
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Regular Paper

Learning Resources and Tools to Aid Novices
Learn Programming

Stuart Garner
Edith Cowan University, Perth, Australia

s.garner@ecu.edu.au

Abstract
It is well known that learning introductory software development is a difficult task for many students.
This paper discusses some of the resources and tools that are available, or have been experimented with,
that might be of interest to instructional designers of programming.

The resources and tools are discussed in the context of the four phases of the software lifecycle, these
being: analyse the problem; design and develop a solution / algorithm; implement the algorithm; and test
and revise the algorithm. The tools that are discussed include microworlds, videoclips, flowchart inter-
preters, and program animators.

Keywords : novice programming; software lifecycle; programming tools.

Introduction
It is well known that learning to program is a difficult and frustrating process. Novice programmers
must learn concepts and skills that often bear little relation to their past experiences (Smith & Webb,
1999). This aim of this paper is to discuss some of the resources and tools that are available, or have
been experimented with, that may prove of use to the instructional designers of programming courses of
study. The paper begins by discussing a learning framework for instructional designers and how that
might be applied to the learning of programming. The four phases of the software lifecycle in which stu-
dents have to construc t knowledge are introduced and the body of the paper discusses the resources and
tools that are available, or have been experimented with, in the context of those lifecycle phases.

Learning Framework
A useful starting point for the discussion concerning resources and tools is to consider a learning frame-
work that has been put forward by Oliver (1999) and that is shown in Figure 1. The framework com-
prises learning activities, resources and supports. In the context of learning programming, the learning
activities are the tasks which students are expected to participate in to help them learn. These might in-
clude solving a problem, designing some pseudo code, implementing an algorithm in a programming
language, or testing a program. The learning activities play a fundamental role in determining learning

outcomes (Wild, 1997) and they determine how
learners engage with the various materials.

Learning resources provide the content for a
course and can be thought of as the materials that
are used to help students construct their knowl-
edge and meaning with respect to a domain of
knowledge. Traditionally these resources have
been available in the form of books and lecture

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Learning Resources and Tools

214

notes and the move to flexible technology
based systems has led to a lot of content being
made ava ilable electronically. Most program-
ming courses are still usually underpinned by a
textbook although increasingly there are on-
line tutorials, quizzes, simulations etc.

Learning supports are the third element of the
framework and can be thought of as the sup-
ports required to help guide and provide feed-
back to learners in a way that is responsive and
sensitive to learner ind ividual needs
(McLoughlin, 1998). In “traditional” settings
such supports have been provided by actively
involved teachers (Laurillard, 1993) whereas in
technology based learning environments, such
supports are often known as “scaffolds” to help
learners during their knowledge construction
process (Roehler, 1996). In programming, an
example of such a support is the facility that some programming editors have to help complete lines of
programming code for the user as they are keyed- in. Frequently, such supports are provided in the form
of software tools.

Software Lifecycle
Learning to program involves constructing knowledge in the four phases of the software lifecycle, these
being:

• Phase1: Analyze the problem

• Phase2: Design and develop a solution / algorithm

• Phase3: Implement the algorithm

• Phase4: Test and revise the algorithm

All of the above activities need to be learned by novices and each can be considered as a learning activ-
ity or task within Oliver’s learning framework. This paper will now consider each of the ind ividual tasks
and discuss some of the resources and tools that might be used to help novices with these tasks.

Phase 1: Analyse the Problem
The standard way of teaching and learning programming has not changed very much over the years.
Usually a teacher introduces a new control structure or data structure, shows some examples to students,
and then expects students to be able to solve problems that are either novel or possibly similar to those
that he or she has demonstrated. It appears that very often syntax is being taught at the expense of prob-
lem solving. Students who experience this form of instruction frequently complain that although they
might understand and follow the teacher's reasoning during a demonstration, they find it very difficult to
then solve a problem on their own.

Available resources to help instructional designers are limited in this area, however three that have been
identified are the tool SolveIt; the use of video clips; and the use of microworlds.

Figure 1: Learning Framework (Oliver, 1999)

 Garner

 215

SOLVEIT
SOLVEIT is a prototype of an integrated environ-
ment to support students learning programming. Sup-
port is provided through all problem solving stages,
including formulating the problem, planning and
designing a solution, and testing and delivering that
solution (Deek & McHugh, 2000). The interface is
shown in Figure 2. In this section, the area of interest
is problem analysis and three tools are available in
SOLVEIT to help with problem formulation, these
being: the problem description editor; the verbalisa-
tion tool; and the information elicitation tool.

The problem description editor allows a student to
enter and save the problem statement into the system
within a multiple-view reference database. The ve r-
balisation tool allows questions to be presented to
students while the problem statement is visible in the
editor. A student’s answers to the questions are saved
in a project notebook together with subsequent verbalisation sessions. The transcript of such recordings
is then one of the project's deliverables.

The aim of this tool is to help students think more deeply about the problem in question. In addition to
the project notebook, SOLVIT also provides a graphics editor that permits students to make and save
drawings / sketches concerning the problem. The information elicitation tool is used to extract relevant
information from within the problem description. This information includes goal, givens, unknowns,
conditions and constraints and is stored within the multiple-view reference database.

SOLVIT is one of the few specific tools available to support the teaching and learning of programming
that provides help in this important area of problem analysis and fo rmulation. However, to date it does
not appear to have been evaluated.

Video Clips

Multimedia Command Centre
A multimedia command centre (Garner, 1997) was
produced and was then utilised to build a Visual
BASIC programming tutor. The tutor allows the de-
livery of video clips in the form of e-movies that are
recordings of Windows sessions together with audio
narratives. The e-movies can be replayed on a PC
and the interface is shown in Figure 3. The course
includes sets of programming problems and students
are helped with problem analyses by being able to
watch e-movies that give extensive hints and tips on
how the problems might be tackled. Students ind i-
cated during interviews that these movies had proved
extremely valuable and that they believed that they
had helped their problem solving abilities.

Figure 3: VB Tutor

Figure 2: SOLVEIT (Deek & McHugh, 2000)

Learning Resources and Tools

216

Production of Video Clips with a Pen Mouse
Crown (2002) describes his method of creating e-movies that walk through the process of analysing en-
gineering problems. A real-time screen capturing program together with pen mouse and tablet are used
enabling him to “hand-write” his problem analyses whilst making explicit his thought processes via an
audio recording. Although the problem domain is engineering, the method is directly transferable to
programming problem analyses. Students were overwhelmingly positive in there comments as the mo v-
ies could be replayed on demand.

Microworlds
A method of reducing the cognitive load on stu-
dents who are learning programming is to use mi-
croworlds. Such systems provide a very narrow
range of problems in which control structures are
emphasised over data structures. This reduces the
burden on students in the problem analysis stage.
Examples of such systems include Karel the Ro-
bot (Pattis, 1995); RoboPascal (Carey, 1996); and
Squeak (Kaye, 2002).

The most popular microworld program for learn-
ing programming is Karel and this has been
around since the 1980s in various formats. Prob-
lems can be set for students by defining a mi-
croworld as shown in Figure 4 and then se tting a
task to be achieved by the robot. The world in-
cludes streets and avenues; walls; beepers that can
be picked up or put down; and the “robot” which
is depicted by an arrow.

The web site of a high school in Australia (Alex Hills, 2002) has some well thought-out tutorials and
assignments for students concerning Karel. Particularly useful are the hints and tips that are given to
help students analyze the problems that have been set.

Phase 2: Design and Develop a Solution / Algorithm
After problem analysis it is necessary to design a solution. This involves students creating an algorithm
in some format that will hopefully solve the problem that they are attempting. Non-technological tools
that were often used in the past included hand-drawn flowcharts, hand-drawn Nassi-Schneiderman dia-
grams, and pseudo code. Often, programming teachers omit using such tools, and algorithms are entered
directly in a programming language by students. This of course makes the learning of programming
even more difficult for students as program design and the syntax of a language become intertwined.

The following are some of the resources and tools that are available to help students design and develop
solutions / algorithms to problems. SOLVEIT is not included, as it appears that the latter parts of the
software lifecycle have not yet been implemented in the prototype.

Karel the Robot
Karel has a very simple underlying language that only has five primitives, these being: move; turnleft;
pickbeeper; putbeeper; turnoff. Other instructions can be defined using the primitives. Because the lan-
guage is so simple and only control structures are emphasised, algorithms are keyed- in directly to the

Figure 4: A Simple Karel World

 Garner

 217

system by students as shown in Figure 5. For Karel,
the language itself can be considered as a form of
pseudocode.

Flowchart Interpreter Program: FLINT
FLINT (Crews & Ziegler, n.d.) provides a visual al-
gorithmic design environment that utilises flow-
charts. The system removes the focus from the syn-
tactic details of a programming language by provid-
ing students with an iconic interface for developing
flowcharts as shown in Figure 6. The point-and-click
interface hides low- level details from the user and
frees the students to concentrate on designing the al-
gorithm to solve a given problem.

However, Crews and Ziegler make the point that re-
moving the focus on syntax does not mean that stu-
dents will focus on more appropri-
ate issues. They have therefore
provided a structure chart dia-
grammer that students must use
before being allowed to start work-
ing on a flowchart. Each of the
steps developed in the structure
chart can be implemented by a
separate flowchart.

Hand-drawn flowcharts fell out of
use mainly because they were so
difficult to update. It was a lways
recognised that they were very use-
ful as a way of providing visualisa-
tion of an algorithm. Graphics
tools such as FLINT now provide
the facility to maintain such flow-
charts.

Tools to Animate Fundamental Algorithms
When designing an algorithm for a problem, students may have to make use of or amend what might be
termed a “fundamental algorithm”. Such algorithms include: sorting data in an array; searching for a
data item in an array or a file; or merging two sequential files. Programming teachers usually use tradi-
tional “talk and chalk” techniques to explain these algorithms, however there are visual tools available to
help improve student understanding. For example, Hansen et al (1998) suggest that an experiment that
they undertook provides preliminary statistical validity to the conclusion that hypermedia visualizations,
or animations provided in context, are more effective than textbooks.

There are many such examples in the form of Java applets and which are available on the Internet. One
example is “The Sort Algorithm Animator V1.0” (Ploedereder, 2000) and the interface is shown in Fig-
ure 7. When the animation is running, the heights of various “bars” are compared and those bars are

Figure 5: An algorithm in Karel

Figure 6: A Flowchart in FLINT

Learning Resources and Tools

218

swapped if necessary. The animation can be stepped
through or run automatically, with the speed being var-
ied.

An algorithm animation actually serves two funda-
mental purposes. It provides a concrete depiction of
the abstractions and operations inherent in an algo-
rithm or program, and it portrays the dyna mics of a
time-evolving process. (Byrne et al, 1996).

Phase 3: Implement the Algorithm
The third element of the software lifecycle is “imple-
ment the algorithm” and requires students to convert
their algorithms to executable programming code. M icroworld systems, such as Karel the Robot, have
algorithms written directly at the program design stage, as the design language is the same as the imple-
mentation language. The flowchart tool FLINT provides support for phase 3 and so too do many pro-
gramming development environments.

FLINT
It was seen earlier that FLINT allows students to develop flowcharts in order to design algorithms. As
can be seen in Figure 6, it also allows variables to be defined and assignment statements to be stip ulated,
and when this has been done, a flowchart can be “executed” step-by-step. This becomes very important
in the “Test and Revise” stage of the software lifecycle as will be seen later.

Programming Language and Environment
Normally a program design or algorithm is implemented directly in conventional programming code and
the programming language and environment that are utilised have a big effect on student learning. The
integrated development environment (IDE) can act as a support and tool for students and yet most have
been designed for professional programmers and have a very steep learning curve thereby increasing the
already high cognitive load on students. Also, many programming teachers have different ideas on what
is the “right” language to teach as a first programming language which leads to “language wars” in
many computer science and information systems departments. In a recent survey in Australia the top two
languages that were used in universities were Java (23 institutions) followed by Visual BASIC (14 insti-
tutions) (De Raadt, 2002).

An ideal situation would be to use a specialised teaching language that illustrates most of the required
control and data structures however, although we as educators recognise the pedagogical value of this,
the majority of students do not and prefer to use a language that is “out there” in the market place. Un-
fortunately, such conventional languages are becoming more complex. For example Visual BASIC ve r-
sion 6 is now to be superseded by Visual BASIC .NET and the complexity of the language has become a
real challenge for students. Perhaps it is the time to take a step back, persuade students of the benefits of
a “teaching language” and introduce something like Liberty BASIC (Gundel, n.d.) which is more
straightforward and is similar to the original Visual BASIC program that was introduced in 1991.

The kinds of supports provided by an IDE to help a student implement an algorithm include:

• Immediate syntax checking of statements.

• Help in completing statements via intelligent editors. For example, if the following were entered in
the Visual BASIC editor:

Figure 7: Sort Animator

 Garner

 219

Let initial = Left(

then the syntax of the Left function would be displayed.

• The automatic filling-in of procedure headers and footers.

However, as IDEs have been created to help professional programmers, the help systems are often in-
comprehensible to most students.

One particular teaching language environment that is gaining popularity in universities is BlueJ (BlueJ,
2002). This is used specifically for the learning of object oriented programming and was developed at
Monash University, Australia. An example of a quote from a user that is on the BlueJ web site is:

I find that BlueJ removes all the complications of other tools and replaces them with fea-
tures that let me concentrate on my education rather than the tool itself.

The quote reinforces the fact that as educators it is very important tha t tools are selected or built that
help rather than hinder students.

Phase 4: Test and Revise the Algorithm
Students learning and understanding of how an algorithm executes is supported during the testing phase
of the software lifecycle. This area can be crucial in improving student mental models of how control
and data structures function. Resources, supports and tools range from the built-in debuggers that many
IDEs have to special tools that can animate a student’s program.

Conventional Debugger
Conventional IDEs, such as Visual BASIC, have built- in debuggers that allow programs to be stepped
through line-by- line and the contents of variables to be displayed. Students find this mechanism particu-
larly useful in improving their understanding of how their algorithms work and obviously in fixing up
problems. In the author’s view, students need to be encouraged, by careful instructional design, to use
this important tool from the very beginning of a course in order to gain an understanding how example
algorithms work that are presented by their tutor.

Program Animators
In the section concerning phase 3, the design of algorithms, tools to help animate fundamental algo-
rithms were discussed. These are demonstration tools that only work on one class of algorithm such as
sorting. Other tools have been developed to animate any algorithm in a particular programming lan-
guage and these are called program animators. They help students visualise program execution and they
promote low- level models of programming. Animators r einforce a model of program execution by ex-
plicitly showing how the execution of a statement affects the program state and environment in which
the following statement is executed (Smith & Webb, 1998).

Two examples of such visualisation tools are BRADMAN (Smith & Webb, 2000) and VINCE (Rowe &
Thorburn, 2000). BRADMAN is a glass-box interpreter that helps students in their learning of the C
programming language. In addition to the features of “standard” debuggers, it also contains a variables
display; a verbal explanation of each statement as it is executed; and more visible input / output facili-
ties. An example interface is shown in Figure 8. In an evaluation, it was found that a student group that
had used BRADMAN performed significantly better than a control group at the manual interpretation of
programs.

Learning Resources and Tools

220

VINCE is also used as a tool to
help in the teaching and learn-
ing of C programming. It has
been written entirely in Java
and is therefore accessible as an
applet on a Web page. It ap-
pears to possess similar features
to BRADMAN including a
memory map so that variable
contents can easily be in-
spected. In its evaluation, the
use of VINCE did not change
the students' perceptions of their
programming ability relative to those in a control group however their performance on a series of pro-
gramming questions was better.

FLINT also provides an animation mechanism for students. The sequential nature of programs becomes
literally visible as every flowchart can be executed step-by-step. The statement that is currently inter-
preted is highlighted and control passes to the next statement at the student’s command. In addition,
FLINT makes variable values observable, allowing the student to follow the effects of the program state-
statements (Crews & Ziegler, n.d.).

Karel the Robot and Animation
Because Karel is a purpose-built tool to help
students learn programming, the trace and
animation facilities are built- in and very
strong. Not only can students view the anima-
tion of the code as shown in Figure 9, but
they can also view the movement of the ro-
bot, depicted as an arrow in Figure 10, as
each line of code executes. This dual view
helps students in their construction of knowl-
edge concerning control structures and simple al-
gorithms.

Discussion
This paper has discussed just some of the re-
sources and tools that are available, or have been
experimented with, to help students in their diffi-
cult task of learning to program. They were dis-
cussed in the context of the four phases of the
software lifecycle and certain phases are more
strongly supported than others.

Phase 1, analyse the problem, lacks good support for the analysis of “conventional” programming prob-
lems. The author suggests that instructional designers and teachers concentrate their efforts on this phase
as it is an area tha t students find particularly difficult. Perhaps the simplest approach is to build up video
clip resources that clearly show how experts analyse problems.

Figure 8: Bradman Interface (Smith & Webb, 1995)

Figure 9: Animation of Karel Code

Figure 10: Animation of Karel the Robot

 Garner

 221

Phase 2, design and develop a solution / algorithm, is often merged with phase 3, implement the algo-
rithm, with students entering programming code directly. However, FLINT seems to offer a very useful
approach as control structures can be entered directly in a graphical format in the form of flowchart
symbols.

Phase 3, implement the algorithm, is usually carried out in a conventional programming language, how-
ever FLINT again could offer a useful alternative approach as variables can be defined and assignment
statements stipulated through the FLINT interface. A shortcoming that might be levelled at FLINT is
that it is not powerful enough to support the full range of programming constructs such as array process-
ing and parameter passing.

Phase 4, test and revise the algorithm, is well supported with conventional debuggers and program ani-
mators. However the major problem is that the animators that have been built for specific programming
languages, for example BRADMAN and Vince, only supporting C programming. It would be useful to
have educational tools that supported the animation of the popular programming languages such as Vis-
ual BASIC and Java.

It was also seen that the microworld of Karel the Robot looks particularly attractive as it gives strong
support through phases 2 to 4 and phase 1, problem analysis, is less of an issue as the problems are in a
narrow domain. However, the time constraints of a 13-week introductory course in programming may
preclude the use of such a microworld prior to the introduction of a “conventional” programming lan-
guage.

For students to be successful in learning to program, all four phases of the software lifecycle need to be
well supported with appropriate resources and tools. Clearly this is still not the case and more work and
research will need to be carried out in this area.

References
Alex Hills SHS (2002). IPT @ Alex Hills. Retrieved from the World Wide Web 16 Oct 2002

http://www.alexhillshs.qld.edu.au/faculties/resources/ipt/index.htm

BlueJ Website. Retrieved from the World Wide Web 2 Oct 2002 http://www.bluej.org

Byrne, M. D., Catrambone, R., & Stasko, J. T. (1996). Do Algorithm Animations Aid Learning? Retrieved from the World
Wide Web 17 Oct 2002 http://citeseer.nj.nec.com/byrne96do.html

Carey, D. (1996). Teaching Algorithms and Programming Concepts Using an Object-Oriented Language. Paper presented at
the Australian Conference in Computer Education 96, Brisbane.

Crews, T., & Ziegler, U. (n.d.). The Flowchart Interpreter for Introductory Programming Courses. Retrieved from the World
Wide Web 14 Oct 2002 http://fie.engrng.pitt.edu/fie98/papers/1107.pdf

Crown, S. W. (2002). The Development and Use of Tutorial Movies using a Pen Mouse in an Engineering Problems Based
Course. Paper presented at the ED -MEDIA 2002, Denver, Colorado.

De Raadt, M., Watson, R., & Toleman, M. (2002). Language Trends in Introductory Programming Courses. Paper presented
at the Informing Science 2002, University College Cork, Ireland.

Deek, F. P., & McHugh, J. A. (2000). Prototype Tools for Programming. Paper presented at the EdMedia 2000, Montreal,
Canada.

Dehoney, J., & Reeves, T. (1999). Instructional and social dimensions of class web pages. Journal of Computing in Higher
Education, 10(2), 19-41.

Garner, S. (1997, December 1997). Cost Effective Interactive Multimedia with Lotus ScreenCam and a Multimedia Com-
mand Centre. Paper presented at the International Conference in Computers in Education 97, Kuching, Malaysia.

Gundel, C. Liberty BASIC . Shoptalk Systems. Retrieved from the World Wide Web 21 Oct 2002
http://www.libertybasic.com

Learning Resources and Tools

222

Hansen, S., Schrimper, D. , & Narayanan, N. (1998). From Algorithm Animations to Animation-embedded Hypermedia Visu-
alizations. Retrieved from the World Wide Web 21 Oct 2002
www.eng.auburn.edu/departments/cse/research/vi3rg/vi3rg.html

Laurillard, D. (1993). Rethinking University Teaching: A Framework for the Effective use of Educational Technology.: Lon-
don Routledge.

McLoughlin, C., & Oliver, R. (1998). Scaffolding Higher Order Thinking In A Telelearning Environment. Paper presented at
the Ed-Media/Ed-Telecom 98 World Conference On Educational Multimedia And Hypermedia & World Conference On
Educational Telecommunications, Virginia.

Oliver, R. (1999). Exploring strategies for on-line teaching and learning. Distance Education, 20(2), 240-254.

Pattis, R. E. (1995). A Gentle Introduction to the Art of Programming (2nd ed.): New York, Wiley.

Ploedereder, E. (2000). The Sort Algorithm Animator V1.0 . Retrieved from the World Wide Web 21 Oct 2002
http://www.informatik.uni-stuttgart.de/ifi/ps/Ploedereder/sorter/sortanimation2.html

Roehler, L. R., & Cantlon, D. J. (1996, May 10th 1996). Scaffolding: A Powerful Tool in Social Constructivist Classrooms.
Retrieved from the World Wide Web 3 May 1998 http://www.educ.msu.edu/units/literacy/paperlr2.htm

Rowe, G., & Thorburn, G. (2000). VINCE - an on-line tool for teaching introductory programming. British Journal of Edu-
cation Technology, 31(4), 359-370.

Smith, P. A., & Webb, G. I. (1995). Reinforcing a Generic Computer Model for Novice Programmers. Paper presented at
Ascilite 1995, Melbourne.

Smith, P. A., & Webb, G. I. (1998). Overview of a Low-level Program Visualisation Tool for Novice C Programmers. Paper
presented at the International Conference on Computers in Education '98, Beijing, China.

Smith, P. A., & Webb, G. I. (1999). Evaluation of Low-Level Program Visualisation for Teaching Novice C Programmers.
Paper presented at the International Conference on Computers in Education '99, Tokyo, Japan.

Smith, P. A., & Webb, G. I. (2000). The Efficacy of a Low-Level Program Visualisation Tool for Teaching Programming
Concepts to Novice C Programmers. Journal of Educational Computing Research, 2(2-2000), 187-215.

Wild, M., & Quinn, C. (1997). Implications of educational theory for the design of instructional multimedia. British Journal
of Educational Technology, 29(1), 73-82.

