
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Regular Paper

Measuring the Complexity of Mobile Agents
Designed with Aspect/J

Jana Dospisil and Arin Khemngoen
Monash University, Australia

jana.Dospisil@infotech.monash.edu.au akhe2@student.monash.edu.au

Abstract
This paper describes research in measuring the code complexity of mobile agent applications designed
with aspect-oriented programming (AOP) as captured in the AspectJT M language. The modularized code
encapsulating agent interactions is characterized by class hierarchies which are shared structures. Mobile
agent design suffers from frequent changes in interaction protocols which leads to chaotic development.
Additional subclassing, modification to protocols, restructuring of the class hierarchies, changes to visi-
bility of attributes and methods overloading result in increased complexity of the code and disorder.
Our experonce with fine tuning of protocols shows that the probability that a subclass will not consis-
tently extend the protocol content of its superclass is increasing with the depth of hierarchy. The tools
like Hyper/J and Aspect/J support the separation of concerns thus allowing different approach to evolv-
ing the protocol content rather than extending the class hierarchies. In this paper we present the ap-
proach to analyzing protocol design and assessing the complexity by measuring the entropy of the mo-
bile agent application code designed with Aspect/J. The comparison of complexity measures with the
same mobile agent application designed and maintained as typical Java application indicates reduction
in complexity in favor of design with Aspect/J.

Keywords : mobile agent, contract net protocol, complexity, entropy based metrics, separation of con-
cerns

Introduction
Agents are viewed as the next significant software abstraction, and it is expected they will become as
ubiquitous as graphical user interfaces are today. It is envisaged that the decision making processes and
interactions between agents will be very fast (Kephart et.al., 1998) and the agents will be characterized
by fast growing complexity of the code. The new approach to development is separation of concerns and
relevant tools such as Aspect/J (Kiczales et.al. , 1997) or Hyper/J (Ossher & Tarr, 1998) which facilitate
the development process (Kendall, 1999, Dospisil, 2003).

The source of the problem in software development is that some kinds of behaviour or functio nality
cross cut or are orthogonal to classes in many object-oriented components and they are not easily modu-
larised to a separate class. Examples of such behaviour include the following: synchronization and co n-

currency, performance optimization, exception
handling and event monitoring, coordination and
interaction protocols, and object views. To meas-
ure the quality of separation either in N-
dimensional space or even the orthogonal separa-
tion only as seen in Aspect/J, the new set of com-
plexity metrics is required.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Measuring the Agent Code Complexity

230

Layout of the paper: Section 2 provides a brief overview of negotiation protocols and complexity meas-
ures. Section 3 discusses the use of AOP in mobile agent design. Section 4 provides a brief overview of
entropy metrics used to measure complexity of design. Section 5 contains some results of our experi-
ment.

Background

Negotiation Protocols
Negotiation is a search process. The participants jointly search a multi-dimensional space (e.g. quantity,
price, and delivery) in an attempt to find a single point in the space at which they reach mutual agree-
ment and meet their objectives. For many-to-many coupling or interaction between participants, the
market mechanism is used, and for one-to-many negotiation, auctions are more appropriate. The market
mechanism often suffers from an inability to scale down efficiently (Osborne & Rubinstein, 1990) to
smaller numbers of participants. One-to-many interactions are influenced by strategic considerations and
involve integrative bargaining where agents search for Pareto efficient agreement.

Many different types of contract protocols (cluster, swaps, and multiagent, as examples) and negotiation
strategies are used and have been experimentally implemented (Sandholm & Lesser, 1998; Mass-Colell,
Whinston & Green, 1995 and others). Agents based on constraint technology use complex search algo-
rithms to solve optimization problems arising from the agents' interaction. In particular, coordination
and negotiation strategies in the presence of incomplete knowledge are good candidates for constraint-
based implementations (Nareyek, 1998)

Contracts in automated negotiations consisting of self- interested agents are typically designed as binding
(impossible to breach). In cooperative distributed problem solving, commitments are often allowed to be
broken based on some local reasoning. Frequently, the protocols use continuous levels of commitment
based on a monetary penalty method (Sandholm & Lesser, 1998). The inflexible nature of these proto-
cols restricts an agent’s actions when the situation becomes unfavourable. The models, which incorpo-
rate the possibility of decommitting from a contract with or without reprisals (Sen, & Durfee, 1994 and
Smith, 1980) can accommodate some changes in the environment and improve an agent’s gain. The de-
sign and coding of these protocols is typically too rigid with respect to evolving, and accommodation
dynamic requirements for improvement, in particular in mobile environment. The complexity of these
protocols and large number of exceptions which must be handled is the ma in reason why the resulting
code shows entropic tendencies by deepening of hierarchies and extensive subclasses.

Aspect-based static agent design has been described by Kendall (1999). She proposed role based design
with aspects representing roles. In this approach, a role is a module equipped with rich interface that can
be plugged in and out of an application, as needed. She used Line of Code (LOC) measure to assess the
final code complexity. Our experiments with negotiating mobile agents indicate that such metrics are
insufficient, and lack interpretation framework.

Overview of Entropy Based Complexity Measures
Entropy-based complexity measures are based on the theory of information. This is the approach taken
by Davis and LeBlanc (1988) who quantify the differences between anded and neted structures to pro-
vide an unbiased estimate of the probability of occurrence of event m. This measurement is based on
chunks of FORTRAN and COBOL code (represented by nodes in the DAG) with the same in-degree
and the same out-degree to assess syntactic complexity.

Belady and Lehman (1976) elaborated on the law of increasing entropy: the entropy of a system (the
level of its unstructuredness) increases with time, unless specific work is executed to maintain or reduce

 Dospisil & Khemngoen

 231

it. Entropy can result in severe complications when a project is modified, and it is generally an obstacle
to maintenance.

The use of entropy as a measure of information content, introduced by Harrison, has been around since
1992 (1992). Harrison’s software complexity metric is based on empirical program entropy. Harrison
assessed the performance of these entropic metrics in two commercial applications written in C language
with the total number of lines of code being over 130,000.

The work of Bansiya and Davis (Bansiya , Davis, & Etzkorn, 1999) introduces a similar complexity
measure – Class Definition Entropy (CDE) – replacing the operators of Harrison with name strings used
in a class. The assumption that all name strings represent approximately equal information is related to
the possible error insertion by misusing the string. The metric has been validated on four large projects
in C++ and results have been used to estimate a Class Implementation Time Complexity measure

Utilizing AOP in Mobile Agent Design
In aspect-based design of negotiating agents, we separate two entities: negotiation protocol and negotia-
tion strategy. Negotiation strategy can be seen as a private formalized strategy responsible for computa-
tion of appropriate actions and outcomes. The generated actions and outcomes depend on the role the
agent assumes, the negotiation protocol used, and agent's relationship with other parties (e.g. cooperat-
ing self- interested agent).

Negotiation protocols together with other constraints restrict interaction between participating agents.
Each protocol follows the rules outlined below:

1. A goal which is associated with a set of parameters (attributes)

2. Relationships among participants

3. Timeout and termination conditions

4. Binding rules with regard to penalty, commitment and decommitment.

We need to map the above rules into a set of request and response messages and a set of interfaces
which each agent has to implement. The format of messages (ontology) and the interfaces to support the
protocols must be specified and disclosed. If the selected strategy is not producing the desired results,
the agent should be able to move to a different strategy while still conforming to the given negotiation
protocol. Alternatively, the negotiation can be terminated and restarted with a new protocol and strategy
providing the involved participants reaches mutual agreement in this matter. The implementation of im-
proved protocol performance is typically based on changes to class hierarchies and method overloading
or overriding. To avoid deepening of class hierarchies and other changes, we propose to build negotia-
tion protocols and strategies as replaceable modules encapsulated in aspects.

Brief Overview of Entropy Based Metrics for Aspect/J
With Aspects/J specific features, we focus on reduced complexity as the affect of splitting the control-
flow to multiple streams. Control flow in a program is the order of in which contained sequential units
of code is executed. The local code within a unit (method) does not alter interaction between objects;
therefore, it does not contribute significantly to complexity flow. Control flow is then a measure of ob-
ject interaction.

The entropy based metrics have been proposed and described in (Dospisil, 2003) and tested on small
example of Java code. The primary lexical abstraction in Java is a symbol (called either name or identi-
fier). It is represented by a character string with the following properties: scope (private, protected, pub-
lic, and package), type and storage class (class variable or method, import). Strictly local symbols are

Measuring the Agent Code Complexity

232

excluded from the model: local variables within methods and parameter names in method signature do
not alter object control flow. Primary lexical abstraction in Aspect is the symbol (keyword) and name-
space for pointcuts.

Data collection and extract ion of symbols representing the control flow has been done with concern
graphs and the FEAT tool (Murphy, Lai, Walker, & Robillard, 2001). The structural system model is
composed of different types of nodes and edges:

• Symbol nodes si are end nodes that correspond to global symbols s in the class stream,

• Class nodes cj are represented by the top structural units from which all derived nodes are sourced

Edges represent dependencies between the following elements:

• class nodes and aspects that describe the dependency between aspects and classes using the partic u-
lar aspects. Aspect dependency refers to treatment of crosscuts.

• symbols and nodes which directly provide the source for symbol. Symbol dependency refers to de-
pendencies relevant to processing logic.

Definitions and symbols used in equations are in Table 1:

The total entropy of the system is given by the equation:

() ()EH
V
V

SHPH
e

s+=)(

∑
=

=
I

i
is sV

0

 Total number of all symbol nodes in the graph. We
assume that the number of symbol nodes is within
the range 0 to I-1.

∑
=

=
C

j
jc cV

0

Total number of class nodes range from 0 to C-1

ade VVV += Number of all edges in the graph (aspect edges - and
symbol edges) relevant to the particular symbol and
aspect.

∑
=

=
I

i

s
id eV

0

 Total number of dependency edges in the class
stream traversed to a symbol s (for0<s<=S).
Assumption: the symbol s may occur in multiple
nodes.

∑
=

=
A

a

c
aa eV

0

 Total number of edges with aspects that have an en-
try in class c

(c
ae à ath aspect edge associate with class c); the aspect is used

by multiple classes)

()
s

i V
ep dV

= Probability that ith symbol node is sourced by e
edges

()
d

a V
ep aV= Probability that a random symbol node i has an as-

pect associated with it

 Dospisil & Khemngoen

 233

pe(d) Probability that the dependency edge has length d
(the number of nodes needed to be traversed to
reach the edge e is d)

p(d) Probability that two random symbol nodes i will
have d distance between them.

() () ()i

M

i
i epepSH 2

1

log∑
=

−=

)

Entropy of the total number edges which serve as
information source to a symbol node

() () ()()dpVdpEH s2log∑= Entropy of finding the edge destination if we know
the starting point (symbol source)

() () ()a

M

i
a epepAH 2

1

log∑
=

−= Entropy of aspects

Table 1: Definitions and equations

Weighted Entropy
During our experiment with agent application we established that not all types of edge are equally im-
portant for given symbols. In order to distinguish the dependency edges according to their importance
with respect to a given qualitative characteristics we have assigned to each edge type a non-negative
weight proportional to its importance and significance.

Weights of every edge type have an objective character representing the ratio of the objective probabil-
ity that the edge path is the source of information for symbol s.

() ()
()n

ie

n
in

i eq
eq

ew
log

−=

In this case we obtain the following expression for weighted entropy:

() ()
2

1
∑

=

=
I

i

nn
i i

eqeH

In order to acquire weights for different types of dependency edges, we have introduced finer granularity
for edges which is based on the information provided by FEAT (Murphy et.al, 2001) and experimental
scenarios. For instance, some methods only read object attributes and their weight is very small.

Experimental Results
We have used ranking entropy metrics to estimate the complexity of mobile agent application MOB-
Trader written for mobile agent platform – aglets (Lange & Mitsuru Oshima, 1998). The application
implements complex trading scenarios of multiple vendors (Moderator module) and mobile buyer
agents (Buyer modules). In the Buyer modules, Aspect/J enhances the modularization by placing excep-
tions and handling of preconditions and post conditions in aspects instead of special classes and sub-
classes. Negotiation strategies range from Contract Net Protocol (CNP), Constraint Satisfaction Problem
based solutions, and market based models (game theoretical models).

In order to provide implementation flexibility, each negotiation strategy specific rules and exception
handling are implemented as a set of interchangeable aspects. We have also implemented the same ap-
plication with and without aspects to measure reduction in entropy.
public aspect AspectForGetVendor{

Measuring the Agent Code Complexity

234

 pointcut getListOfVendor(ListManager lMng, Message aMsg)
 :target(lMng)&&args(aMsg)&&call(public Hashtable ListManager.getVendor(..));

 before(ListManager lMng, Message aMsg)
 throws InvalidRegisKeyException, InvalidBusinessException : getListOfVendor(lMng,
aMsg){
 Hashtable buList = lMng.getBusinessList();
 Object infox = aMsg.getArg("buType");
 String buType = infox.toString();
 System.out.println("Looking for->"+buType+" in Hash size "+buList.size());

 if(buType==null) throw new InvalidRegisKeyException("Null key");
 if(!buList.containsKey(buType)) throw new InvalidBusinessException("No such
that business");
 }
}

Figure 1: Example of Aspect for Get Vendor

Aspect/J was used to enhance a modularisation by placing some particular exceptions that might occur
and negotiation process in aspects instead of special modules or classes.

Figure 1 shows the example of code with aspects to handle two particular exceptions: ‘InvalidRegis-
KeyException’ and ‘InvalidBusinessException’. Before getVendor() method of ListManager class is
called, the aspect named AspectForGetVendor() is executed to validate the register information: register
key and business type. The aspect handles two exceptions InvalidRegisterKeyException and Invalid-
BusinessTypeException(). The handling of each exception invokes additional submodule which provides
customized handling.
public aspect AspectForStock implements Runnable{
 private Vector resList = null;
 private Thread resTimer = null;
 pointcut doQuotation(StockManager sMgr):target(sMgr)&&args(String)&&call
(public Quotation StockManager.queryItemPrice(..));
...some lines of code. . .
 after(StockManager sMgr) : doQuotation(sMngr){
 resTimer = new Thread(this);
 resTimer.start();
 }
 public void run(){
 resList = sMgr.getStock();
 int index = (resList.size()-1);
 try { Thread.sleep(10*1000); ………….

Figure 2: Aspect for dealing with threads

AspectForStock () aspect deals with negotiation mechanism implementation on multiple threads. The
aspect is invoked after buyer agent has sent reservation message to seller host (Moderator module). It
starts a thread (see Figure 2) to hold the reserved order for a while until it receives a payment notifica-
tion message from buyer agent. If the response message is not received within acceptable period, the re-
served order will be cancelled.

Protocol performance improvement can be achieved by replacing the relevant aspects with new aspect
code. The other classes remain unchanged.

 Dospisil & Khemngoen

 235

Selected results of the experiment are in Figure 3 and Figure 4.

The Moderator module shows higher entropy for finding edge destination, path entropy (total entropy)
and weighted entropy due to its multithreaded implementation. Entropy H(A-1) was calculated for both
modules implemented without aspects.

The comparison in total entropy and weighted entropy is in Figure 5.

Weighted entropy shows smaller values in both modules because many methods are simple “read” type
methods with very low weights.

Entropy

-1

0

0

0

0

0

1

1

1 2 3 4 5 6 7 8

Symbol

V
al

ue

Symbol run

Symbol onDisposing

Symbol sendReply

Weighted value for run

Figure 4Entropy values for selected symbols

Entropy Comparison

H(S) - symbols

H(E) - edges

H(A-1) without
aspects

H(P) - total entropy

H(S) - symbolsH(E) -
exceptions

H(A-1) without
aspects

H(P) - total entropy

Reduction in entropy

Reduction in entropy

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Moderator Buyer strategy

Module

V
al

ue

H(S) - symbols

H(E) - edges

H(A-1) without aspects

H(P) - total entropy

Reduction in entropy

Figure 3: Entropy comparison

Measuring the Agent Code Complexity

236

Usability Remarks on Metrics
This paper has provided an overview of entropy based metrics used in object oriented mobile agent de-
velopment. The entropy metrics are useful in ranking different modules with regard to their complexity.
Weighted entropy metrics provide means for assessing the complexity with regard to subjective edge
type weight. Due to the limited space we have included only a few results from the experimental appli-
cation MOB-Trader and we have omitted the methodology for collecting data and thorough explanation
of results.

References
Aspect/J (2002). The AspectJ Programming Guide. Xerox Corporation, http://AspectJ/doc/progguide/printable.html.

Bansiya, J., Davis, C., Etzkorn, L. (1999). An entropy-based complexity measure for object-oriented designs. Theory and
Practice of Object Systems, Vol. 5(2), pp.11-118.

Belady, L.A.& Lehman, M.M. (1976) . A Model of a large program development. IBM Systems Journal , Vol 15(3), pp.225 -
252.

Davis, J.S., & LeBlanc, R.J. (1988). A study of the applicability of complexity measures. IEEE Transactions on Software
Engineering, Vol 14(9), pp.1366-1371.

Decker, K. & Lesser, V. (1995). Analyzing the need for meta-level communication. Computer Science Department. Univer-
sity of Massachusetts, Technical Report 93-22.

Dospisil, J. (2003). Software metrics, information and entropy. To appear in Practicing Software Engineering in the 21st Cen-
tury. Editor: Dr. Joan Peckham.

Harrison, W. (1992). An entropy-based measure of software complexity. IEEE Transa ctions of Software Engineering, Vol.
18, No. 11, November, pp. 1025-1029.

Kendall, E. (1999). Role model designs and implementations with aspect oriented programming. Proceedings of the 1999
Conference on Object- Oriented Programming Systems, Languages, and Applications (OOPSLA'99), ACM Press, No-
vember.

Kephart, J. O., Hanson, J. E., Levine ,D. W., Grosof , B. N., Sairamesh, J., & Segal, R. B. (1998).Dynamics of an informa-
tion-filtering economy . Proceedings of Second International Workshop on Cooperative Information Agents (CIA-98) .
Paris .

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J., Loingtier, M. & Irwin, J. (1997). Aspect oriented pro-
gramming . Xerox Corporation. http://www.parc.xerox.com/spl/projects/aop/

Lange, D. B. & Oshima, M. (1998).Programming and deploying Java mobile agents with Aglets: Addison- Wesley.

Total entropy

Weighted entropy

Total entropy

Weighted entropy

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Value

Moderator Buyer

Module

Total entropy

Weighted entropy

Figure 5: Comparison of total and weighted entropy

 Dospisil & Khemngoen

 237

Mass-Colell, Whinston A., R. & Green, J.R. (1995). Microeconomic theory: Oxford Un iversity Press.

Murphy, G., C., Lai, A., Walker, R.J. & Robillard . M.P. (2001). Separating features in source code: Exploratory study. Pro-
ceedings of the 23th International Conference on Software Engineering , Toronto, pp. 275-284.

Nareyek, A. (1998). Constraint-based agents. Technical Report, German National Research Center for Information Technol-
ogy. Berlin.

Osborne, M.J. & Rubinstein, A. (1990). Bargaining and markets: Academic Press.

Sandholm, T.W. & Lesser, V.R. (1998). Issues in automated negotiation and electronic commerce: Extending the contract
net protocol. Readings in AGENTS (ed. Michael N. Huhns &Munindar P. Singh), Morgan Kaufmann, 66-73.

Sen, S. & Durfee, E. (1994). The role of commitment in cooperative negotiation. International Journal of Intelligent Coop-
erative Information Systems , 3(1), 67-81.

Smith, R.G. (1980). The contract net protocol: High-level communication and control in a distributed problem solver. IEEE
Transactions on Computers C-29(12) :1104-1113.

Tarr, P. , Ossher, H., Harrison, W, & Sutton, Jr. (1999). N degrees of separation: Multi-dimensional separation of concerns.
Proceedings of the 21 st International Conference on Software Engineering.

