Informing Science INSITE - “Where Parallels Intersect” June 2003

Using Jackson Structured Programming (JSP) and
Jackson Workbench to Teach Program Design

Nicholas Ourusoff
University of Maine at Augusta, Augusta, Maine, USA

nourusoff@yahoo.com

Abstract

Teaching how to program independently of teaching a programming language has been recognized as a
worthwhile goal in computer science pedagogy, but many have abandoned the goa as being impossible
to achieve in practice.

Jackson Structured Programming (JSP) is a well-documented and proven program design method that is
independent of any programming language.

CASE tools have generally been used in designing information systems rather than programs. Jackson
Workbench (Keyword Computer Services Limited, 2002) is a CASE tool for designing programs (as
well as information systems) that generates executable program code in several contemporary program:
ming languages (Visua BASIC, Java, C++). Jackson Workbench contains a unique Structure Editor
that uses “hotspots’ to draw and syntactically validate program tree structure diagrams. As aresult, the
user can focus entirely on the design process, and leave the details of drawing to the CASE tool.

Keywords: program design, visual design, design patterns, software engineering, constructive design,
JSP, tree diagrams, modeling, computer science education, CA SE tool

Introduction

Teaching how to program independently of teaching a programming language has been recognized as a
worthwhile goal in pedagogy (See, for example Shackelford, 1998), but although desirable, many have

abandoned the goa as being impossible to achieve in practice. Relying entirely on pseudo-code, for ex-
ample, has significant drawbacks. students lose interest if they don’t see a program run, and unless one

has a tool to trandlate pseudo-code into executable code, the resulting paper designs are error-prone and
boring to students.

Thus, most computer science programs have abandoned a language-independent approach to teaching
programming. Y et, we al know that many teachers lament the fact that too much time in an introductory
course in programming is spent learning the syntax of a programming language and how to debug syn+
tax errors, both of which detract from the goal of teaching how to design.

What other program design methods are available? Historically, modular programming, which showed
that good design incorporated modules, each of which implemented a specific goal, has been recognized
since the beginning of higher-level programming

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

(Glass, 1997). Structured programming showed
that any program or module could and should be
designed using well-formed constructs for s
guence, selection and iteration (Wirth, 1969;
Dijkstra, 1976). However, neither modular pro-
gramming nor structured programming guarantees
that aprogram will be well designed (Jackson,

Paper Accepted as a Short Paper

Determining Jurisdiction In Cyberspace

1976). While they contain design principles, they are not a design method. A design method should
provide aroadmap at each stage for choosing the best among competing design aterratives and offer a
means of validating design decisions as they are made (Jackson, 1976).

Top-down structured programming and stepwise iterative design are two other program design ap-
proaches introduced in the 1970s. The main criticism of top-down structured programming is that it at-
tempts to design in the vacuum that exists at the beginning of studying any problem. How can one make
design decisions before one has a detailed idea of the problem? (Jackson, 1976, 1991)

Stepwise refinement was offered as a method of designing programs (Wirth, 1971). However, one can
say that stepwise refinement — like top-down design — does not provide decision criteriafor deciding
what design choices should be made at each stage of the design process. Thus, stepwise design is an
approach, but not a method.

Much contemporary work in programming is focused on formal methods of program derivation and
verification (See, for example, (Hoare, 1969; Dijkstra, 1976; Gries, 1981). In Constructive Methods of
Program Design (Jackson, 1976b), Jackson mentions that one canformally derive a correct program
structure using JSP from the grammars that describe the input(s) and output(s). Hoare and Sridhar
(1989) provide aformal proof of the equivalence of Jackson System Development (JSD) to CSP. Nev-
ertheless, JSP is usually taught as an informal design method that takes advantage of various program
patterns to motivate correct program structure.

The strongest arguments for the JSP and JSD design methods is that, in addition to their soundness, they
are practical and teachable software engineering methods that lend themselves to visual CASE software
engineering tools.

| have used Jackson Workbench to teach program design using JSP twice, in an introductory course in
programming at the University of Maine at Augusta; and in a gaduate-level course to 1% year Master's
students at Petrozavodsk State University in Russia. 1n both courses, Jackson Workbench was also used
introduce object-based information systems design using JSD about two-thirds of the way through the
course. Students were given the strong impression that software engineering using a CASE tool was
appropriate in designing both programs and information systems.

| found in both cases that students gained an appreciation for what designing programs with a correct
structure entails; and that Jackson Workbench provided a very positive environment for designing and
implementing working Java programs. Some students had a hard time learning to produce correct data
models for inputs and outputs, learning to construct anelaborated program structure, and learning to
construct and allocate operations to the program structure carefully and in detail. But most did learn to
use JSP to design simple programs; and Jackson Workbench certainly made the task of prodwcing tree
diagrams and generating Java code enjoyable and quite effortless.

Organization

Section 2 contains abrief explanation of JSP. Section 3 introduces the Jackson Workbench CASE toal.
Section 4 is devoted to illustrating the use of the Jackson Workbench to design a simple program. Sec-
tion 5 concludes with some suggestions and challenges for further pedagogica work.

Jackson Structured Programming (JSP)

Jackson Structured Programming was developed in the 1970’ s by Michael Jackson (1976), and became
awidely used design method, especialy in Europe. At the World Health Organization, for example, JSP
was used in the late 1970's and 1980’ s as a standard for specifying programs, while JSP was a govern
ment-wide specification standard in the UK,

686

Ourusoff
Jackson Structure Diagrams (Tree Diagrams)

In JSP, design is defined as the relationship between parts to the whole. Programs have two types of
components. composite components, which have a structure; and elementary components, which are
elementary. Examples of elementary components are assembly language instructions or simple state-
ments of a programming language. The composite components -- components having one or more parts
-- are the three control structures of structured programming, sequence, selection and iteration. They are
shown below, together with their textual representation in Jackson structure text, a pseudo code invented
by Jackson, and ordinary pseudo code:

(a) sequence - a sequence is a composite component that has two or more parts occurring once each, in
order (Figure 1).

Jackson structure Jackson structure Pseudocode
diagram text

L A seq hegin

do B; do B;

/ \ do do

A end end
B C

Figure 1: Sequence structure diagram

(b) selection - a selection is a composite component that consists of two or more parts, only one of
which is selected, once. (Figure 2)

Jackson structure Jackson structure Pseudocode
diagram text
i Asel =cond-1> if <cond-1> then
do B; do B;
Aalt <cond2= else if <cond-Z2> then
O O do C; do C;
B c Aend endif
Figure 2: Selection structure diagram

(c) iteration - an iteration is a composite component that consists of one part that repeats zero or more
times. (Figure 3)

Jackson strocture Jackson structure P=eudocode
dizgram J{=
A Aiter <oondr while <cond:
do B do B;
| A end endwhile
B u

Figure 3: Iteration structure diagram

687

Determining Jurisdiction In Cyberspace

Basic JSP Design Method
JSP consists of the following steps:

1. Draw system diagram. (This step may be omitted when obvious.)

Draw data structures for program input(s) and output(s).

Form program structure based on the data structures from the previous step.
List and alocate operations to the program structure.

a A~ WD

Create the elaborated program structure with operations and conditions added to the basic pro-
gram structure

6. Trandate the structure diagram into structure text or programcode.

The result of applying JSP is a program that reflects problem structure as expressed in amodel of its
inputs and outputs. 1f changes to the program are required that only affect local components, the
changes can be easily made to corresponding program components. A program’s structural integrity —
its correspondence with the problem’ s structure — is the primary way that we can reduce errors and costs
in software maintenance.

In the next section, the basic JSP design method will be illustrated with a concrete example using Jack-
son Workbench.

Program Design Patterns

Jackson introduces a number of rules or programming patterns that were derived from observation and
experience in processing sequential data streams: single read-ahead rule, group-id rule, multiple read-
ahead rule, backtracking, structure clashes and program decomposition, and program inversion. These
patterns, which are similar to the design patterns encountered in object-oriented design (OOD), are en+
countered in elementary programming and reflected in the designs produced using Jackson Workbench.
Recognizing program design patterns while learning basic program design prepares students for later
OOD design patterns encountered in designing information systems.

Using Jackson Workbench to Teach JSP

Jackson Workbench is a CASE tool for implementing Jackson design methods. It contains an intuitive
JSP Structure Editor for implementing the Jackson Structured Programming (JSP) method and a JSD
Network Editor for implementing the Jackson System Development (JSD) method. In this paper | only
illustrate JSP using the Jackson Structure Editor.

The JSP Structure Editor is well documented in the Help provided as well as in examples that show how
to generate Java code using the overall header, header, and trailer features.

One of the main strengths of the Structure Editor isits “smart” editing feature. The user never “draws:
most tasks can be achieved with a single click thanks largely to a number of "hotspot” images that ap-
pear at different locations on the structure diagram indicating an operation that can be performed at that
point simply by left-clicking. | have not found a more intuitive, easy-to-use structure editor. Use of
Jackson Workbench to design the following ssimple program is illustrated in the following pages:

Multiplication Problem Statement: The basic design method can be illustrated by the following ex-
ample: The lower-left triangle of a multiplication table is to be generated and printed. The required ou-
put is:

688

© 00 ~NO UL~ WDN P

10

4
6 9

8 12
10 15
12 18
14 21
16 24
18 27
20 30

16
20
24
28
32
36
40

25
30

35
40
45
50

36

42
48
54
60

Qurusoff

49
56 64
63 72 81

70 80 90 100

Step 1 Draw system diagram. (This step is omitted since it is obvious.)

Step 2 Draw data structures for program input(s) and output(s). In our example, we only have the out-
put to consider. (Figure 4

First, we open a new JSP file and name it (Figure 4).

Newrile N E

Save jri |) MultT ableJSP

x| & B ek EE-

<

\C)MULTTABLE_IT Eoxes

LELAB] 3 2 COR Boxes:
ICLAB_3_2_COR Conditions
ICJILABL_3_7_COR Frames
ICILABL_3_7_COR Images

ICLAB1_3_2_COR Cperations

File name:

Save as lupe: I!—'«II Files [7.7]

[CIMULTTAELE_IT Conditions [CIMULTTAEI

[CIMULTTAELE_II Frames [CIMULTTAEI
[CMULTTAELE_IT Images [CIMULTTAEI
[CSYMULTTAELE_IT Cperations GENTABLE
[CAMULTTAELET Boxes [Z] GENTAELE
[CIMULTTAELET Conditions @genTable.

I

IM uItT ableDr ataStucture. jzp

Save I

j Cancel |

Figure 4: Opening a newfile

The JSP Structure Editor produces the initial structure shown in Figure 5:

Bl ase structure ditor - O PGUTorMyUse', Mult TableSolution' Fult T able 357 Ful L TableD staStruc bare.jsn =8| =]

File Edit Tools Help

| Dlﬁ.lulﬁlglﬂl Iml-ludnrlhalhrl Ii.l.l.l LEIEEIQ‘IQIQJEH*J m [Bare [Gwits [¥ Op Beoms

MULTTABLEDATAI TRUCTURE I MULTTABLEDATASTRIICTURE Cugrall I-EBl!ErI WULTTABLEDATASTRUCTURE D'-'EFBII'I'I’EIIErI

Ad4d Dperatich

il

Add Condition

MULTTAELEDATASTRUCTURE

Figure5: Initial structure produced by Jackson Workbench

689

Determining Jurisdiction In Cyberspace

Double-clicking on the box labeled Dummy causes the label to be surrounded by a white rectangle, indi-

cating that the text can be selected and over-written (Figure 6):

[} 15P Structire Editer - £ PGUTneM yLise), Mult TableSo kit MultT abke 357, Mult T able DotaSbou chre s =101 =]
Flla Edt Tools Help

|] E|E|I|&| [rrsctire wmsaer] veare]| [6| DI E| L[| | || || Femmn] 17 B 1 dlsis O B

WLLTTAEL ECATAETRUCTURE I WLLTTABLECATRETAUCTURE Cvzrall Header | MJLTTABLECKTRASTRUCTURE Cverall Trailer|

Add dparation |

MLLTTABLEDATASTRUCTURE

Figure 6. Replacing “Dummy”

Replacing Dummy with row as the label, and preparing to change type to iteration: dragging the mouse

to the upper right-hand corner causes “ Change box type” to appear (Figure 7).

E015P Steuctiae Fdbon - CAPGIEDHyllse' Ml Tebie Satetionull Tatde 15Fyull TabdeDalaStrudbure. jsp =101 =]
Flla Edl Tonls Help

Ol 8| || & [o s [8]0 0] 2 |0 [O [L Frormr =] 1 B [s O B

WLLTTARLECATAETRUCTLIRE | WULTTASLEDATAS TRUCTLIRE Cuerall Header | MULTTASLEDATASTRUCTURE Overal Trailer |

odd Oparalion

MULTTABLECATASTRUCTURE

Figure 7: Changing Box type

Clicking the mouse will cause the symbol for an iterated component to appear in the upper-right corner

of the box (Figure 8):

B 15P Steuctiae Fdton - CAPGDrHyllse! Mal Tabie Sateton=ull Tatde 157 =4ull TatdeDataStrudbure. s =181

Fila Edl Tools Help

Dlﬂlﬂl'l' g| [emee teace| e [B E| @] #|5 | m || cL 0| @] Femav 2] [Bars (7 uis # 0p Boes

WLLTTAELECHTARTRUCTUIRE | WULTTAELEDATAS TRUCTLIRE Cuerall Hender | MULTTASLE DATASTRUCTURE Overal Trailer |

odd Oparafon

MULTTABLECATASTRUCTUIRE

Figure 8: Box Type changed to an iterated component
690

Qurusoff

Moving the mouse to bottom of box labeled “row” in order to add a sub-tree causes a "hotspot” image to
appear just below, indicating that a new sub-tree can be added by positioning the mouse over the “hot-
spot” and left-clicking (Figure 9):

- -
B} 15 shrusctises Editor - 00 PGLITesstban, Mt T abloSokution)it Tab b 359l Tab e Dat aStructire jop

Fie Edil Tooz Halp

DI@IHI. =] EI [tuchure Hoarder| Tusitus| |i .l.l.l E |2 EIE!IE!IQI! [Famatta... =] I Bare [aulie ¥ 0pBmes

MULTTELEDKTASTRUCTIRE I MULTTEEL EDATASTRUCTURE Cuarall Haader] MULTTABLEDETAETRLUICTURE Cvaral Tralkar |

A paraiion

T |

MULTTAELEDATASTRUCTURE

|

Add Condioh

=1 |l

Figure 9: “hotspot” image showing placeholder for new sub-tree

A new sub-tree is added after clicking the small rectangle centered below the iterated row component
row (Figure 10):

EQJSP Structure Editor - C:hPGUForMyUse’ Mult TableSolution', Mulk T able ISP MultTableDataSEructuressp

File

Edit Tools Help

O

]

=

=

=

IStluciure HeaderlTlaiIerl Ii.l.l.l

=

Gy

&

&

INolmaI Wi,
]

Add Operation

MULTTABLEDATASTRUCTURE

MULTTABLEDAT | MULTTABLEDATASTRUCTURE Overall Header' MULTTABLEDATASTRUCTURE Overall Trailerl

Figure 10: A new sub-tree added

691

Determining Jurisdiction In Cyberspace
In Figure 11 below, we complete the data structure for multiplication table by |abeling the new sub-tree
with “element” and changing the box type to an iterated component:

EQJSP Structure Editor - C:)PGUforMyUse’, MultTableSolution’Mult T ableJSPMultT ableDataStructuresp

File Edit Tools Help
D 4 n E B % Istructure HeaderlTraiIerl Ii.l.l.l a m H ﬂ a ! Im

=
MULTTABLEDAT | MULTTABLEDATASTRLUCTLUIRE Overall Header' MULTTABLEDATASTRUCTURE Overall Trailerl

Add Operation

MULTTABLEDATASTRUCTURE

Figure 11: Completed data structurefor multiplication table

Step 3 Form program structure based onthe data structures from the previous step by adding verbsto
each component to make them actions

Thisis shown in Figure 12 below:

E‘ﬂJ'_-'-' Structure Editer - L PEUoryUse’ MultTa bleSalut on' ol T sbledSF Mult Table s sicStrucbure]sp

File Eoit Toolz Hsip

ﬂ I=.-._I “I .I -I 'El Iﬁ Haadar TuiImI ﬁ .l .I .l ﬂl ﬂl I ﬂl o) | o | !l [Hama vio =] [Bars [Quks F Op Boges

MULTTABLEDAT I MULTTABLEBASICSTRUCTLIRE Crhviral Haauarl MULTTAELEBAIICSTRLICTLIRE Chveral Tmler|
Al CperaEion

'lI I L3
A Condtion |
1 | L] [r

Figure 12: Basic program structure

692

Ourusoff
Step 4 List and alocate operations

We list the elementary operations needed to perform the task, and answer for each operation, "How of-
tenisit executed?' and "In what program component(s) does it belong?' The operations must be ele-
mentary statements of some programming language; we have chosen Java.

Operation how often? |where?

1/MAX=10; Once at start

2 row=1; Once at start

3 col=1: once per row in component that produces a table row, at start of com-
ponent

4 row+: 9 times in component that produces a table row, at end of compo-
nent

o . . in component that produces a table element, at end of

5 col++; 55 times component

6 element = row* col; oncel per ele- in component that produces a table element

7 System.out.print(element); 55 times in component that produces a table element

Note: Although Jackson Workbench is not used in this step, we include the table of operations in order
to make subsequent steps intelligible.

Step 5. Create the elaborated program structure with operations and conditions added to the basic pro-
gram structure

After having created a table containing a list of operations needed together with the number of times
each occurs and in what component each appears, we are ready to create the elaborated program struc-
ture from the basic program structure. We click the Bars on the menu bar, and click Add Operation.

Ef'_l 151 Structure Editor - O PEUFort yUsetMult TableSalution', Huolk Table 150 Fult Tablef

File Edit Toola Help

D8 @ @] @] Fmor v o] [8 B|@[E] #]S[0[60] 0@ For =] @ e C s @ g
MULTTASLEDAT I MLTTABLEBRSICSTRLIG TLIRE Cvarall Haadar| MULTTABLEBRSICSTRLICTLIRE ':"'l'Eri"Tﬁ"Erl
Add Oparabon

Bl

Add Conditian

A] | 3 | 4} *

Figure 13: Adding an operation

693

Determining Jurisdiction In Cyberspace

The Operations status box (lower right) adds the 1% operation, and a space opens up under Add Opera-
tions to add the 1% operation. We type MAX=10 (Figure 13)

At this point, we must insert a new level into the structure diagram. We wish to alocate the 1% opera-
tion at the start as the leftmost leaf of the root node. But, since the root is an iteration, we must convert
it first into a sequence consisting of our 1% operation and a component, Generate rows, an iteration with
one component, Generate row. (Otherwise, we would have under the root our 1st operation followed by
a component that repeats — and the root would be neither a sequence nor an iteration - it would be a
badly-formed component. We first position the mouse just under the root, and when a small box ap-
pears, click on it to create a new box under the root. We then slide the mouse on the arc connecting the
root to the new box, and move it left: a small box will appear — it is shown below (just beneath Generate

Mult Table), and, if we click on it, we create the box as aleft sibling of the new box under the root (Fig-
ure 14):

€ r=F structure Editor - CrFGUTnmplse), Mult Tabie Sodut iom), Mu lETable 150 Mt T ableRasicStmcheejsn

File Edi Taolz Help

EEE = IR Hudlrl 'rr-u-rI Ii.l.l.l ﬁlﬂlﬂlalﬂlql!l Fmium *| F Bars [Quls & OpBmms ll
WULTTABLECAT | MULTTABLEBREIC ATRUCTURE Oversll Hlllﬂurl MULTTAELEBREICSTRUCTURE ﬂwlerﬂih’l
Al dparaion

iz aln | =

Add Condion

T — -

#idd Cuit Condbion I
T

Figure 14: Inserting an intermediate level

After we click on the empty box shown above, we allocate the 1st operation to the leftmost box, by

dragging the 1 from the Operation box (lower right) into the leftmost leaf of our root. Then, we add a
label to the new box to its right (Figure 15):

File Edt Taols Help

DI#IEI'I’lEI Stnckie Hudlrl 'rr-unI Ii.l.l.l Hlﬁlﬂlﬂlﬁlqlll Fm-m -| F Barzs [C Quks ¥ OpBmus ﬂ

WULTTABLEDST | MULTTAELEBAEICSTRUCTUIRE Overall Header| MULTTAELEARSICSTRUCTURE Overall Trailer |

Add Opersion

= -

Ldd Condan

| | 3
A Gt ondition

a1 o : >

Figure 15: Allocate an operation to new level

694

Qurusoff

Next, we will add a condition to our program structure. The condition for continuing the iteration, Gen
erate rows, is that row is less than equal to MAX (we mode iteration using a while construction here).
We click Add Condition, and a space opens up under the Add Condition menu bar on the left, and a 1
appears in the Condition bar (lower right). We add the condition, row <= MAX. Then, we drag the 1 to
the Generate row box (Figure 16):

B 15P Structure Editor - (5 PGUFor My s e, Ml TasbleSa hbion | Fult Talble Y50l Tab e B Sincbure jsp
File Edit Tonls Help L
| |'_"|| glﬂl .I -Iﬂl Im H..d..|rui|.r| Ii.l.l .I ﬂlﬁ|ﬂ|ﬂlﬂ|ul‘| m ¥ Bara [duita F Op Boxes
MULTTAELEDAT I MULTTAELEBAEICSTRUCTURE Cueral I.-Ieader ; i
Al Cperation

-

Aod CondHion duit Condiliors

a1 =l

£ Bt Candtian |

Figure 16: Adding a condition

We complete the elaborated program structure by adding other operations and conditions (Figure 17):

‘!-I 1= Shrmcbare Friibaer - 3 FSUMar e it T able Solalion ot Tahle 15 -mm I

FAla Edit Toals Help [E rghsh [Lkded Blaiesi]
D) | |] B8] | [romcior nss| v [|]| 3| 50| B[G| G [] oo =] FF s it ¥ cponss 8]

NLTTRELEDAT | MTFJH.EE!SE#TRUU}U.RE IIHHIHBBH" H.l..iL'i'I'n'HLEBAEII:BTHUCTUHE mr&ll'l'l.‘sl.lk’l - . .
Ard Cpsmration I

Figure 17: Elaborated program structure

695

Determining Jurisdiction In Cyberspace

To generate a Java program, we need to add the class header as the overall header, the header for main
as the header together with primitive type declarations, and atrailer consisting of aright curly brace, }.
The Java program together with its output generated from the elaborated program structure is shown be-
low in Figures 18 and 19.

E:' TextPad - [\ PGUForMyUse', MultTableSolution',MultTableJava'MulkTa 3.' ;lglJ
File Edit 3Search Wiew Tools Macros Configure Window Help ;Iilll
i2lxl | 1 jclass MultTableD —
tAultT able0 java 2 { —
3 public static woid main(String[] args) {
4 int MA¥Y, row, col, element:
5 MAX=10:
b row=1;
7 while (row <= MAX)
8 {
9 caol=1;
10 while (col <= row)
11 {
s 12 element = Tow=col:
13 System.out._print(element]):
| 4NS! Characters Bl 14 System.out.print("~t"];:
a3 ! ﬂ 15 col++;
34 & 16 }
%g g 17 System.out.print{"~n"):
kT % 18 row+H+
32 & 19 1 1=
N @
41] 2,1, } |;|
7 = |[<] r
I [1 | 1 T A

Figure 18: Generated Java code

Conclusion

The quality of contemporary software leaves much to be desired (See [Jackson, 2001], p.331 for an ex-
ample in a flagship product with millions of copies sold.) Our best hope for producing better software is
to enforce a software engineering discipline that focuses on problem analysis and design. In this paper, |
have illustrated the use of JacksonWorkbench and JSP to incul cate students from the outset with a soft-

€. TextPad - [Command Results] } =10 x|
File Edit Search Wiew Tools Macros Configure Window Help = | = |5|
(| =l 1 =
Command Results % g 3 =
FultT able0 java 1 g 15 16
5 10 15 20 25
3 12 18 24 a0 36
7 14 21 28] 35 17 49
(=] x] a 16 24 el 10 18 56
9 18 27 36 45 54 63
ANSI Characters || 20 a0 40 50 60 70
| |
33 " ﬂ Tool completed successfully =
5 =1 14 | of
| [7 | 27 |Read W|Bluck [Spne [Rec [Caps v

Figure 19: Output produced by generated Java program

696

Ourusoff
ware engineering approach to designing programs.
A subsequent part of this pedagogy continues with the design of information systems using Jackson Sys-
tem Development (JSD) — it is object-based and uses the design techniques of JSP — in conjunction with

the Network Editor of Jackson Workbench. | suggest that Jackson Workbench and Jackson methodol-
ogy (JSP and JSD) could form a promising introductory software engineering curriculum.

Further experience and evaluation of this approach is certainly needed. And, Jackson Workbench is not
a finished product and its author does not have a timetable for completing it. Although Jackson Work-
bench is adequate to design and generate code for programs using JSP, | have only used it for very sim+
ple information system problems using JSD.

Finally, we should train students to think in terms of problem classification and decomposition. Just as
we do not wish to jump into programming without proper design, we do not wish to jump into design
without proper analysis.

References
Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.
Glass, Robert L. (1997). In the Beginning: Recollections of Software Pioneers. Wiley-1EEE Press.
Gries, David. (1981). The Science of Programming. Springer-Verlag.
Hoare, C. A. R. (1969). An Axiomatic basis for computer programming. Communications of the ACM. 12(10): 576-580.

Hoare, C.A.R. & Sridhar, K.T. (1985). JSD Expressed in CSP in Data Types and Persistence. (Appin). Informal Proceedings
1985: 49-82. (Reprinted in "JSP& JSD: The Jackson Approach to Software Methodology” by John Cameron. |EEE
Computer Society Press (2nd edition), 1989).

Jackson, Michael. (2001). Problem Frames. Addison-Wesley.

Jackson, M. (1995). Software Requirements & Specifications: A Lexicon of practice, Principles and Prejudices. ACM
Press/Addison-Wesley.

Jackson, M. (1983). System development. Prentice-Hall International.
Jackson, M. (1976a). Principles of Program Design. Academic Press.

Jackson, M. (1976b). Constructive Methods of Program Design. In Lecture Notes in Computer Science Vo lume 44, 1976,
pages 236-262. Copyright 1976 by Springler-Verlag (See http://dspace.dial.pipex.com/jacksonmal for a bibliography of
Jackson’swork.)

Keyword Computer Services Limited. Jackson Workbench. (2002). Contact: KCSL @BTInterent.comor
Jm.Newport@BTInternet.com or +44 1494 870427). Version 2.04 has been used throughout.

Shackelford, Russel. (1998). Introduction to Computing and Algorithms. Addison-Wesley.
Wirth, Niklaus. (1971). Program Development by Stepwise Refinement. Communications of the ACM. 14(4): 221-227.

Biography
Nicholas Ourusoff learned to use JSP as a programmer-analyst for the World Health Organization from
1975-1979 and used JSP as a United Nations Census Data Processing expert in validating population
and housing data for Senegal and Guine-Bissau. From 1984 until the present time, as a teacher of com+
puter science and computer information systems, he has continued to follow the evolution of Jackson’s
thought and has tried to bring attention to Jackson’s innovative work in program and information sys-
tems design and more recently in problem analysis.

Home Page: http://www.geocities.com/nourusoff

697

