
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Short Paper

Towards a Self-Healing Network
in Controlling Access to Network Applications

Abdullah Gani and G. Manson
University of Sheffield, Sheffield, UK

agani@ieee.org gam@dcs.shef.ac.uk

Abstract
A self-healing network is a ‘dream’ for every network designer today. Abstractly it is a network that ca-
pable of maintaining the availability of network services. This would not be impossible to be turned into
a reality if the networks are embedded with intelligence. By having the intelligent capability the network
can be self-managed in response to events that taken place within the network itself through the learning
mechanisms. This paper presents the User Manager Agent System (UMAS) learning performance in
controlling a request for network application session. ANFIS of Matlab v5.3 has been used to simulate
the learning process in which it bases on the training data of network state. The work also had revealed
some weaknesses of ANFIS in processing a large volume of training data sets and substantial amount of
time taken for processing.

Keywords : Intelligent Agent, Neuro Fuzzy Logic, and Network Application Management

Introduction
Fundamentally, a network is established for providing services and applications to the users, therefore,
the network should be user-oriented to fully cater the needs of the users. However, the demand for hav-
ing a wide range of applications has never had decreased instead it grows exponentially due to a number
of reasons. Networks, on the other hands, are expected to be capable of fulfilling all the demands and
maintain the level of services that had been provided before. While maintaining the service availability,
the network is also expected to be able to cope up with changes in the user’s requirements. This paradox
has led to the requirement of having the control mechanisms for achieving those goals (Peterson, 2000).

A network is incomplete if no services are offered. However, in providing those services, resources are
needed. Users expect the network services should be available and run at an accep table level of Quality
of Service (QoS) (Wang, 2001). On the other hand, the administrators have a responsibility of control-
ling the usage of network resources toward productive and legitimate usages. These goals never had ac-
complished satisfactorily for both the users and the administrators. One of the reasons is that the ne t-
work resources are always in short supply and costly to acquire and to maintain. Competing for re-
sources by applications in the network can cause resource exhaustion. The term of resource exhaustion
here refers to a state of which the network cannot provide more services in order to run an application.
This is because the available resources have reached the threshold values that disallow more requests to

be granted.

This paper presents an intelligent agent system
that capable of performing control mechanisms on
a user’s request for a network application. Intelli-
gence here refers to an ability to produce a desir-
able behavioural outcome of ma intaining network
resource state equilibrium. In other words, it is an

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee prov ided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Towards a Self-Healing Network

438

ability to process the request accurately and dynamically.

In the next section, an overview of the problems that related to the network application are presented and
followed by the description of UMAS.

Network Applications
Generically, network applications are the software that runs in a network environment to get jobs done.
For example, an application for sending messages through the network infrastructure is a network appli-
cation. Network applications can be perceived by different schools of thought. One might perceive that
network applications are applications that only can run if the network infrastructures exist. Others might
perceive differently and to them network applications are applications that the network can offer includ-
ing local applications such as tools for a host. Despite differences in way of defining network applica-
tions, both shares the same common feature that is network application require network functions to run.
Network function is system software that enables the applications to be run in the network.

Nevertheless, the discussion of network application is incomplete if the network resources are not in-
cluded (Croll, 2000) . This is because the network applications are related to network resource utilisa-
tion, which is a requirement for a network application to be functioning. In other words, a request for a
specific network application is effectively meant requesting network resources, as they are interdepend-
ence. In an email system, when a user wishes to send a message to the addressee, the user has to make a
request for a number of network resources for processing and transmitting the message. Similarly to a
request of accessing a web site, a number of resources are needed such as bandwidth as a ‘transporter’,
services in term of protocols, processors in term of hardware and software.

In addition, the availability of network applications is determined by the service existence. This is be-
cause services are a prerequisite requirement for a network application is to be available. Technically,
network applications are processes that communicating and a process can be perceived as a program that
is running within end system (Kurose, 2000). For example, when a user wishes to send a message elec-
tronically, certainly services are needed to forward packets of message to a Mail Transfer Agent in a
server from a User Agent that is located in a workstation (Raghavan, 1998).This service is actually at-
tained from a number of processes that are communicating with each other to enable the message pack-
ets to be forwarded. Plainly this shows that network applications depend on services in order to be
available and functioning. In short, we can say that network resources determine the network services
and network services in turn determine the network applications or via versa. Let say, a collection of re-
sources, R, is represented by{ : }r r R∈ ; a collection of network services, S, is represented by{ : }s s S∈ ;
and a collection of network applications, A, is represented by{ : }a a A∈ . Despite that
A S R≠ ≠ but ,R S S A→ → and this would be become a premise for the research.

Interdependence between network applications and network services however has created the problem
of performance deterioration in which network applications have a slow response to a request due to the
required resource has reached a threshold level. This can be avoided if intelligent agents are deployed to
learn about the condition of the network and to make decision according to the current situation of the
network. In the next section, a proposed system is introduced.

UM AS Description
Generically, UMAS is an interface between users and networks for the purpose of controlling network
resources as a result of user’s request of network application. Figure 1 shows a high level diagram of
UMAS with the example of network resources. The Router and server are the examples of network re-
sources and both are required by the network applications.

 Gani & Manson

 439

The UMAS determines the access time of a session for a particular user so that the network resources of
bandwidth can be allocated accordingly to meet the requirements of application and Quality of Service
(QoS). For example, if a number of users accessing network resources are relatively small compared to
available resources, then even the least critical applications can be allowed to access the network re-
sources. However, if the number of users increased, then the least critical application sessions will be
discarded from the network.

When a user logs into a network, the UMAS will read the profile file of the user and retrieve the current
available knowledge of the network form a knowledge base. A Knowledge base is a repository for the
learned knowledge of network element usage such as router, bandwidth, servers and applications. A Pro-
file file is created by a system administrator and it contains a collection of user settings such as desktop
attributes and allowed network connections (Sosinsky, 2000). This knowledge is critical in the process of
granting access to the network application request because it helps the UMAS to decide the best option
for a network to be utilised for a particular session. The decision making process for determining a ses-
sion period will be updated periodically at the interval time of 100 ms., which is believed to be sufficient
for establishing communication between UMAS with other network objects.

The UMAS consists of several agents which each of them are assigned with a relevant task. Figure 2
illustrates the main components of the UMAS in which are actually intelligent agents. The four compo-
nents are Knowledge Learner, Granter, Enforcer and Verifier. All the components are governed by the
manager that resides in the UMAS.

UMAS

Granter

User’s Request

Enforcer Verifier
Knowledge

Learner

Figure 2: UMAS components (Gani, 2002b)

User
Network

ResourcesUMAS

Router

Server

Figure 1: High Level Diagram of UMAS

Towards a Self-Healing Network

440

The Knowledge Learner is the core component of UMAS and is responsible for capturing a set of var i-
ables so that they can be stored in the repository for future retrieval. When a request is received by the
UMAS for accessing a particular application, it needs to be processed with the consideration of network
resource availability and its criticality to the organisation’s objectives. The UMAS forwards the message
of request to the Granter for a decision whether to approve or otherwise. In deciding on the request, the
Granter relies on information about the users that are currently logging in to the network and the ne t-
work resource usage. These pieces of information are necessary in order to determine the consequences
of potential approval upon the network performance. The Granter will use Fuzzy set data supplied by the
Knowledge Learner to compute the time that practically can be allocated for the session. The decision
taken by the Granter then will be forwarded to the UMAS for execution.

The component of Enforcer is responsible for executing the decision by communicating with the routers
to inform them of changing packet priority. At the same time, the Granter will set the clock on and start
counting. However, the Granter needs to inform the Verifier as well because it is responsible for verify-
ing the decision by checking the user profile with the server. If the allocated time is ‘correct’ then the
user can have such application to be accessed otherwise a new computation of time will be asked. Of
course, the UMAS needs to be informed about any decision taken by both the Granter and the Verifier,
as it needs to inform the user too.

User Manager Agent System (UMAS) also acts as an intermediate filter mechanism between network
and the users for achieving equilibrium state of network in providing the best level of services in term of
network service responsiveness. The UMAS contains several independent intelligent agents that each
has a specific task in which under the control of agent manager. Figure 3 shows a high level diagram of
UMAS in which it has an ultimate goal of coordinating goals of user and network fulfilment. Obviously,
users use the network applications without knowing the state of the network. In many cases, certain
servers are heavily used whereas other might be idle. Similarly certain application may heavily r e-
quested and others may not. So, UMAS will facilitate both ends goals with three sub-goals – execute
management actions, process access request and build knowledge base. Hexagon shape represents task
that needs to be performed in order to achieve the goal.

Coordinate
Goals

Fulfilment

Execute
Management

Actions

Process
Access

Requests

Build
Knowledge

Base

Fast Minimum
Error

Acknowledge
User

Update
Availability

Implement
Action Decision

Check Network
Service

Availability

Acquire
KnowledgeLearn Knowledge

Authenticate
Request

Check Resource
Availability

Figure 3: Goal Diagram of UMAS (Gani, 2002a)

 Gani & Manson

 441

The UMAS will receive a request for a network application and processes it accordingly. The request
has to be authenticated in order to protect legitimate request. Other agent checks the resource availability
by interfacing with the Learner agent. Both agents are executed synchronously. An action decision is
passed over so that it can trigger the learning about the ne twork to take place.

UMAS Learning
As depicted in Figure 3, the UMAS needs to learn knowledge from the Knowledge Base (KB), which is
a repository of training data sets. The task of Learn Knowledge has two soft-goals - fast and minimum
errors, which are the target of the UMAS learning capability. These features are crucial in determining
timely decision that can be taken. As the size of training data sets are relatively large and contain a num-
ber of sets, the learning processes need to be executed in stages. Besides, the output of a particular learn-
ing process is an input to another learning process. A unit of processor handles only a particular set of
training data in order to make the learning is efficient.

The UMAS processes the request for granting a permission of accessing a particular network applicatio n
based on several parameters such as
user’s role, application criticality and
bandwidth condition. Every session is
granted in term of period duration,
which is depends on the ne twork load.
For example, if many users heavily
use certain application, plainly an ad-
ditional request will make the level of
service deteriorates. Similarly the
throughput rate will drop substantially
to a level of service that cannot be ac-
cepted by the users. Therefore, it is
necessary to have an intelligent learn-
ing about the network load before
permission of the session can be
granted.

For the learning purposes, the UMAS
uses a Neuro Fuzzy Logic (NFL) algo-
rithm in which it contains a combina-
tion of fuzzy logic and neuro network
algorithms. This combination has enabled the rule sets are extracted from the training data automatically
by ANFIS of the Matlab software. The UMAS has to establish a reliable learning mechanism before it
can be integrated into the development (Hopgood, 2001). The training data sets consist a numeric repre-
sentation of number of users, throughput and application criticality.

Figure 4 shows two inputs that have been used and each has three membership frequencies - low, me-
dium and high respectively.

Simulation
The UMAS is a system that requires a great number of interactions with many agents to be fully func-
tioning. However, the main factor in which it relies will be on the algorithm used to do the processing
especially in decision making for allowing a user(s) to have certain period of accessing the application.
Fuzzy Logic is used to help the Granter to make a decision upon the request received from a user(s). As
the Granter needs to compute the time for allowing a user to access a particular application, it requires a

Figure 4: Neuro Diagram of UMAS

Towards a Self-Healing Network

442

set of Fuzzy set data. Firstly, the Granter needs
the value of the applications’ criticality. The
criticality of the application can be represented
in a range of values (1-10) in which the higher
value denotes higher criticality. However, the
demarcation of criticality is quite fuzzy because
certain application can be quite critical during
weekdays and become casual during weekends.
Secondly, bandwidth availability is a nother
variable that needed in the computation of time.
The ‘Fuzziness’ of the bandwidth availability
can be viewed in terms of what is the best
throughput rate for application for smooth exe-
cution. Again, this depends on the application
requirements.

Both variables are divided into three membership frequency (MF) – low, medium and high. Table 1
shows the assignment of values for all MFs. All the values were assigned according to the current policy
requirements and they are subject to changes in the requirement.

MATLAB has been used to simulate a few scenarios to automatically allocate users with different
times depending on the application criticality and BW availability. Figure 4 illustrates the first extreme
scenario in which both input variables are in a low state and it shows that the access is relatively a short
period. This indicates that both variables have a significant correlation towards the time allocated.

The simulation was conducted by Matlab ver 5.3. and the purpose of simulation was to establish rules
with minimum error rate that will be integrated into the UMAS learning mechanisms. In achieving this,
the training data that was collected using Windump and Windows Network Monitor tools, need to be
converted into numeric format before being put into use. This is because of the ANFIS, the learning a l-
gorithm of neuro fuzzy logic can only accept numeric representations and limited input (Cox, 1999),
(Knapik, 1998). For that reason, the simulation was based on two set of inputs – application criticality
and user priority. Both inputs were given a similar scale of 1 – 10. A smaller number for application
criticality denotes the higher criticality it was.

Figure 5 illustrates the rules that have been automatically created by the ANFIS, which shows the allo-
cated time is 100% if the application criticality and user priority are high. On the other hand, the allo-
cated time drops substantially if both inputs
decrease. However, because of the criticality
was given higher weighting, any changes in
the values significantly affect the outcome of
the allocated time.

Figure 6 is the results of the simulation in
which it clearly shows that all data were dis-
tributed into three clusters – high, medium
and low. Most the data were scattered in the
medium interval and with minimum error
rate. Figure 7 shows the results of simulation
that indicate learning had taken place with the
error rate that can be accepted

Figure 5: Generated rules

 Low Me-
dium

High

Bandwidth
Availability
(BW)

0 – 35 36 - 60 60 -
100

Application
Criticality

0 – 3.5 3.6 –
7.4

7.5 -
10

Allocated Time
(h)

 0.5 1.00 –
2.00

2.00 –
4.00

Table 1: MF values assignment

 Gani & Manson

 443

Conclusion
The undertaken simulation had generated a set of rules with minimum error rate that can be integrated
into the UMAS agents’ development. The outcome of the simulation can be used for the UMAS agent to
decide the best allocation of session time for a user.

The UMAS has the capability of making intelligent decisions based on the cond ition of the network and
on the user’s roles by performing learning. This enables the network resources to be allocated for the
achievement of network establishment objectives and the organisation’s goals. At the same time, users
can receive an appropriate level of network services, in term of application availability and satisfactory
network responsiveness. As the UMAS has the learning capability, the Knowledge Base will be gradu-
ally getting larger and this could lead to higher intelligence attainment of the UMAS. The idea of
UMAS also can be applied into other network management activities such as traffic management, Qua l-
ity of Service and as a ‘teacher’ for training an agent that is newly introduced to the ne twork.

Reference
Cox, E. (1999). The Fuzzy Systems Handbook - A Practitioner's Guide to Building, Using and Manipulating Fuzzy Systems.

AP Professional.

Croll, Alistair and Packman, Eric (2000). Managing Bandwidth: Deploying QoS in Enterprise Networks. New Jersey, Pren-
tice Hall.

Gani, Abdullah. et.al. (2002a). Developing an Intelligent User Manager System for Controlling Smar School Networks. Ma-
laysian Journal of Computer Science 15(2).

Gani, Abdullah. et.al. (2002b). The Roles of Intelligent User Manager Agent for Controlling Access to Network Resources .
3rd. Annual PostGraduate Symposium The Convergence of Telecommunications, Networking and Broadcasting. John
Moore Univ, Liverpool, UK.

Hopgood, A. (2001). Intelligent Systems for Engineers and Scientists. CRC Press LLC.

Knapik, Michael & Johnson, Jay (1998). Developing Intelligent Agents for Distributed Systems, Exploring Architecture,
Technologies and Applications. McGraw Hill.

Kurose, James F.& Ross, Keith W (2000). Computer Networking - A Top-Down Approach Featuring the Internet. London,
Addision Wesley.

Peterson, Larry & Davie, Bruce S (2000). Computer Networks - A System Approach. San Francisco, Morgan Kaufman.

Raghavan, S.V. & Tripathi, Satish K. (1998). Networked Multimedia Systems - Concept, Architecture, and Design. N.Jersey,
Prentice Hall.

Sosinsky, Barrie & Moskowitz, Jeremy (2000). Microsoft Windows 2000 Server in 24 Hours. Indianapolis, SAMS.

Wang, Z. (2001). Internet Quos: Architectures and mechanisms for quality of service. San Francisco, CA, Morgan Kauf-
mann.

Figure 6: Results of the Simulation

Epocs Error rate

3 0.0000393

100 0.0000618

200 0.0000714

500 0.0000618

Figure 7: Error Rate Results

