
Issues in Informing Science and Information Technology 

Teaching and Learning with BlueJ: an Evaluation 
of a Pedagogical Tool  

Kelsey Van Haaster and Dianne Hagan 
Monash University, Melbourne, Australia 

Kelsey.VanHaaster@infotech.monash.edu.au 
Dianne.Hagan@infotech.monash.edu.au 

Abstract 
BlueJ is a programming environment that has been used to teach object-oriented introductory 
programming since 1999 in two consecutive first year units at Monash University. An earlier 
evaluation of its effectiveness in helping students to learn OO programming in the first unit was 
inconclusive, although most students who participated in the study believed that it did help them 
to learn Java. It was hoped at that time that students would show positive effects of using BlueJ 
more in the second unit than in the first. This paper reports on a later evaluation study, when the 
BlueJ environment had become more stable and easier to install. It examines the reactions and 
results of students in the second of the two units. It also introduces a set of criteria for evaluating 
environments designed for novice programmers. 

Keywords: introductory programming, programming environment, BlueJ, Java, evaluation crite-
ria. 

Introduction 
The BlueJ programming environment (Kölling & Rosenberg, 1996) was designed and imple-
mented by Michael Kölling and John Rosenberg in order to improve the teaching and learning of 
introductory programming in an object-oriented style using Java as the implementation language. 
BlueJ gives students a graphical picture of the classes and objects in a system, allows students to 
interact with them directly, simplifies testing of methods and classes, and removes the necessity 
for much difficult and confusing Java code such as the main method in a class. 

An earlier paper (Hagan & Markham, 2000b) described the advantages of using BlueJ to teach 
Java to novice programmers, and the kinds of help offered to students, and reported on the results 
of an initial evaluation of the effectiveness of BlueJ. This evaluation was done during the first 
semester of the use of BlueJ, in 1999, when it was still a comparatively unstable Beta version and 
many students found its installation procedure complicated. That study found that, of the one-
third of students who participated in the study, most warmed to BlueJ during the semester after an 
initial period of frustration, and felt by the end of semester that BlueJ had been a help to them in 
learning Java. However, these self-selected students had significantly better results in the unit 

than students who did not participate 
in the study, and therefore it was felt 
that more evaluation was needed. 

This is a follow-up study to that first 
one. It examines the perceptions of 
students in the second of the two con-
secutive first year programming units, 
when they have become more experi-

Material published as part of this journal, either on-line or in print, 
is copyrighted by Informing Science. Permission to make digital or 
paper copy of part or all of these works for personal or classroom 
use is granted without fee provided that the copies are not made or 
distributed for profit or commercial advantage AND that copies 1) 
bear this notice in full and 2) give the full citation on the first page. 
It is permissible to abstract these works so long as credit is given. 
To copy in all other cases or to republish or to post on a server or 
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org   

mailto:Dianne.Hagan@infotech.monash.edu.au
mailto:Kelsey.VanHaaster@infotech.monash.edu.au


Teaching and Learning with BlueJ 

456 

enced in programming and in using BlueJ. It was hoped that, by this time, students would no 
longer confuse BlueJ and Java and would be able to appreciate the benefits that BlueJ offers. 

The Two First Year Programming Units 
The first of these two units focuses on the basics of object-oriented programming. It covers 
classes and objects; message passing; sequence, selection, and repetition; basic data types and 
some library classes; arrays of basic data types and objects; objects as attributes of other classes; 
and testing of classes and methods. As part of their assessment, students are required individually 
to write a program that uses six to eight interacting classes, including at least one that is supplied 
by the teaching staff. Examples of assignments that have been used include a board game, a video 
shop, a gift registry system and an online cinema ticketing system.  

Most students find this unit difficult and time consuming. This is partly because there is a great 
deal to learn, but also because it is their first semester at university. Many of them are disoriented 
for weeks, learning how the university system works, and not used to being expected to motivate 
themselves to work consistently on several different units. International students are adjusting to a 
different language and culture, finding accommodation, and generally concentrating on many 
other things besides learning to program. For these reasons, we offer a great deal of help with 
their programming units, as documented in Hagan & Markham (2000b). Student resources in-
clude lectures, discussion classes and lab sessions, a helpdesk staffed by tutors in the unit, avail-
ability of lecturers and tutors for personal contact by email and in person, and a unit website in-
cluding an anonymous feedback facility. The unit assessment consists of two unit tests during the 
semester, three stages of the assignment, and a final examination.  

At the end of the first semester, students are expected to be able to design and write small pro-
grams in Java, debug them, and test them properly. There is an emphasis on software engineering 
principles such as coding standards, test strategies and maintainability of programs. 

By the time students reach the second programming unit, they are expected to have settled into 
university life and know how to learn and motivate themselves. Those who are completely un-
suited to the course have probably left.  

This second unit moves on to more advanced object-oriented topics such as inheritance, abstract 
classes and polymorphism. Program design is covered in more detail, although there is a later unit 
in the course devoted to this. Data structures and algorithms are covered from an object-oriented 
perspective, i.e. students are taught to use the library classes rather than build their own data 
structures. This unit also covers more advanced Java topics such as exception handling, file han-
dling, and interfaces. Students are still given the same kinds of help as for the first unit, but are 
expected to do a large amount of reading as well.  

The assignment for this unit requires students to build a system that is considerably more exten-
sive than the one they wrote for the first unit. They must submit design documents including class 
diagrams and use case and CRC analyses of the system. They must implement and test the system 
thoroughly. They must also submit a report explaining what they have done and why. The final 
examination is online, and requires students to write and test a substantial program that incorpo-
rates most of the techniques introduced during the semester. 

Initial Evaluation of BlueJ 
The first evaluation of BlueJ was done during its first semester of use, in 1999 (Hagan & Mark-
ham, 2000b). After an initial survey to collect demographic information about the students, we 
used two surveys (one in the middle of semester and one at the end) to ascertain their perceptions 
of BlueJ and how much help they thought it was in learning Java. Most students had a positive 



 Van Haaster & Hagan 

 457 

shift in their perceptions of BlueJ during the semester. We also emailed a small sample of stu-
dents for more detailed comments during the semester.  

As this was the first semester we had used Java as the implementation language for first year pro-
gramming, we could not compare students' results in Java with and without BlueJ. As a general 
indication of whether we were on the right track, we looked at the overall results of the students, 
compared with the two previous years when C++ had been the implementation language in the 
same unit (see Table 1). 

It can be seen that the percentage of students achieving distinctions or high distinctions was about 
the same as the previous year, the percentage achieving a pass or credit had increased, and the 

percentage of fails had decreased. 

Subsequent Evaluation of BlueJ –  
Background and Rationale 

Information gathered during the first evaluation of BlueJ was used to inform the development of a 
production version of the tool, which was released for general use in late 2001. The results from 
the first study, whilst generally positive, clearly identified the extent to which the results were 
influenced by the problems inherent in the Beta version of the software and the lack of program-
ming experience of the participants. This first study indicated the need for further evaluation us-
ing a more complex evaluation model and a non-Beta version of the software (Hagan & Mark-
ham, 2000b). The evaluation of BlueJ that is the focus of this paper was intended to address this 
need and was conducted using a stable release version of the tool. The participants in the second 
study were enrolled in their second programming unit and therefore had more programming ex-
perience, and more experience using BlueJ, as did the staff who developed and taught the unit. 
The material in the second programming unit requires students to develop an understanding of 
more abstract object-oriented concepts; students are required to demonstrate their understanding 
of ideas such as inheritance and polymorphism, and use more complex programming techniques 
including dynamic data structures, exception handling and file and text input-output. These are 
exactly the kinds of concepts that tools such as BlueJ are intended to help with; therefore, it was 
felt that students completing their second programming unit might be in a better position to 
evaluate the tool itself than the group completing their first programming unit.  

The objective of using software visualisation techniques to teach programming is to promote an 
understanding of the concepts being taught ( Stasko, Dominigue, Brown, & Prince, 1998), 
(Gomez Henrïquez, 2001), (DeClue, 1996). To this end, the last thirty years have seen the devel-
opment of a large number of tools that employ these techniques to various extents. Some of the 
better known are BALSA-II (Brown, 1988) an algorithm animator and one of the earliest soft-

Table 1: Overall results in first semester programming unit 

 Number 
of Stu-
dents 

% High 

Distinction 

% Distinc-
tion 

% Credit % Pass % N 
(Fail) 

1997 (C++) 309 28 13 18 14 27 

1998 (C++) 338 26 9 17 19 29 

1999 (Java) 333 22 14 21 19 24 

 



Teaching and Learning with BlueJ 

458 

ware visualisation tools designed to run in student lab environments; Zeus, an algorithm anima-
tion environment developed at the DEC systems Research Centre (Brown, 1990); and Jeliot 2000 
(Levy, Ben-Ari, & Uronen, 2000), an application-based programming environment based on 
Jeliot, a web-based algorithm animator ( Haajanen, Pesonius, Sutinen, Tarhio, & Vanninen, 
1997). Probably the best known visual programming tool is Logo, which now offers a mature 
language and environment (Malfatti, 2001).  

Whilst these tools all use visualisation to support the understanding of algorithms and the flow of 
execution, many of them do not use commercially popular languages. Some require annotation or 
modification of source code in order to produce their visualisations. Tools that provide a fully 
integrated object-oriented programming environment, and which are designed to support the 
teaching process, are relatively few in number, and have not been extensively evaluated (Kölling 
& Rosenberg, 1996), (Jerding & Stasko, 1994). The evaluations that have been performed on vis-
ual tools to date have been conducted on prototype versions of tools over a short period of time. It 
has not been shown conclusively that software visualisation promotes a greater understanding of 
object-oriented concepts (Ben-Ari, 2001; Wiggins, 1998). 

Research Design 

Methodology 
The objective of the second evaluation of BlueJ was to investigate the effectiveness of BlueJ as a 
tool for teaching both principles and practice of object-oriented programming (OOP) to novice 
programming students. Several possible approaches were considered, and a descriptive study us-
ing survey research was selected as the most appropriate instrument for the study. Survey re-
search supported the collection of both qualitative and quantative data, and was considered to be 
the most effective way of collecting a broad range of responses.  

A detailed review of the related literature revealed that, whilst a number of taxonomies for the 
evaluation of software visualisation tools already existed, these were often designed to support 
the selection of a tool rather than the evaluation of a tool. Further, many of these taxonomies were 
either very general (Roman & Cox, 1993), or focussed on specific aspects of visual tools 
(Vanthienen & Poelmans, 1996). Only one of the taxonomies focussed on the use of software 
visualisation to support understanding in OOP (Jerding & Stasko, 1994), and only those taxono-
mies designed for the evaluation of commercial tools included criteria for evaluating the usability 
or accessibility of the tools. It was apparent that a need existed to develop a taxonomy that could 
be used for the evaluation of tools designed for use in an educational environment. 

The Development of an Interpretive Framework 
All the existing taxonomies described groups of criteria that should be met by visual tools. In all 
cases these criteria were organised by category. Each taxonomy, however, described different 
categories and different criteria within each category. Points of agreement existed throughout the 
taxonomies, but these were diffuse and there was little consistency in either the scope or descrip-
tion applied to each category and criterion. The process of preserving the commonalities between 
the various taxonomies, and identifying criteria that were not included, resulted in a three-part 
interpretive framework that could be used to evaluate an educational software visualisation tool. 
A detailed description of each category and the criteria it includes can be found in van Haaster 
(2003); this is summarised in Table 2.  



 Van Haaster & Hagan 

 459 

Usability 
The first category of essential criteria is usability; this category deals with general human-
computer interface and performance issues, and identifies 5 criteria that should be met by an edu-
cational tool. This area was least well addressed by the existing taxonomies. Whilst several dis-
cussed the importance of the user interface (Jerding & Stasko, 1994; Roman & Cox, 1993), these 
focused on learnability. Only two discussed issues of accessibility, and both were designed for the 
evaluation of commercial tools, (Mosley, 1992; Phillips, Mehandjiska, Griffin, Choi, & Page, 
1998). The critical point in terms of tool usability is the extent to which a user can transfer his 
existing knowledge to the tool; students should not have to invest a large amount of time obtain-
ing, installing and learning to use a tool before they can begin to learn programming. 

Paradigm support 
Many of the software visualisation tools available require the annotation or mark-up of source 
code in order to produce their visualisations. Only a few are able to provide dynamic visualisa-
tions of source code, and even fewer are able to provide visualisations during the development 
process. A tool designed to teach object-oriented programming should fully support this approach 
and should use standard versions of a language and notation to do so. The links between the 
source code and the resulting visualisation must be clear; students should be able to identify a 
cause and effect relationship between the source code they write and the data structures that result 
from it. This is essential if the benefits of providing visualisations to support understanding are to 
be realised (Gomez-Henrïquez, 2001). 

Teaching and learning support 
Bloom's taxonomy of educational objectives (Bloom, 1956) identifies learning as changes in stu-
dent behaviour in three domains: Cognitive, which describes the acquisition and use of knowl-
edge; Psychomotor, which describes the development of practical skills; and Affective, which 
deals with a student's attitude and approach to new material. In order to provide value for time on 
task, any tool designed for student use must support learning across all three domains. Each do-
main describes the progress of learning as a sequence of behaviours that a student at a given level 
can be expected to exhibit. In order to support the evaluation of BlueJ against this area of the in-
terpretive framework, the expected behaviour of a first year programming student was mapped to 
each step within these three domains (van Haaster, 2003). For example, in the Cognitive domain, 
a student should be able to use a tool to experiment with the concepts and ideas introduced in 

Table 2: Overview of the Interpretive Framework 

Framework Area Essential Criteria 

Usability 

Uses familiar idioms 
Is accessible and easy to install 
Is stable and predictable 
Is customisable 
Supports both novice and expert users 

Paradigm Support 
Uses a standard version of a programming language 
Uses standard notation and terminology 
Links source code and visualisation 

Teaching and Learning 
Support 

Supports learning in the cognitive domain 
Supports learning in the affective domain 
Supports learning in the psychomotor domain 

 



Teaching and Learning with BlueJ 

460 

week 1, such as objects encapsulating attributes and behaviour and responding to messages 
passed to them. At the beginning, only basic knowledge is present, with little understanding. The 
tool should allow the student to move through the levels of Bloom's taxonomy from knowledge to 
comprehension, application, analysis, synthesis and evaluation, by supporting the structured de-
velopment of programs as laboratory exercises or assignment work. Throughout this process the 
visual tool should not require any modification, and should be immediately usable regardless of 
the student's level of learning. 

As an example of the mapping of expected student behaviour to Bloom's taxonomy, at the Analy-
sis level in the Cognitive domain, a student might be expected to be able to make judgments 
about which control structures would be appropriate in certain situations, and to predict the output 
and execution behaviour of an arbitrary piece of source code. 

The Evaluation Process 
The interpretive framework was used to guide the evaluation of BlueJ by both direct examination 
of the tool itself and, where appropriate, using student responses to a survey. Students undertak-
ing the second compulsory programming unit were asked to volunteer to participate in the study 
by completing a survey about their use and perceptions of BlueJ. The surveys were handed out 
during a tutorial class and participants were assured that their responses would be completely 
anonymous. In the first section of the survey, students were asked to supply some general demo-
graphic information along with an indication of the amount of experience they had had using 
BlueJ. The subsequent sections of the survey took the form of several mini-surveys that asked 
students to indicate the degree to which they had found various features offered by BlueJ useful. 
Students were also invited to make written comments about the best and worst aspects of each 
feature. The final section of the survey asked students to indicate the degree to which they felt 
that BlueJ helped them to understand object-oriented programming and the degree to which BlueJ 
would help them to pass the unit. 

Results and Discussion 
The first survey returned 115 responses, from a total population of 214 students. Of those who 
responded, 88% had used BlueJ in the prerequisite unit sometime during the previous three se-
mesters, and 89.6% were attempting the current unit for the first time. All the survey respondents 
indicated that they were using BlueJ to complete the unit work, even though they were not re-
quired to use BlueJ. The code samples and tutorial exercises supplied during the course could 
have been used in any Java programming environment with no or only minimal modification. 

The data collected and analysed for this study is available online at (Van Haaster, 2004). 

Usability 
The usability of BlueJ was evaluated against the framework's usability criteria, using a combina-
tion of direct evaluation and survey responses. 

The use of familiar idioms  
The use of familiar idioms supports the transferability of knowledge. BlueJ, like Java, is designed 
to be platform independent. Since BlueJ is written in Java, its ability to match its look and feel to 
whatever operating system is being used is dependent on the capabilities of the Java Swing librar-
ies for that particular platform. The students who participated in this study were using the Win-
dows 2000 platform and noted some frustration with poor mouse functionality available to them, 
in particular right button and scrolling functionality. This was very much a limitation of the un-
derlying Swing libraries in use at that time rather than a limitation of BlueJ, and would probably 



 Van Haaster & Hagan 

 461 

not have been an issue had the students been using the Macintosh platform which, by default, 
supports only single mouse button functionality.  

Ease of installation  
Installation difficulties were highlighted in the earlier BlueJ study (Hagan & Markham, 2000) as 
a key problem for students. This was not evident in this later study; installation of the version 
used by this time was via a native Windows executable and was a simple process where the de-
fault options could be selected in nearly all cases. There were no student reports of installation 
difficulties, in contrast to earlier semesters when students reported being still unable to install the 
software at home after several weeks. 

Accessibility 
BlueJ is very accessible; it is free of charge for educational use and involves a small download 
from the internet. The Java programming language is also free to download and, whilst it is much 
larger in size than BlueJ, it is available on CD from a variety of sources, including in many text-
books.  

Stability, predictability and performance 
Stability is a key issue for novice programming students, as the process of learning to program 
often produces source code that results in instability in a system. Novice programmers often do 
not realise that it is their code that has caused the problem in the first place and may attribute this 
to the development environment or operating system; a number of student comments highlighted 
this issue: 

 “Sometimes you cannot terminate the execution of an infinite loop, you have to exit BlueJ and re-
run the program” 
 
“I use BlueJ 1.4 and sometimes I find it hangs/crashes sometimes or sometimes unexpected behav-
iour" 
 

Students were asked to rate the stability of 
BlueJ on a Likert scale ranging from 1 (very 
poor) to 5 (very good). 84.3% of the re-
spondents indicated that they found BlueJ’s 
stability to be acceptable or better; the mean 
response to this question was 3.48, but the 
median was 4 (see Table 3). There were few 
reports from the student group during the 
semester of difficulties with BlueJ’s stabil-
ity, and this, coupled with experience from 
previous semesters and the survey data, 
supports the belief that stability is not a sig-
nificant problem.  

Acceptability of speed or performance was raised as an issue. The mean response to this question 
was 2.75, but the median was 3. The issue was mentioned in several student comments, and was 
the most frequent response to the question “What do you like least about using BlueJ?” It should 
be noted, however, that the computers in the student laboratories at that time were due to be up-
graded and did not have the optimal configuration for running BlueJ.  

Table 3: Stability and speed of BlueJ 

   
BlueJ's 

Stability 
BlueJ's 
Speed 

N Valid 113 114 
  Missing 2 1 
Median 4.00 3.00 
Minimum 1 1 
Maximum 5 5 

 



Teaching and Learning with BlueJ 

462 

Customisability 
A tool should be customisable to whatever extent a user requires (Cooper, 1995), including being 
able to be used without any customisation. It is possible to customise BlueJ in a variety of ways, 
ranging from the very simple process of changing properties via a menu, to writing a new inter-
face language template. Students were asked how useful they found the ability to customise BlueJ 
in a variety of different ways, including the ability to create their own keyboard shortcuts, cus-
tomise the editor fonts used and change the default appearance of the class and method templates 
provided. In all cases the mean response suggested that students found these features useful to 
some extent. It is interesting to note that the lowest median response was recorded to the question 
about the usefulness of setting the default project directory (see Table 4). This is interesting be-
cause the version of BlueJ used in the study defaulted to the folder in which BlueJ was installed, 
when a user chose to open or create a new project. This meant that students always needed to 
browse to the location of their work, especially as there was no facility to select from a list of re-
cently used files. It seems likely that this behaviour is common to that exhibited by many Win-
dows-based applications, although most of these do present users with the option of selecting 
from a list of recently used files. 

The relationship between the extent to which a student had found the ability to customise BlueJ 
useful and the extent to which they felt that BlueJ would help them to pass the unit was explored 
using a Pearson product-moment correlation (see Table 5). No significant relationship was found, 
which suggests that, whilst BlueJ is customisable, it does not require customisation in order to be 
useful. 

Support for both novice and expert users 
The speed with which a novice user of a piece of software becomes an intermediate or expert user 
is moderated by the extent to which the user can transfer his knowledge (Cooper, 1995). The stu-
dents who participated in this study had all had at least one semester of experience with at least 
one programming language. Most had also used BlueJ for at least one semester, so none of them 
were complete computer programming novices as had been the case in the earlier study (Hagan & 
Markham, 2000a). That earlier study indicated that BlueJ provided excellent support for novice 
users, with the exception of some installation difficulties, which had since been resolved.  

Table 4: How useful is it to be able to customise BlueJ? 

 

Customised 
Keyboard 
Shortcuts 

Customised 
Fonts 

Customised 
Templates 

Setting the 
default project 

directory 

Changing the 
interface lan-

guage 
N Valid 96 96 99 115 88 
  Miss-

ing 19 19 16 0 27 

Median 4.00 4.00 4.00 3.00 3.00 
Minimum 1 1 1 1 1 
Maximum 5 5 5 5 5 

 



 Van Haaster & Hagan 

 463 

In their responses to this study, many students indicated that they were willing to customise and 
experiment with the tool to some extent. A few made comments that suggested some critical 
analysis of the tool, and therefore a deeper level of engagement with it: 

“Able to instantiate an object from a class (visually) able to play around with libraries 
and understand the use of it (eg array list) tools - use library class” 

“1. When something is running you can't compile again. It gives error message but in-
stead of that if you design something which ask users that program is running, you want 
to compile it anyway. If user selects yes then terminate the executing program and com-
pile again. 

 2. While you run something then again you run something both the o/p of these are on 
the terminal, we need to clear it manually. I think you can do something so if user closes 
that terminal it erases everything from terminal”  

BlueJ provides users with a number of support mechanisms including an email discussion list and 
a website that includes a Frequently Asked Questions section. The website was reported as being 
useful by 68% of the survey respondents, and 41% reported that they had found the FAQ pages 

Table 5. The relationship between customisation of BlueJ and the extent to which stu-
dents found it useful in understanding OOP or in passing the unit. 

   
Helps to Pass 

the Unit 
Helps to Under-

stand OOP 

Customised Keyboard 
Shortcuts 

Pearson Correlation .171 .219(*) 

  Sig. (2-tailed) .100 .034 

  N 94 94 

Customised Fonts Pearson Correlation .199 .268(**) 

  Sig. (2-tailed) .054 .009 

  N 94 94 

Customised Templates Pearson Correlation .086 .139 

  Sig. (2-tailed) .402 .174 

  N 97 97 

Changing Interface 
Look and Feel 

Pearson Correlation .326(**) .295(**) 

  Sig. (2-tailed) .001 .004 

  N 93 93 

Setting the default pro-
ject directory 

Pearson Correlation .161 .182 

  Sig. (2-tailed) .089 .054 

  N 113 113 

Changing the interface 
language 

Pearson Correlation .148 .136 

  Sig. (2-tailed) .170 .205 

  N 88 88 



Teaching and Learning with BlueJ 

464 

useful to some extent. Both a reference manual and a user manual are available, but both of these 
were in an incomplete state and were not well used by the survey respondents.   

When evaluating a tool against this criterion, it is important that the evaluation is performed in 
the correct context. BlueJ is designed to teach novice programmers, and is not intended to be an 
industrial strength development tool for an expert programmer. The results from the first study 
suggest that BlueJ supports the needs of novice programmers, by hiding complexity and present-
ing a non-threatening interface, whereas the results of the second study suggest that more experi-
enced and more adventurous students are still supported in the same way.   

Paradigm and Language Support 

The use of a standard version of a programming language, notation 
and terminology 
A tool designed to teach object-oriented programming should support the development of generic 
programming skills that can be immediately used by students outside of the development or 
teaching environment. Many of the software visualisation tools currently available do work with 
commercial programming languages; however, in some cases, they require that users annotate or 
modify their source code in order to produce visualisations.  Some of the best known software 
visualisation tools introduce their own notation and methodology to support learning (The Logo 
Foundation, 2003). Whilst this approach has merit, students may then need to "unlearn" a particu-
lar approach in order to begin using commercial tools. There is a great deal of support for the idea 
of an objects first approach to teaching object oriented programming, and this is supported by 
BlueJ (Kölling & Rosenberg, 2000), which uses a standard version of the Java programming lan-
guage and a subset of UML (Object Management Group, 2003) as its design notation. 

Linking source code and visualisation 
The underlying objective of educational software visualisation tools is to support student under-
standing of the mechanisms of software development. Visualisations can help students in numer-
ous ways; for example, visual debuggers can help students to reconcile the cause and effect rela-
tionship between the source code that they write and the resulting output. Algorithm animations 
can assist students to choose between different sorting or searching algorithms, and other kinds of 
visualisations can assist with the understanding of more abstract concepts such as object state and 
object identity versus equality. Some of the problems identified with visualisations of abstract 
concepts are the inherent difficulties associated with synchronising the mental models of the stu-
dent and the teacher (Ben-Ari, 2001). In "The Design of Everyday Things", Norman (1990) ar-
gues that a common starting point is essential in order to develop a shared mental model of a con-
cept. As students entering a course may well have a range of different backgrounds, this cannot 
be assumed. 

BlueJ provides students with a range of different visualisations that support the whole software 
development process, via its main project window (see Figure 1). 



 Van Haaster & Hagan 

 465 

These include the automatic generation of simple UML notation to show the relationships be-
tween classes. Complete novice students can create a visual representation of a class and then 
instantiate that class, inspect its state and call its methods without writing any source code at all. 
More advanced students can visually create and manipulate instances of classes they have written 
or classes provided by the Java API. BlueJ’s editor uses syntax highlighting of source code to 
provide constant visual feedback, and a simple interactive debugger allows students to watch the 
execution path and the changing state of variables in their code (see Figure 2). 

Students were asked to indicate the degree to which they found the various visualisations pro-
vided by BlueJ useful. Editor syntax highlighting was reported to be useful by 91% of respon-
dents, and more than 60% of respondents indicated that they found each other feature useful to 
some extent.  

A number of student comments elaborated on these results: 

“The objects sit there as objects helps to put it together in your head, the object oriented 
concept that is” 

“Good interface makes it easy to see the connection between classes and objects and un-
derstanding encapsulation and inherited methods” 

Figure 1 The BlueJ Project WindowFigure 1 The BlueJ Project Window
 



Teaching and Learning with BlueJ 

466 

Teaching and learning support  
Student learning in the cognitive domain according to Bloom's Taxonomy (Bloom, 1956) was 
evaluated by exploring the degree to which students made use of the various features of BlueJ 
that are intended to support higher order skill development. These skills included the ability to 
instantiate a class and call the object's methods, to pass an instance of a class as a parameter to a 
method of another object, to instantiate and use library classes, and to access and manipulate ob-
jects that are attributes of other objects. Pearson product-moment correlation was used to explore 
the interrelationships between a student's use of these features (see Table 6). 

The results suggest that the use of one of these features increases the likelihood of others being 
used. The mapping of the domain to student behaviour proposed in (van Haaster, 2003) suggests 
that these students were working at the analysis and synthesis levels, which was considered ap-
propriate as the survey was conducted at approximately mid-semester. 

Student learning in the affective domain was evaluated by examining the students’ responses to 
error messages. A student working at the Valuing, Organising and Characterising level of the af-
fective domain is willing to attempt to help firstly himself, and then others, when a problem is 
encountered. All students see error messages, but how they deal with them differs considerably. 
A student who is developing higher-level skills in this domain will see error messages as informa-
tional. This student will attempt to devise his own solution, by trying to understand the message. 
A student who is still working at the Receiving or Responding levels may exhibit poor learning 
tendencies (Carbone, Hurst, Mitchell, & Gunstone, 2000) such as immediately calling for help. 

Figure 2: The BlueJ DebuggerFigure 2: The BlueJ Debugger
 



 Van Haaster & Hagan 

 467 

BlueJ presents compiler error messages one at a time in an editor window. The line of source 
code that precipitated the message is highlighted. Students can click on a question mark symbol 
in order to be presented with an explanation of the message and, in some cases, an approach to 
fixing the problem. This feature is, unfortunately, currently somewhat incomplete, which was the 
cause of some frustration amongst the survey respondents.  

The respondents were asked to rate the usefulness of both the compiler generated error messages 
and the detailed error messages on a Likert scale of 1 (not useful) to 5 (very useful). The mean 
responses to these questions were 4.29 and 3.97 respectively, and the strength of the relationship 
between a student's rating of both kinds of messages suggests that students were seeking their 
own solutions to problems, and considered error messages as informative. 

Learning in the Psychomotor domain is evidenced by the student's willingness to use and engage 
with the tool in order to improve her practice and expand her skills. Many of the comments made 
by students indicated that they found the tool helpful and easy to use.  

"It is a good introductory tool as mentioned before it is non confronting like say Jbuilder 
to an inexperienced programmer which is quite complex to look at. Does have similari-
ties with other tools like JBuilder so it would not be hard to move on but not necessary ei-
ther, also like the applet viewer”  

Students were asked to indicate the degree to which they felt the tool was helpful in supporting 
their understanding of object-oriented programming and in helping them to pass the unit (see Ta-
ble 7).  

Table 6: Student use of features that support cognitive learning 

   
Inspecting 

Objects 
Getting 
Objects 

Instantiating 
Objects 

Passing Ob-
jects as Pa-

rameters 

Inspecting 
Objects 

Pearson Correlation 1 .780(**) .560(**) .622(**) 

  Sig. (2-tailed) . .000 .000 .000 

  N 115 115 115 115 

Getting Ob-
jects 

Pearson Correlation .780(**) 1 .546(**) .562(**) 

  Sig. (2-tailed) .000 . .000 .000 

  N 115 115 115 115 

Instantiating 
Objects 

Pearson Correlation .560(**) .546(**) 1 .671(**) 

  Sig. (2-tailed) .000 .000 . .000 

  N 115 115 115 115 

Passing 
Objects as 
Parameters 

Pearson Correlation 
.622(**) .562(**) .671(**) 1 

  Sig. (2-tailed) .000 .000 .000 . 

  N 115 115 115 115 

** Correlation is significant at the 0.01 level (2-tailed). 



Teaching and Learning with BlueJ 

468 

A strong relationship between the students’ responses to the two questions suggests that those 
students who had engaged with the tool found that it supported their understanding of the material 
presented.   

Conclusion and Further Work 
BlueJ performed well against all the criteria specified by the interpretive framework. Student re-
sponses indicated that they were using the features of BlueJ that are designed to facilitate higher 
order skills development in the cognitive, affective and psychomotor domains. Their perceptions 
were that BlueJ helped them to understand the object-oriented paradigm. As we did not (for ethi-
cal reasons) have a control group that studied Java but did not use BlueJ, we are unable to make a 
comparison between those who used BlueJ and those who did not. However, all students had 
been taught in the previous unit how to write and execute Java code without using BlueJ, using 
the Java SDK. In the second unit, they were not required to use BlueJ but could have chosen to 
use the SDK or some other integrated development environment. The fact that all of the respon-
dents were using BlueJ indicates that they saw it as beneficial to them.   

Some usability issues were identified, such as the incomplete nature of some of the documenta-
tion and the support for detailed error messages. It should be noted that many of the usability 
problems identified by respondents of this study have been solved in subsequent releases of the 
software. BlueJ's ability to help students to link source code and visualisations is one of its great-
est strengths and is integral to BlueJ’s ability to support learning in the cognitive domain.  

The interpretive framework developed for this study will be useful in evaluating other IDEs de-
signed for teaching in the future. 

Skills learned in the first programming courses should be transferable to other programming envi-
ronments and languages. Questions about whether BlueJ’s approach makes this transfer easier or 
more difficult remain unanswered.  

During the last two years the number of courses using BlueJ, across a range of educational levels 
throughout the world, has increased markedly to more than 300 in number. Many of these courses 
have been using BlueJ for several semesters. There is now a large body of experience and exper-
tise amongst those using BlueJ to teach novice programmers. This knowledge and expertise could 
be harvested via a study of the way in which teachers are using BlueJ, which might provide more 
insight into the degree to which BlueJ supports the teacher as well as the student.   

References 
Ben-Ari, M. (2001). Program visualisation in theory and practice. Upgrade, 11 (2), 8-11.  

Table 7: The relationship between understanding OOP and passing the unit 

   
Helps to Pass 

CSE1203 
Helps to Un-

derstand OOP 

Pearson Correlation 1 .701(**) 

Sig. (2-tailed) . .000 

Helps to Pass CSE1203 

N 113 113 

Pearson Correlation .701(**) 1 

Sig. (2-tailed) .000 . 

Helps to Understand 
OOP 

N 113 113 

 



 Van Haaster & Hagan 

 469 

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. New 
York: Longman.  

Brown, M. (1990). Zeus: A system for algorithm animation and multi-view editing. Proceedings 1991 
IEEE Workshop on Visual Languages, 4-9.  

Brown, M.H. (1988). Exploring algorithms using Balsa-II. IEEE Computer, 21 (5), 14 - 36.  

Carbone, A., Hurst, A.J., Mitchell, I. & Gunstone, D. (2000). Principles for designing programming exer-
cises to minimise poor learning behaviours in students. Proceedings of Australasian Computing Edu-
cation Conference ACE2000, 26-33.   

Cooper, A. (1995). About face: The essentials of user interface design. New York: Wiley.  

DeClue, T. (1996). Object-orientation and the principles of learning theory: A new look at problems and 
benefits. Proceedings of the twenty-seventh SIGCSE technical symposium on Computer science educa-
tion. 

Gomez Henrïquez, L.M. (2001). Software visualization: An overview. Upgrade, 11(2), 4-7. 

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J. & Vanninen, P. (1997). Animation of user algorithms on 
the Web IEEE Symposium on Visual Languages, 360-367. 

Hagan, D. & Markham, S. (2000a). Does it help to have some programming experience before beginning a 
computing degree program? Proceedings of Integrating Technology into Computer Science Education 
Conference ITiCSE-2000, 25-28.  

Hagan, D. & Markham, S. (2000b). Teaching Java with the BlueJ environment. Proceedings of Austral-
asian Society for Computers in Learning in Tertiary Education Conference ASCILITE 2000. 

Jerding, D. F. & Stasko, J.T. (1994). Using visualisation to foster object oriented program understanding. 
Technical report, Graphics Visualisation and Usability Centre, Georgia Institute of Technology. 

Kölling, M. & Rosenberg, J. (1996). An object-oriented program development environment for the first 
programming course. SIGSE Bulletin, 28 (1), 83-87. 

Kölling, M. & Rosenberg, J. (2000). BlueJ: The hitch-hiker's guide to object orientation. Technical report, 
The Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark, 
Technical Report 2002, No 2, ISSN No. 1601-4219 

Levy, R. B.-B., Ben-Ari, M., & Uronen, P.A. (2000). Tango: The Jeliot 2000 program animation system. 
Journal of Visual Languages and Computing. 

The Logo Foundation (2003).  Retrieved 12/12/03 from http://el.www.media.mit.edu/logo-foundation  

Mosley, V. (1992). How to assess tools efficiently and quantitatively. IEEE Software, 29-32.  

Norman, D. A. (1990). The design of everyday things. New York: Doubleday. 

Object Management Group (2003). Retrieved 12/12/03 from http://www.omg.org 

Phillips, C., Mehandjiska, D., Griffin, D., Choi, M.D. & Page, D. (1998). The usability component of a 
framework for the evaluation of OO CASE tools Proceedings of Software Engineering: Education and 
Practice, 134-141.  

Roman, G.-C. & Cox, K.C. (1993). A taxonomy of program visualisation systems. IEEE Computer, 11-24.  

Stasko J., Dominigue B., Brown, M. & Prince, B.A. (eds.) (1998). Software visualization: Programming as 
a multimedia experience. Cambridge MA: MIT Press. 

Van Haaster, K. (2003). Introductory programming in an OO environment: An evaluation of a visual tool. 
(Honours thesis, Monash University, 2003). 

Van Haaster, K. (2004). Retrieved 5/3/04 from 
http://www.csse.monash.edu.au/~khaaster/research/bluejstudy 

http://www.csse.monash.edu.au/~khaaster/research/bluejstudy
http://www.omg.org/
http://el.www.media.mit.edu/logo-foundation


Teaching and Learning with BlueJ 

470 

Vanthienen, J. & Poelmans, S. (1996). A general framework for positioning, evaluating and selecting the 
new generation of development tool. EUROMICRO 96. Beyond 2000: Hardware and Software Design 
Strategies Proceedings of the 22nd EUROMICRO Conference, 233-240.  

Wiggins, M. (1998). An overview of program visualisation tools and systems. Proceedings of 36th ACM 
South East Regional Conference, 194-199.  

Biographies 
Kelsey van Haaster is an Assistant Lecturer and PhD student in the School of Computer Science 
and Software Engineering at Monash University, Australia. She has four years of experience in 
teaching introductory computer programming, and her major research interests are related to this. 
She is a member of Monash University's Computing Education Research Group. She is currently 
teaching first year programming using Java as the implementation language and BlueJ as the de-
velopment environment, in the second unit in the sequence of first year programming units men-
tioned in this paper.  

Dianne Hagan is a Senior Lecturer in the School of Computer Science and Software Engineering 
at Monash University, Australia. She has almost twenty years of experience in teaching introduc-
tory computer programming, and her major research interest is related to this. She is a member of 
Monash University's Computing Education Research Group, and is the director of the Bachelor of 
Computing undergraduate degree program. She is also currently teaching first year programming 
using Java as the implementation language and BlueJ as the development environment, in the first 
unit in the sequence of first year programming units mentioned in this paper. 


