
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Best Paper

Teaching Introduction to Programming as Part of the IS
Component of the Business Curriculum

Borislav Roussev
Susquehanna University, Selinsgrove, USA

roussev@susqu.edu

Abstract
Modern software practices call for the active involvement of business people in the software process.
Therefore, programming has become an indispensable part of the IS component of the core curriculum
at business schools. In this paper, we present a model-based approach to teaching introduction to pro-
gramming to general business students. The underpinnings of the new approach are modeling, abstrac-
tion, and Bloom's classification of cognitive skills. We employ models to introduce the basic program-
ming constructs and their semantics. To this end, we use statecharts to model object's state, the environ-
ment model of evaluation as a virtual machine interpreting the programs written in JavaScript, and UML
class diagrams to represent the static structure of the designed software systems. The adoption of this
approach helps learners build a sound mental model of the notion of computation process. Learners'
achievements, student evaluations, and our subjective opinion suggest that the proposed ideas improve
the course significantly.

Keywords : introduction to programming, model-based approach, teaching programming

Introduction
Modern software practices call for the active involvement of business people in the software process
(Shaw, 2000). Apart from the crucial role of end users in eliciting precise user requirements, business
people are intimately involved in all stages of software development (Jacobson, 99). At present, soft-
ware is commonly adapted, composed from reusable components and frameworks, and even created by
business people rather than information systems (IS) developers (Shaw, 2000). Therefore, programming
has become an indispensable part of the IS component of the core curriculum at business schools.

The traditional curriculum design offers four IS courses in the following succession: (1) Using data-
bases; (2) Systems analysis and design; (3) E-Business applications development; and (4) Management
support systems.

At our school, E-Business applications development (a.k.a. Client-server, Web-based programming, E-
commerce) is the only programming course mandatory for all business students. E-Business applications
development is the basic hands-on-experience course, where students develop Web-based e-commerce
applications. A major constituent of the course is programming in JavaScript. Introduction to program-

ming in JavaScript is the topic of this paper.

The underlying assumption of this research work
is that adopting a model-based approach to teach-
ing programming will enhance the students' abil-
ity to think and reason formally about programs,
develop software rigorously, and program better.

Bloom's taxonomy of cognitive skills is widely
recognized as a basis for classifying skills in edu-

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Intro to Programming

1354

cation and ordering material (Bloom, 1956). Bloom's taxonomy divides cognitive skills into six levels
where factual knowledge, theory comprehension and theory application come before analysis, synthesis
and finally evaluation.

In our approach we strictly adhere to Bloom's hierarchy of cognitive skills. We start with simple, yet
precise, facts about (formal model of) the notion of computation. Then, we gradually enrich the basic
model with data types and computational objects, thus generalizing the facts into a consistent theory.
Next, we repeatedly ask learners to apply the concepts (theory) introduced to predict initially the behav-
ior of snippets of code and later of middle-size programs. After students have acquired the skills to pre-
dict the behavior of programs of any size, we proceed with program analysis and synthesis, or what is
commonly referred to as programming.

The rest of the paper is structured as follows. Section 2 attends to the presentation of the model-based
approach used in teaching introduction to programming. Next, Section 3 discusses preliminary results
about the advantages of adopting such an approach. The final section summarizes the experience gained
and concludes.

Teaching Programming: Model-Based Approach
The novelty of our approach lies in teaching the lower-order cognitive skills. We use models to intro-
duce the basic programming constructs. To introduce the notion of state and thus help students appreci-
ate the environment model of evaluation, we begin by modeling with labeled transition systems, a subset
of statecharts (Harel, 1987), (Booch, 1999). Our experience confirmed the findings of Davis (1988) that
the introduction of this model takes an hour on average. Students are given classical examples from the
theory of Finite Automata, such as vending machines, flying robots, and multi-user games. The exer-
cises are a prelude to program state and objects with interesting state machines.

Building large software- intensive systems requires a methodology that would allow structuring the sys-
tems into modular components that could be independently developed and maintained. To avoid a se-
mantic gap between the domain of interest and the designed system, we base the structure of the latter
on the structure of the physical system that is represented in the computing system (Abelson et al.,
1996). The real world is populated with different objects, each one possessing a number of characteristic
attributes, e.g., a bank account has an owner and interest rate. The attributes alone fail to represent the
dynamic nature of objects. It is highly desirable to know the actions in which the objects can get in-
volved, i.e. the behavior the objects can exhibit. For example, a bank account can accumulate interest
rate, can be credited or debited. In order to determine the future behavior of an object, we need to know
its history. The history of a bank account could be succinctly represented by its balance rather than by
recording the complete sequence of past transactions. The abstract representation of an object's history is
called state. After students have comprehended object's state as a potential for future actions, the notion
of program variable is introduced. The view that a system is composed of objects, each of which has its
own state, poses the question of how to represent this state. To store the object's state, one or more at-
tributes could be added to the set of existing ones. For example, an attribute balance can represent the
state of a bank account. Since the state of an object changes over time, the values of the attributes repre-
senting the state in the computational objects must also change. Thus, students learn that the decision to
base our programs on the structure of the real-world objects it represents necessitates computational ob-
jects, the state of which changes as the programs run.

The possibility of associating names with values and later retrieving and changing those values in a way
dependent upon their types means that the language processor (the JavaScript interpreter) must maintain
some sort of memory that keeps track of the values and the values' names and types (name-type-value
triplets). To this end, we use the environment model of evaluation (Baber, 1987). An environment de-

 Roussev

 1355

fines the context in which an expression or a statement is evaluated. It should be thought of as an ab-
straction of the underlying hardware (memory, CPU, etc.), operating system and language processor.

Definition 1: An environment frame, or environment for short, is a sequence of variables (data items in
general).

For example, d0 = [(s, string, "Jones"), (i,
number, 0)], is an environment consisting of two vari-
ables. Environment d0 can be graphically represented as
shown in Figure 1.

Each triplet in the environment is a data item consisting of
a name, data type, and value from the domain of the data
type, see Figure 2. It is important for the students to internalize the structure of data types, and what can
be regarded as a data type, see Table 1. Learners should grasp the idea of binding among name, type and
value. Since JavaScript is a loosely- typed language, it hides the notion of data type from the program-
mer. The latter encourages a hacker style of programming and leads to an increased number of typing
errors. That is why taking the data type into consideration is of utmost importance.

The value of a data item (variable) x in an environment d is the value of the first item whose name is x.
If the environment d does not contain a data item with the name x, then the value of x is undefined. A
data declaration creates a variable and prefixes its triplet to the environment, for example, the following
declaration evaluated in d0:

var amt = 20;

results in a new environment d1 defined
as:
d1 = [(amt, number, 20), (s,
string, "Jones"), (i, number,
0)].

Next, we consider computational objects.
The following algorithmic procedure is
applied to evaluate a statement (or an
expression) on an environment.

1. Identify the operator
with the highest prece-
dence level.

2. Evaluate its operands
3. Apply the primitive function corre-

sponding to the operator identified in
Step 1 to the evaluated operands.

For instance, to evaluate the expression,
amt <= i + 10

s
string

"Jones"

i
number

0

Figure 1: Graphical representation

of environment.

data item

name type value

(i , number , 10)

Figure 2: Named data item structure.

Type Set of Values Set of Operations

boolean True
false

and
or
not

Number ...,1,0,+1,...
decimal numbers

+,−,*,/
+,−,*,/

String ''''
''a''
''xyz''
''hello''

concatenation
equality
characterSelection
substringSelection

Table 1: Basic data types and their structure.

Intro to Programming

1356

on the environment d1 above, the precedence levels of <= and +
are looked up in the operators' precedence table, see Table 2. The
precedence of +, level 5, is higher than that of <=, level 4, see Fig-
ure 3. Therefore, + is applied first. Next, Step 2 is carried out. To
evaluate i, d1 is scanned from left to right looking for the first oc-
currence of a variable with name i. Then, the value of this variable
is retrieved and substituted for i in
the expression. The evaluation

procedure is applied recursively
until the expression is reduced to a

literal.

Assuming that the mechanism for
applying JavaScript operators is

built into the language interpreter, the
main issues confronting the learner at
this point are precedence and

associativity. For practice, a
JavaScript interpreter developed

by Nombas, called ScriptEase
(2002), is used. A sample session

with ScriptEase interpreter looks like:
Screen.witeln(7 + 3 * 2);

42

The response of the interpreter is shown in slanted characters. In reality, it is directed to a separate out-
put window.

The semantics of the assignment statement, the sequence of statements, the if statement, the iterator
for/in, and function definition/invocation, are defined operationally by specifying the effect of their
execution on an environment. As an example, consider the definition of if.

Definition 2: An if statement, if (c) s1 else s2, consists of a predicate (expression that evaluates
to true or false) c, called condition, a then-clause s1 and an else-clause s2. The if statement is exe-
cuted on the environment d by first evaluating the condition in d. Depending upon whether its value is
true or false, s s1 or s2, respectively, is executed in d.

A typical exercise for the if statement given to students is as follows.

Let the environment d be
d2 = [(z, number, 1), (x, number, 9), (y, number, 2)]

Determine the new contents of d for the following if statement:
if (x < 9) y = -x; else y = x;

The resulting environment is:
d3 = [(z, number, 1), (x, number, 9), (y, number, 9)]

The basic principle we used in defining compound computations thus far, both at expression and state-
ment level, is combination. We make a point that combination, however useful, does not suppress the
detail, and not before long the designed programs become too complex. What we need is a way to deal
with the complexity in large systems design, i.e., we need abstraction.

amt <= i + 10
4 5

Figure 3: Assignment state-

ment evaluation.

Level Operators Description
0 = assignment
1 || logical-or
2 && logical-and
3 ==, != comparison
4 <, <=, >, >= relational
5 +, – addition, subtraction
6 *, / multiple, divide
7 ! logical-not
8 <name>() function call
9 [], . subscripting, member

10 () parenthesis

Table 2: A subset of JavaScript operators
with precedence levels.

 Roussev

 1357

Definition 3: Function definition is an abstraction technique by which a block of statements specifying a
compound operation is given a name and then referred to by this name.

In JavaScript, the function definition has the following basic form:

function name(formal_parameters) { body }

We illustrate the mechanism of applying a function to its arguments with a simple example. The func-
tion inc(), often called the successor function, increments its argument by one and returns the result to
the caller. It is defined as:

1| function inc(x) {
2| return x + 1;
3| }

The function can be used as a building block in expressions, respectively statements, for example:

4| var z = inc(3);

The function call, inc(3) is equivalent to the following block statement created at runtime from the
function definition of inc():

{
 var x = 3;
 return x + 1; // equivalent to z = 4;
}

Next, we point out a major source of inefficiency in utilizing environment space under multiple function
calls. What if we call inc(3) not once but thousands of times. What if a large number of variables are
declared in the body of the function, for example a huge array, and then shadowed forever by subse-
quent function calls. Both scenarios are typical programming practices. When representing real objects
in our programs, we want to model their behavior as closely as possible. For example, disposing of a
variable storing an account balance will be disastrous. On the other hand, a variable used to hold a result
of an intermediate step in a long computation, e.g. a successive approximation in a numerical integra-
tion, is not worth keeping forever. It takes up environment space.

To sum up, we identified a class of variables holding intermediate results and formal parameters that are
needed only over a short period of time. To deal with this inefficient environment utilization, we can
divide the data environment in two parts, called global and local, respectively (the local environment is
commonly referred to as stack, we purposefully avoid the term stack, since it conotates a specific access
protocol). The global environment will take the role of the data environment as we know it. The local
environment will be shared by all functions. When a function is called, part of the local environment is
allocated as a temporary environment in which variables corresponding to formal parameters and vari-
ables declared in the function body are created and in which the function body is evaluated. Upon func-
tion termination, the local environment reclaims the temporary environment allocated to the function.
Thus, one and the same environment space is reused by allocating it to different functions executing at
different times.

Definition 4: Variables, and computational objects in general, declared at the top-most level are said to
have global scope. The programmer can rely on their existence over the entire lifetime of the program.
Variables, and computational objects in general, declared in functions are said to have local scope. Their
lifetime is restricted to the time span during which the function body is executed.

An alternative way to define a function in JavaScript is to use a variable declaration:

var area = function(x) {
 var pi = 3.14; //
 return pi * x * x;

Intro to Programming

1358

}

The expression to the right of the assignment operator is
called a function literal. It is used to create an unnamed
function (Lisp lambda functions). This form of defining a
function shows students that function definition is hardly
different from variable declaration. It associates a name
with type and value. In this case, the type is function and
the value is the code comprising the function definition.
Let the environment d be
[(z,number,3),(y,number,2)]. The content of the
environment after the definition of function area() is
shown in Figure 4.

The value associated with the name area is a reference to
an object consisting of two pointers. The left pointer
points to the code of the function definition. The right
pointer points to the global environment in which the
function definition was read to produce the function.
When the function is called, e.g., z = area(y);, a new
local frame, e1, is created as shown in Figure 5. In this
frame, the formal parameters are bound to the actual val-
ues with which the function has been called. Observe that
the enclosing environment of the new frame is the envi-
ronment to which the pointer in the function definition
points, i.e., global. After the function terminates, the
local frame pointed to by e1 is removed, i.e., the memory
is released and can be allocated to another function.

We need to revisit the variable evaluation rule in the light of global and local frames. The value of a
variable x in an environment d is the value of the first variable in the first frame in d whose name is x. If
no frame in the environment d contains a program variable with the name x, then the value of x is unde-
fined.

After functions as computational objects, expressing named compound computations, are covered, col-
lections and objects as software analogs of real-world objects are introduced. We try to strike a balance
and not to delve into technical details about JavaScript. The exercises given are mainly to test students'
skills in applying the material rather than asking students to synthesize programs. Synthesis is a higher-
order cognitive skill. We ask the students to do synthesis only in the second half of the course that cov-
ers Web applications development. By the end of the first part of the course, students should be able to
apply (almost mechanically) the environment model of evaluation to predict the behavior of a program
of any size. Tasks on object-oriented problems are restricted to using the String, Array, Math and
Date objects and their respective methods.

Evaluation and Observations
As indicated before, introduction to programming in JavaScript is part of our E-business applications
development course. The ultimate aim of the course is to teach students how e-commerce applications
operate and how such applications are built. We do not evaluate directly the results of the model-based
introduction to programming. The real test is how students can cope with implementing Web applica-
tions' business logic in JavaScript. Due to the almost mechanical application of the environment model
of evaluation, students quickly develop skills in solving well-defined problems. The real challenge, and

y
number

2

z
number

3

global area
function

parameters: x
body:
 var pi = 3.14;

return pi * x * x;

Figure 4: Function definition.

y
number

2

z
number

3

global

e1

area
function

parameters: x
body:
 var pi = 3.14;
return pi * x * x;

x
number

2

Figure 5: Evaluating the call to area().

 Roussev

 1359

therefore the ultimate test, is to "integrate the parts into a new more complex whole" (Huba, 2000), as it
is required by the application logic of Web-based information systems. We assume that business logic is
executed only on an application server (embedded in a Web server). In the second half of the course, we
enriched gradually core JavaScript by introducing the ASP server-side extension of JavaScript. This API
consists of the following basic classes: Request, Response, Session and Application. Students
were asked to create applications from all major e-commerce models: business-to-customer (e.g. e-store
and ticket booking); customer-to-customer (e.g. auction); peer-to-peer (e.g. chat room); business-to-
business (integrate services, e.g. integration of a payment service, like PayPal, with an e-store using a
virtual shopping cart).

After adopting the model-based approach, stu-
dents' performance proved to be better than in
previous runs of the course. At this point, we can-
not prove in absolute terms the success of the
model-based introduction to programming. We
will return to this topic in the conclusion, where
we discuss our plans for future work. Our obser-
vations at this stage of research suggest that the
results are very encouraging. Table 3 summarizes
the statistics for two classes. The first class had been exposed to a traditional code-based approach to
teaching introduction to programming, while the second one had been exposed to the model-based ap-
proach presented above. More data will be available at the end of fall'02 semester when two more sec-
tions will have completed the new course. It is important to note that the number of students in the new
course who achieved B and above (on the scale from A to F, with A being excellent) exceeds by ap-
proximately 20% the corresponding number of students in fall'01. The instructor's evaluation using stan-
dard IDEA forms (nationally normalized instrument for student evaluations of instruction used across
campuses in US) was above average compared to average in previous years. This is a very good result
for a new course. Note also the difference in the failing rate of the two classes.

Conclusion
This paper presented a new model-based approach to teaching introduction to programming in
JavaScript to general business students. The basic programming constructs and their semantics are intro-
duced using the environment model of evaluation. Other modeling languages employed in the course are
statecharts and UML class diagrams. The course material is structured in compliance with Bloom's
model of cognitive skills. The first, by no means conclusive, results from the incorporation of the new
approach are positive and very encouraging. The scholastic performance, the student evaluations, and
our experiential observations suggest that the course has been significantly improved owing to incorpo-
ration of the novel elements presented in this work. Students have acquired a deeper understanding of
the notion of computation process. As a result, learners have been able to apply creatively the accumu-
lated knowledge in real-world applications, i.e., the acquired knowledge is active, discriminating and
critical.

The teaching approach presented in this paper is part of a larger project aiming at teaching general busi-
ness students how e-commerce systems operate and how Web-based applications are developed using
modeling. The ultimate goal of the E-business applications development course is for learners to realize
the importance of the software architecture, to see clearly the relations between user requirements and
software architecture, and to understand the interconnectedness between software architecture and pro-
gram code. The desire is to help learners acquire skills and ability successfully to develop robust soft-
ware architectures using a subset of UML based on the Web modeler profile (Conallen, 1999).

 Fall’01
code-based

Sping’02
model-based

Number of students 41 21

Grade B and above 52% 71%

Failing grades 5% 0%

Table 3: Statistics on E-business applications
development.

Intro to Programming

1360

To prove the advantages of the model-based approach and to generalize our results, we plan a statistical
test once we collect and process the data from two classes currently taking E-business applications de-
velopment. We will test a hypothesis concerning the parameters of a multiple regression model. The in-
dependent variables of the model will be verbal SAT (scholastic achievement test), math SAT, GPA
(grade point average), and teaching method. We will control by SAT and GPA.

Acknowledgements
We would like to thank the teaching assistants Scott McQuiggan and Theran Mossholder for their in-
valuable help. Without their dedication the course would have been impossible.

References
Abelson, H. and Sussman, G. J., with Sussman, J. (1996). Structure and interpretation of computer programs. MIT Press.

Baber, R. (1987). The spine of software: Designing provably correct software - theory and practice. Chichester: John Wiley
& Sons.

Bloom, B. S. (ed.) (1956). Taxonomy of educational objectives: Book 1 Cognitive Domain. London: Longman.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language. Addison-Wesley.

Conallen, J. (1999). Modeling web application architecture with UML. Communications of ACM, 42(10).

Davis, M. (1988). A comparison of techniques for the specification of external system behavior. Communications of ACM,
31(9).

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8.

Huba, M. E. & Freed, J. E. (2000). Learner-centered assessment on college campuses. Allyn and Bacon.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development Process. Addison-Wesley.

ScriptEase (2003). JavaScript interpreter. Retrieved from http://www.nombas.com.

Shaw, M. (2000). Software engineering education: A roadmap. 22nd Int'l Conference on Software Engineering, Limerick,
Ireland.

Biography
Borislav Roussev is an Assistant Professor of Information Systems at Susquehanna University. He was
educated in Bulgaria, and previously was a faculty member in higher education in South Africa.

