services.

2. Description of the business objects and coordination artifacts. This consists of defin-
ing, in terms of attributes, what we expect to know (in terms of information) about
these business objects or coordination artifacts.

Steps 1 and 2 lead to a data dictionary where tangible as well as intangible elements of the
universe of discourse are statically described and defined.

3. Exhaustive list of factual dependencies. That is:

• Generation of all the factual dependencies by combining the attributes.

• Deduction of the relevant factual dependencies by confronting them to the
business events as they may occur in the universe of discourse.

• Specification of each factual dependency as a CRUD operation with a focus
on the input/output parameters.

• Implementation, in the information system, of the operations related to the
factual dependencies. This implementation may be a program, a stored pro-
cedure, a component, a class, Java Bean, etc.

4. Generation of Web services corresponding to these operations. This step is easy since
the operations are specified in term of input/output parameters. We can use a CASE
tool or any other tool at this stage to automatically generate the Web services.

5. Registration of the generated Web services. The resulting Web services are regis-
tered in a public or private registry and discovery artifact to be easily discovered.

 Baghdadi

 595

Pat 2: From Web services to Business Processes
This part consists of the following five steps:

1. Identification of the business event. From the universe of discourse, identify the rele-
vant business events such as ‘customer order’.

2. Description of the flow of the operations corresponding to the business event (or
business rules). Each business event fires a flow of operations. This flow begins with
the capture of the business event and ends by a production of an output. We can use
tools to model the flow (e.g. BPEL4WS).

3. Identification of the operations in terms of CRUD operations. The automated opera-
tion corresponds generally to a CRUD operation.

4. Matchmaking between the operations and the registered Web services.

5. Replace in the flow (BPEL4WS) the CRUD operations by their respective Web ser-
vices.

The part 2 of the process is fired by any new business event, in a B2B perspective, or when
re-engineering the existing business processes.

Conclusion
Different approaches and tools used for integration though Web services, excellent and de
facto standards that facilitate the integration, have been studied in this work. The study con-
cludes that the current approaches are more IT-oriented and therefore proposed from an IT
perspective not from the business perspective. That is, Web services are deployed from the
existing complex and IT-depending elements of the information systems, and in a kind of a
case-by-case basis, which makes the integration a very hard task. We proposed a top down
incremental approach to generate Web services, from the highest abstraction level (universe
of discourse) where the elements namely the business objects and the coordination artifacts
are easy to capture with less analyst intuition. The Web services are generated from validated
factual dependencies that are aggregations of attributes describing the elements of the uni-
verse of discourse. The validation is performed trough a confrontation to actual business
events.

The proposed approach allows a comprehensive set of useful and multipurpose Web services.

This is a significant issue nowadays where organizations are looking to sharing Web services
across the enterprise for dynamic e-business, and to support business-to-business integration,
which is more and more intensive and critical for a business survival.

We will develop after a global architecture and a supporting tool that allows organization to
really turn information into action by interfacing the informational asset through Web ser-
vices.

References
Aoyama, M., Weerawarana, S., Maruyama, H., Szyperski, C. A., Sullivan, K. J. & Lea, D. (2002).

Web services engineering: Promises and challenges. Proceedings of International Conference on
Software Engineering, 19-25.

Altman, R. (2003, July). The challenge of Web services. Business Integration Journal, 59-59.

Austin, D., Barbir, A., Ferris, C., & Garg, S. (2002). Web Services Architecture Requirements, W3C
Working Group Draft 14. Retrieved from http://www.w3.org/TR/2002/WD-wsa-reqs-20021114

http://www.webmethods.com/docs/glue/guide/index.html
http://ws.apache.org/axis
http://www.xmethods.net/
http://ws.apache.org/wsif/
http://www.alphaworks.ibm.com/tech/wsif
http://longhorn.msdn.microsoft.com/lhsdk/indigo/conwsdlgentool.aspx
http://www.eds.com/thought/thought_leadership_web_revolution.pdf
http://www.w3.org/TR/2002/WD-wsa-reqs-20021114

A Web Services-Oriented Approach to Unlock Information

596

Batini, C., Lenzirini, M., & Navathe, S.B., (1986). A comprehensive analysis of methodologies for
database schemas integration. ACM Computing Surveys, 18 (4), 322-364.

Box, B., (2003). The Web services revolution. Retrieved from
http://www.eds.com/thought/thought_leadership_web_revolution.pdf

Codd, E., (1990). Relational model for data management Version 2. Addison-Wesly.

Chen, M., Chen, A. K. N, & Shao, B. B. M. (2003). Implications and impacts of Web services to elec-
tronic commerce research and practices. Journal of e-Commerce, 4 (4), 128-139.

Ethan, C., (2002). Web services essentials: Distributed applications with XML-RPC, SOAP, UDDI &
WSDL. O'Reilly & Associates.

Haag, S., Cummings, M., & Dawkins, J., (1999). Management information system for information
age. Irwin Mac Graw Hill.

http://longhorn.msdn.microsoft.com/lhsdk/indigo/conwsdlgentool.aspx

http://www.alphaworks.ibm.com/tech/wsif

http://ws.apache.org/wsif/

http://www.xmethods.net

http://ws.apache.org/axis

http://www.webmethods.com/docs/glue/guide/index.html

Jablonski, S., & Petrov, I., (2003). Web services, workflow and metadata management as the means in
the electronic collaboration era. Proceedings of ICEIS 2003, Angers/France.

Kreger, H. (2001). Web services: Conceptual architecture (WSCA 1.0). IBM Software Group.

Leyman, F., & Roller D. (2002). A quick overview of BPEL4WS. IBM Developer Work.

Maruyama, H. (2002). New trends in e-Business: From B2B to Web services. New Generation Com-
puting, 20, 125-139.

Zackman, J.A., (1996). Concepts of the framework for enterprise architecture. Los Angeles, CA:
Zackam International.

Wong L. (2001). e-Services: A key component for success. eAI Journal, (March), 18-25

Biography
Dr. Youcef Baghdadi has a long and extensive experience in teaching undergraduate and
graduates. His experience includes databases, information systems, cooperative information
systems, Internet computing and e-commerce. His current research is oriented towards meth-
ods that bridge the gap between business and IT. It includes methods and processes to de-
velop interacting information systems, Web applications, B2B e-commerce, and Web ser-
vices.

