
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Short Paper

Measuring Code Complexity in Projects
Designed with Aspect/J

Jana Dospisil
Monash University, Australia

jana.Dospisil@infotech.monash.edu.au

Abstract
The modularized code encapsulating object interactions is characterized by class hierarchies. In the im-
plementation of mobile agents, we have observed that the changes in agent interaction protocols lead to
uncontrolled subclassing and consequently to disorder. This phenomenon is known as entropy. The ad-
ditional subclassing, modification to protocols, restructuring of the class hierarchies, changes to visibil-
ity of attributes, and method overloading result in increased complexity of the code. This problem in
agent design has been tackled by Kendall (Kendall, 1999) who proposed development using Aspect/J
and separation of concerns. Since there has been no proof of reduced complexity, we have proposed
metrics for software complexity estimation, and ranking of compositional elements developed with As-
pect/J. The metrics have been tested on Java code for mobile agents.

Keywords: complexity metrics, information theory, object-oriented programming, separation of con-
cerns.

Introduction
The source of the problem in development of interaction protocols is that some kinds of behaviour or
functionality are orthogonal to or cross cut classes in many object-oriented components, and they are
not easily modularized to a separate class. Examples of such behaviour include the following:

• synchronization and concurrency

• performance optimization

• exception handling and event monitoring

• coordination and interaction protocols

• object views.

In Tarr, Ossher, Harrison, and Sutton (1999), Tarr states that “Done well, separation of concerns can
provide many software engineering benefits, including reduced complexity…”. To measure the quality
of separation either in N-dimensional space or even the orthogonal separation only as seen in Aspect/J,
the new set of complexity metrics is required.

The paper is organized as follows:

• Section 2 provides an overview of estab-
lished metrics and introduces the notion of
complexity and entropy based metrics for
complexity.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the c opies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cas es or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Measuring Code Complexity For Aspect/J

186

• Section 3 deals with the concept of separation of concerns and main concepts in Aspect/J.

• Section 4 provides theoretical underpinning of proposed metrics suite.

Brief Survey of Object Oriented Metrics
Since 1995, the trend towards incorporating measurement theory into all software metrics has led to
identification of scales for measures, thus providing some perspective on dimensions. The most common
scale types based on measurement theory are: Ordinal, Interval, Ratio, and Nominal. Fetchke and Zuse
(Fetchke, 1995; Zuse, 1994) analyzed the properties of object oriented software metrics on the basis of
measurement theory. The underlying notion of measurement theory is based on intuitive or empirical
existence of relationships among objects within our Universe of Discourse. These relationships are for-
mally described by a mathematically derived formal relational system. Zuse also investigated how and
under what conditions the software measures may be viewed as ordinal, ratio, nominal, and interval. He
admits that these scale types present very little meaning with regard to quality measures such as main-
tainability and error-proneness of the application.

The contribution of Zuse and Fetchke’s work is in the introduction of a specific perspective of measures.
They emphasize preciseness of definition of scales as well as defin ition of an attribute that is measured.

The Axiomatic approach, proposed by Weyuker (Weyuker, 1988), provides a framework based on a set
of nine axioms as listed in Table 1.

Axiom Name Description

1 Noncoarseness

2 Granularity Let c be non-negative number. Then there is a finite number of
class with the complexity = c

3 Nonunique-
ness

There is distinct number of classes P and Q such that
µ(P) = µ(Q)

4 Design detail
matter

5 Monotonicity

6 Non-
equivalence of
interaction

()()() () () () ()RQRPandQPRQPa +≠+=∃∃∃ µµµµ)

()()() () () () ()QRPRandQPRQPb +≠+=∃∃∃ µµµµ)
7 Interaction

among state-
ments

Not considered among objects

8 No change on
renaming

If P is renaming of Q then () ()QP µµ =

9 Interaction
CAN increase
complexity

Table 1: Weyuker's axioms

()() () () ()()QPQPQP +<+∃∃ µµµ

()() () () () ()()QPQandQPPQP +≤+≤∀∀ µµµµ

()() () ()()QPQandPQP µµ ≠≡∃∃

()() () ()()QQPQP µµ ≠∃∃

 Dospisil

 187

In Weyuker’s metric proposal we observe the formalization of structural inheritance complexity metrics.
The ninth axiom means that splitting one class into two classes can reduce the complexity. The experi-
ence supports the argument by Chidamber and Kemerer (1994) that the complexity of interaction may
even increase when classes are divided.

Fenton (Fenton & Pfleger, 1997) uses the term software metrics to describe the following artifacts:

• A number that is derived, usually empirically, from a process or code (for example, Lines of
Code (LOC) or number of function points).

• A scale of measurement (an example used in Fenton’s book is nominal scale or classification).

• An identifiable attribute that is used to provide specific functionality. (An example is “portabil-
ity” or class coupling metric.)

• Theoretical or data driven model describing a dependent variable as a function of independent
variables. (An example can be the functional relationship between maintenance effort and pro-
gram size.)

These descriptions typically lead to a widespread confusion between models and their ability to predict
desired software characteristics, and thus their suitability to be used for estimation purposes.

Metric Description

Weighted Methods per Class (WMC)

where c i is the static complexity of each of the
n methods.

Depth of Inheritance Tree (DIT) With multiple inheritance the max DIT is the
length from the node to the root.

Number of Children (NOC) Number of immediate subclasses

Coupling Between Object Classes
(CBO)

Number of other classes to which a particular
class is coupled. CBO maps the concept of
coupling for a class into a measure.

The Response for a Class (RFC) The size of response set for a particu lar class.

The Lack of Cohesion metric (LCOM).

Table 2: Chidamber and Kemerer Metrics (Chidamber, 1994)

The metrics of Chidamber, summarized in Table 2, also have foundation in measurement theory. The
authors do not base their investigation on the extensive structure. The criticism by Churcher and
Sheppard (1994) is pointing to the ambiguity of some metrics, particularly WMC. Hitz and Montazeri
(1996) and Fetchke (1995) showed that CBO does not use a sound empirical relation system, partic u-
larly, that it is not based on the extensive structures. Furthermore, LCOM metric allows representation
of equivalent cases differently, thus introducing an additional error.

Coupling measures form the important group of measures in the assessment of dynamic aspects of de-
sign quality. Coupling among objects is loosely defined as the measure of the strength of the connection
from one object to another. The approaches of different authors mostly differ in definition of the meas-
ured attribute – coupling among classes. Table 3 provides the summary of differences in definitions.
Some of the attributes may be known very late in development.

∑
=

=
n

i
icWMC

1

otherwiseQPifQPLCOM 0=>−=

Measuring Code Complexity For Aspect/J

188

Two aspects affect coupling between classes: the frequency of messaging between classes (cardinality
and multiplicity of objects derived from these classes), and the type of coupling. The discussion in Eder
and Kappel (1994) distinguishes among three types: 1) interaction coupling, 2) component coupling and
3) inheritance coupling.

The degree of coupling is based on defining a partial order on the set of coupling types. The low end is
described by small and explicit inter-relationship and high end of the scale is assigned to large, complex
and implicit inter-relationship. The definition is subjective and requires empirical assignment of values
in order to be used as software qua lity indicator.

Attribute definition

Eder et al
(Eder.1994)

Hitz &
Montazeri
(Hitz, 1995)

Briand et al.
(Briand, 1999)

Public attribute visibility X

Method references attribute X

Method invokes method X X X

Aggregation X X

Class type as a parameter in method
signature or return type

X X

Method’s local variable is a class
type

X

A method invoked from within
another method passes class type as
a parameter

X

Inheritance X

Method receives pointer to method X

Table 3: Comparison of attribute definition for coupling (Briand, Daly, & Wurst, 1999)

Cohesion is defined as a degree to which elements in a class belong together. The desirable property of
a good design is to produce highly cohesive classes. Comparison of different frameworks and discussion
can be found in Briand’s work (Briand, Daly, & Wurst, 1997). Eder (Eder. & Kappel, 1994) provides a
comprehensive framework that requires semantic analysis of classes and methods. The metrics of
Chidamber define LCOM as the number of disjoint sets created by intersection of the n sets. The defini-
tion in Equation 1 does not state how inheritance of methods and attributes is treated with regard to
method override or overload and the depth of inheritance tree.







 >−

=
otherwise

QPifQP
LCOM

,0

,

Equation 1 LCOM definition

In Henderson-Sellers (1996) the cohesion measure is based on the number of attributes referenced by a
method.

()
m

mA
a

LCOM

a

j
j

−

−
=

∑
=

1

1

1

µ

 Dospisil

 189

Equation 2 LCOM by Henderson-Sellers

where a is number of attributes, and µ(Aj) is the measure which yields 0 if each method in the class re f-
erences all attributes, and 1 if each method in a class references only single attribute.

Complexity Measures
Entropy-based complexity measures are based on the theory of information. This is the approach taken
by Davis and LeBlanc (Davis & LeBlanc, 1988) who quantify the differences between anded and neted
structures to provide an unbiased estimate of the probability of occurrence of event m. This measure-
ment is based on chunks of FORTRAN and COBOL code (represented by nodes in the DAG (Directed
Acyclic Graph)) with the same in-degree and the same out-degree to assess syntactic complexity.

Belady and Lehman (Belady & Lehman 1976) elaborated on the law of increasing entropy: the entropy
of a system (the level of its unstructuredness) increases with time, unless specific work is executed to
maintain or reduce it. Entropy can result in severe complications when a project is mod ified, and it is
generally an obstacle to maintenance.

The use of entropy as a measure of information content, introduced by Harrison, has been around since
1992 (Harrison, 1992). Harrison’s software complexity metric is based on empirical program entropy.
A special symbol, reserved word, or a function call is considered as operator. It is assumed that they
have certain natural probability distrib ution (Zweben & Hasltead, 1979). The probability pi of ith most
frequently occurring operator is defined as

i

i
i N

fp =

Equation 3 Probability of occurrence of i-operator

where fi is the number of occurrences of the ith operator, and Ni is the total number of nonunique opera-
tors in the program.

The complexity is defined as entropy

i

Ni

i
i ppH 2

1

log∑
=

−=

Equation 4 Entropy-based complexity measure

The Average Information Content Classification (AICC) measure is defined as:

i

i
Ni

i i

i

N
f

N
f

AICC 2
1

log∑
=

−=

Equation 5 Average Information Content Classification (AICC)

Harrison assessed the performance of these entropic metrics in two commercial applications written in C
language with the total number of lines of code being over 130,000.

The work of Bansiya and Davis (Bansiya, Davis, & Etzkorn, 1999) introduces a similar complexity
measure – Class Definition Entropy (CDE) – replacing the operators of Harrison with name strings used

Measuring Code Complexity For Aspect/J

190

in a class. The assumption that all name strings represent approximately equal information is related to
the possible error insertion by misusing the string. The metric has been validated on four large projects
in C++ and results have been used to estimate a Class Implementation Time Complexity measure.

Critical View of OO Metrics
Many metrics deal predominantly with static characteristics of code. Hitz (Hitz & Montazeri, 1995)
clearly distinguishes the difference between static and dynamic class method invocation: number of
methods invoked by a class compared to frequency of method invocation.

A metrics suite capable of capturing dynamic behaviour of objects with regard to coupling and complex-
ity has been presented by Yacoub (Yacoub, Ammar, Hany and Robinson, 1999) where the dynamic be-
havior of an implementation is described by a set of scenarios. The Export and Import Object Coupling
metrics are based on percentage of message exchange between class instances (objects) to the total
number of messages. The Scenario Profiles introduce the estimated probability of the scenario execu-
tion. The complexity metrics are aimed predominantly at the assessment of stability of active objects as
frequent sources of errors.

Obvious criticism of Henderson-Sellers metrics include the typical interaction among objects: 1) How
should we treat inheritance, for example, access to superclass attributes? 2) How we treat method-to-
method calls. Many metrics show dimensional inconsistencies, or their results are derived from correla-
tive or regression analysis. As reported in Gursaran and Gurdev (2001), experienced object-oriented de-
signers found memory management and run-time errors are more problematic and difficult to deal with.

Class size problems represent a confusing effect with regard to validity of object-oriented metrics. The
confounding effect of class size has been reported by Khaled, Benlarbi, Nishith, & Shesh (2001), pro-
voking some doubts about the validity of software metrics currently being used as early quality indica-
tors. The relationship of high coupling factor to fault proneness seems to support the hypothesis that
large class size may have a negative impact on the quality and occurrence of faults.

Harrison's entropic metrics are intended to order programs according to their complexity. Since entropy
provides only the ordinal position thus res tricting the way of usage, we cannot measure the distance be-
tween two programs.

Aspect/J Concepts
Separation of concerns is a methodology used to identify, encapsulate, and manipulate those software
entities that are relevant to a particular concept or purpose.

Concern is a primary element of decomposition. At present, two products support this kind of modulari-
zation: Hyper/J from IBM (Tarr, 1999) and Aspect/J (Kiczales, Lamping, Mendhekar, Maeda, Lopes,
Loingtier, & Irwin, 1997) from Xerox Palo Alto.

In large projects, many classes encapsulate additional code (called crosscutting code) to handle extra
processing aspects such as synchronization and concurrency. These aspects cause the class design prin-
ciple of well-defined responsibilities to be violated. Dynamic Joint Point Model (Aspect/J, 2002) pro-
vides a framework for many kinds of Joint Points in the execution of program. For example, Method
Joint Point describes the actions of an object when it receives a method call. Point designators (point-
cuts) identify the joint points in the program flow.

Definition of additional code at joint point is designated within advice (before and after advice). The
modifications of classes and their hierarchy (structural modifications) are determined by introduction.
The introduction also maintains the visibility of new elements with regard to the aspect addressed. Re-
flection is a special reference variable that contains reflexive information about the current joint point.

 Dospisil

 191

The newest feature of Aspect/J is the construct called aspect. Aspects are defined as units of modularity
for crosscutting concerns.

Entropy Based Metrics Framework for Aspect/J
We are interested in certain measurable attributes that we want to control and predict, for example, the
occurrence of faults or code maintainability. Software applications form a dynamic system composed of
many elementary entities, each one behaving according to its own parameters. Such a system could be
described by a set of differential equations with 1020 degrees of freedom or more. We are interested in
two related phenomena:

• Observables arising from their average behavior, such as correct interactions, error handling as-
pects, and unexpected behavior.

• Impact of evolutionary changes caused by introducing additional methods, attributes, sub-
classes, etc. These changes result in increased disorders and complexity.

Complexity is a subjective property and it can be defined as the relationship between the observer and
the application. If the observer is satisfied with a simple model and its accuracy then the application is
not complex and well-defined test suites uncover possible unreliability. On the contrary, if the observer
requires high degree of reliability, the application then represents a complex system with many degrees
of freedom.

Two distinct classes of application complexity can be defined:

• Complexity of a solution (SC) is the amount of resources needed to produce a solution for a
given problem.

• Algorithmic complexity (AC) is defined as the complexity of the structure that implements the
solution. Aspect programming can improve modularization and encapsulation of commonalities.
By extracting aspects common to multiple units we aim to reduce algorithmic complexity.

Control flow in a program is the order in which contained units of code are executed. Control flow is
then a measure of object interaction.

The primary lexical abstraction in Java and Aspect/J is a symbol (called either name or identifier). It is
represented by a character string with the following properties: scope (private, protected, public, and
package), and type and storage class (class variable or method, import).

The set of symbols includes:

• Class names

• Public and static variables and me thods

• Aspect keywords and pointcut names

Strictly local symbols are excluded from the model. Local variables within methods, and parameter
names in the method signature do not alter object control flow. Furthermore, we define class as being
the main dimens ion stream of modularity (class stream) and aspects as being secondary crosscutting
streams (aspect stream). Each identified joint point in the aspect stream describes a relationship to
global symbols in the class stream.

To extract symbols and obtain the graphical representation of control flow, we have used concern graphs
and the FEAT tool (Murphy, Lai, Walker, & Robillard, 2001), which displays the concerns as a collec-
tion of class trees. The root of each tree is a class (see Figure 1), which implements some behaviour and

Measuring Code Complexity For Aspect/J

192

data. Based on this analysis, we formed the structural system model as graph P composed of different
types of nodes and edges (Figure 1):

• Symbol nodes si are end nodes that correspond to global symbols s in the class stream (for exa m-
ple, methods such as setGUI(), Mf1()),

• Class nodes cj are represented by the top structural units from which all derived nodes are
sourced (JFrame sources FrameA and FrameB as well as setGUI() method).

Edges represent dependencies between the following elements:

• class nodes and aspects that describe the dependency between aspects and classes using the pa r-
ticular aspects. Aspect dependency refers to treatment of crosscuts.

• symbols and nodes which directly provide the source for symbol. Symbol dependency refers to
dependencies relevant to processing logic.

Definitions and abbreviations used in further equations are summarized in Table 4. Each symbol invoca-
tion requires Vs messages, one message for each symbol node. Since the structure is already known, the
messages will traverse nodes in order of dependency edges. Source and destination symbol nodes denote
each edge. We can describe the path of symbol si as follows:

 message(path_to(si)) = {V e(si), node1, node2,….noden}

The entropy of the message describing a symbol node si is the sum of entropies (entropy of the total
number edges which serve as information source to this symbol node and entropy of finding the edge
destination if we know the symbol source). This is the Path Entropy:

() ()EH
VV

V
SHPH

cs

e

+
+=)(

Total number of edges in graph is denoted by the sum of edges:

Calls, m1, m2

JFrame Javax .swig

Mf1 (si)

Frame
A

Frame
B

setGUI()

setGUI()

Mf2()

Aspect (pointcut)
setGUI()

root

Symbol nodes

Class nodes

Class stream traverse
to symbol s
Information source
Aspect with class c

Calls, m1, m2

JFrame Javax .swig

Mf1 (si)

Frame
A

Frame
B

setGUI()

setGUI()

Mf2()

Aspect (pointcut)
setGUI()

root

Symbol nodes

Class nodes

JFrame Javax .swig

Mf1 (si)

Frame
A

Frame
B

setGUI()

setGUI()

Mf2()

Aspect (pointcut)
setGUI()

JFrame Javax .swig

Mf1 (si)

Frame
A

Frame
B

setGUI()

setGUI()

Mf2()

Aspect (pointcut)
setGUI()

root

Symbol nodes

Class nodes

Class stream traverse
to symbol s
Information source
Aspect with class c

Figure 1 Control flow graph

 Dospisil

 193

 ∑= ealle VV _

∑
=

=
I

i
is sV

0

 Total number of all symbol nodes in the
graph. We assume that the number of
symbol nodes is within the range 0 to I-1.

∑
=

=
C

j
jc cV

0

Total number of class nodes range from 0
to C-1

ade VVV += Number of all edges in the graph (aspect
edges - and symbol edges) relevant to the
particular symbol and aspect.

∑
=

=
I

i

s
id eV

0

 Total number of dependency edges in the
class stream traversed to a symbol s
(for0<s<=S).
Assumption: the symbol s may occur in
multiple nodes.

∑
=

=
A

a

c
aa eV

0

 Total number of edges with aspects that
have an entry in class c

(c
ae à ath aspect edge associate with

class c); the aspect is used by multiple
classes)

()
s

i V
ep dV

= Probability that ith symbol node is
sourced by e edges

()
d

a V
ep aV

= Probability that a random symbol node i
has an aspect associated with it

pe(d) Probability that the dependency edge has
length d (the number of nodes needed to
be traversed to reach the edge e is d)

p(d) Probability that two random symbol
nodes i will have d distance between
them.

() () ()i

M

i
i epepSH 2

1

log∑
=

−=) Entropy of the total number edges which
serve as information source to a symbol
node

() () ()()dpVdpEH s2log∑= Entropy of finding the edge destination if
we know the starting point (symbol
source)

() () ()a

M

i
a epepAH 2

1

log∑
=

−= Entropy of aspects

Table 4 Definitions

Measuring Code Complexity For Aspect/J

194

We divided our metrics proposal into two parts:

1. Entropy based ordering of symbols within modules.

2. Weighted entropy measures.

Symbol ordering provides perspective on the complexity of each module and the usage of symbols.
Weighted entropy measures provide a subjective view based on the associated failure risk and maintain-
ability of each module.

Entropy based ordering of symbols: We consider the entropy for the aspect stream as the reduction in
uncertainty for those edges that have some information "outsourced" to aspects. Aspects connect the
classes (via symbols) that would not be connected otherwise.

The reduction in total entropy is then calculated as

Equation 6 Reduction in entropy with aspects

The probabilities have been computed as shown in Table 4. They can be also derived e mpirically from
execution scenarios.

Weighted entropy : A criterion for a qualitative differentiation of the units of a given code segment rep-
resented by the relevance, the significance, or the utility of the information they carry with respect to an
outcome, and to a qualitative characteristic.

The occurrence of a symbol removes a double uncertainty: the quantitative one, related to the probability
with which it occurs (it is found in the code), and the qualitative one, related to a given qualitative cha r-
acteristic (anticipated failure risk factor). For instance, a symbol of a small probability (such as an object
with small cardinality number) can have a great utility with respect to possible incorrect coding. Like-
wise, a symbol of high probability can have small impact on maintainability (we shall relate this obser-
vation to utility). The weight of one symbol may express some qualitative objective characteristics, but
also it may express the subjective utility of the respective symbol with respect to the software complex-
ity.

In order to distinguish the dependency edges according to their importance with respect to a given quali-
tative characteristics, we assign to each edge type a non-negative weight proportional to its importance
and significance. Weights are treated as the ratio of the objective probability that the edge path is the
source of information for symbol si.

() () ()∑
=

−=
I

i
ieii epepeweH

1

log)(

() ()
()ie

i
i ep

ep
ew

log
−=

In this case we obtain the following expression for weighted entropy:

() ()
2

1
∑

=

=
I

i
iepeH

Equation 7 Weighted entropy

() ()AHEHI −=

 Dospisil

 195

In order to acquire more objective weights for different types of dependency edges, we have introduced
finer granularity for edges, based on the information provided by the FEAT tool and execution scenar-
ios. Each edge type can assume one of the subtypes in Table 5.

Edge correspon-
dence
in FEAT

Description

Coupling measure as
weight in % MOB-Trader

Calls, m1, m2 Method m1 calls m2 80

Reads m, f Met hod m reads value of f 0

Writes m,f Method m writes in f 50

Checks m, c Method m checks class c 0

Creates m, c Method m creates object of class c 30

Declares c, {m} Class c declares method m 0

Superclass c1, c2 Class c2 is the superclass to c1 No – included in class nodes
dependency

Table 5 Symbol node classification and weight assignment

By introducing weighted entropy, we can distinguish between the quantitative uncertainty, related to the
probability with which a symbol occurs, and the qualitative one, related to a given qualitative character-
istic (anticipated failure risk factor or property of software we want to measure). Furthermore, by bal-
ancing weights for observables and evolutionary changes (using empirical values) we can obtain suffi-
cient foundation for prediction models.

Some Results
We have used entropy metrics for ordering of symbols to estimate the complexity of the mobile agent
application MOB-Trader. The application implements complex trading scenarios of multiple vendors
(Moderator module) and mobile buyer agents (Buyer modules). In the Buyer modules, Aspect/J en-
hances the modularization by placing exceptions and handling of preconditions and post cond itions in
aspects instead of special classes and subclasses.

Some submodules required threaded architecture to implement dynamic behaviour. With threads, the
breach of concurrency rules often results in random faults difficult to debug. Placing an aspect in the
Runnable interface may propagate such faults across entire system.

Some results of the experiments are in Figure 2, which shows the comparison of entropy values for two
modules: Module Moderator and Module Buyer. The Moderator had 53 symbol nodes with 20 class
nodes, and only a few aspects. The Buyer had 10 symbol nodes and deep class hierarchies (35 classes
and subclasses). Many classes had attached aspects implementing the negotiation strategy or error han-
dling submodules.

The Moderator module shows higher entropy for finding edge destination, path entropy (total entropy)
and weighted entropy due to its multithreaded implementation. Entropy H(A-1) was calculated for both
modules on implementation without aspects.

Usability Remarks on Proposed Metrics
Object-oriented code is characterized by class hierarchies that are shared structures. Very often some
additional subclassing, modification to existing classes, the restructuring of the hierarchy itself, and
changes in the visibility of attributes and sometimes even methods are made. Given these changes (with

Measuring Code Complexity For Aspect/J

196

and possible lack of comprehensive documentation) and time constraints, we assume that class hierar-
chies will become the subject of increased entropic tendencies in the implementation. In our mobile ap-
plication, we have observed that the probability that a subclass will not consistently extend the content
of its superclass is increasing with the depth of hierarchy. The tools like Hyper/J and Aspect/J support
the separation of concerns, thus allowing a different approach to evolving the content rather than extend-
ing the class hierarchies.

This paper presents proposed entropy based metrics for object-oriented development with Aspect/J. The
entropy metrics are useful in ranking diffe rent modules and symbols with regard to their complexity.
The single-valued measure of complexity is appealing as a quality indicator. However, as also discussed
in Fenton’s book (Fenton, 1997), the results may not be suitable for use in prediction models or as guid-
ance for improving the quality of the product. In order to tackle these shortcomings, we have introduced
weighted entropic values to accommodate the subjective perspective of an observer. This approach pro-
vides multi-valued space more suitable for prediction models.

We recognize that larger and more diverse samples must be collected to acquire more realistic weight-
ing. Due to the limited space, we have not included more results or concise methodology for collecting
data and the metric results explanations.

References
Aspect/J (2002). The AspectJ Programming Guide. Xerox Corporation, http://AspectJ/doc/progguide/printable.html.

Bansiya, J., Davis, C., & Etzkorn, L. (1999). An Entropy-Based Complexity Measure for Object-Oriented Designs, Theory
and Practice of Object Systems, Vol. 5(2), pp.11-118.

Belady, L.A. & Lehman, M.M. (1976). A Model of a large program development. IBM Systems Journal, Vol 15(3), pp.225-
252.

Briand, L. Daly, J., & Wurst. (1999). A Unified Framework for Coupling Measurement in Object Oriented Systems. IEEE
Transactions on Software Engineering, Vol. 25, No. 1, pp 99-121.

Entropy Comparison

H(S) - symbols

H(E) - edges

H(A-1) without
aspects

H(P) - total entropy

H(S) - symbols
H(E) -

exceptions

H(A-1) without
aspects

H(P) - total entropy

Reduction in entropy

Reduction in entropy

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Moderator Buyer strategy

Module

V
al

ue
H(S) - symbols

H(E) - edges

H(A-1) without aspects

H(P) - total entropy

Reduction in entropy

Figure 2: Entropy comparison for Moderator and Buyer modules

 Dospisil

 197

Briand, L. Daly, J., & Wurst. (1997). A Unified Framework for Cohesion Measurement in Object Oriented Systems. Techni-
cal Report, ISERN-97-05.

Chidamber, S. & Kemerer, C. (1994). A Metric Suite for Object Oriented Design. IEEE Transactionas on Software Engi-
neering, Vol.20,No.6, June, pp. 476-49.

Churcher, N. & Shepperd, M. (1994). A Metric Suite for Object Oriented Design. IEEE Transactionas on Software Engineer-
ing, Vol.20,No.6, June, pp. 476-49.

Davis, J.S., & LeBlanc, R.J. (1988). A Study of the Applicability of Complexity Measures. IEEE Transactions on Software
Engineering, Vol 14(9), pp.1366-1371.

Eder, J. & Kappel, G. (1994). Coupling and Cohesion in Object Oriented Systems. Technical Report , University of Klagen-
furt.

Khaled E., Saida Benlarbi, Nishith Goel, & Shesh N. Rai. (2001). The Confounding Effect of Class Size on Validity of Ob-
ject-Oriented Metrics. IEEE Transactions on Software Engineering, Vol. 27. No.7.

Fetchke, T. (1995). Software Metriken bei der Objectorientierten Programmierung. Diploma Thesis, GMD, St. Augustin.

Fenton, N. & Pfleger, S. L. (1997). Software Metrics: A Rigorous & Practical Approach . International Thomson Computer
Press.

Gursaran & Gurdev Roy. (2001). On the Applicability of Weyuker Property 9 to Object Oriented Structural Inheritance
Complexity metrics. IEEE Transactions on Software Engineering, Vol. 27. No 4. April.

Harrison, W. (1992). An Entropy-Based Measure of Software Complexity. IEEE Transactions of Software Engineering, Vol.
18, No. 11, November, pp. 1025-1029.

Henderson-Sellers, B. (1996). Object-Oriented Metrics measures of Complexity. Prentice Hall PTR.

Hitz, M., & Montazeri, B. (1995). Measuring Product Attributes of Object-Oriented Systems. In Proc. 5 th European Soft-
ware Engineering Conference (ESEC’95), Barcelona, Spain, pp. 124-136.

Hitz, M., and Montazeri. (1996). B. Chidamber & Kemerer’s metric Suite: A Measurement Theory Perspective. IEEE Trans-
actions on Software Engineering, Vol. 22. No. 4, pp270-276.

Kendall, E. (1999). Role Model Designs and Implementations with Aspect Oriented Programming, Proceedings of the 1999
Conference on Object- Oriented Programming Systems, Languages, and Applications (OOPSLA'99), ACM Press, No-
vember.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. - M. Loingtier, & J. Irwin. (1997). Aspect Oriented Pro-
gramming. Xerox Corporation. http://www.parc.xerox.com/spl/projects/aop/

Kitchenham, B. (1996). Software metrics. Blackwell.

Murphy, G., C. Albert Lai, Robert J. Walker, & Martin P. Robillard. (2001). Separating Features in Source Code: Explora -
tory Study. Proc. Of the 23th International Conference on Software Engineering, Toronto, pp. 275-284.

Tarr, P. Ossher, H. Harrison, W, & Sutton, Jr. (1999). N degrees of Separation: Multi-Dimensional Separation of Concerns.
Proc. Of the 21st International Conference on Software Engineering .

Weyuker, E. J. (1988). Evaluating Software Complexity Measures. IEEE Transactions on Software Engineering, Volume:
14, No. 9, pp. 1357 – 1365.

Zweben, S. & Hasltead, M. (1979). The Frequency Distribution of Operators in PL/I Programs. IEEE Transactions of Soft-
ware Engineering, Vol SE-5. pp.91-95, March.

Zuse, H. (1994). Software Complexity Metrics/Analysis . Marciniak, J. (Editor-in Chief): Encyclopedia of Software Engineer-
ing, Vol. I, John Wiley& Sons, Inc., pp. 131-166.

Yacoub S. M., Ammar, Hany,H. & Tom Robinson. (1999). Dynamic metrics for Object Oriented Designs. Proc. Of 6 th Inter-
national Symposium on Software Metrics (METRICS’99), Boca Raton, Nov. 4-6, pp. 50-61.

