
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Short Paper

Using UML in Software Requirements Analysis –
Experiences from Practical Student Project Work

Dirk Frosch-Wilke
University of Applied Sciences, Kiel, Germany

Dirk.frosch-wilke@fh-kiel.de

Abstract
Currently the Unified Modeling Language (UML) is an industry standard for object-oriented analysis
and design of software systems. Accordingly, teaching UML is part of curricula in many universities
engaged in the field of software engineering. Yet not much has been reported in the literature on how
efficiently such courses enable students to use UML in software development projects. In this paper we
present the initial results of our ongoing study into the capabilities of students to use the UML in system
design projects after having undergone “traditional” and alternative teaching methods in UML classes.
In this paper we investigate students’ motivation to follow a use-case driven approach in requirement
analysis. We furthermore explore specific problems students are confronted with when using the UML.
These findings were gathered during continuous evaluation of a project, in which students were exposed
to the real world of systems design, by making the requirement analysis for a customer relationship sys-
tem. With our study we attempt to optimize our methods of teaching UML in university courses and o f-
fer recommendations to this end on the basis of our findings.

Keywords : Software Requirements Analysis, Unified Modeling Language, IT-Education, Object-
Oriented Analysis

Introduction
Introducing the UML to students is part of curricula in many universities. The reasons for that are mani-
fold:

• the UML is an OMG (Object Management Group) standard,

• the UML has a wide acceptance in industry,

• there are a lot of CASE (Computer Aided Software Engineering)-tools which support the UML,

• use of the UML is independent of software development processes.

• object-oriented design has become very popular in software development projects

There exits also a lot of textbooks about UML (e.g. Alhir, 2002; Martin, 1997; Oesterreich, 2002; Scott,
2001; Schmuller, 2001). Usually you will find in these books the syntax definition of the UML diagrams

together with some –often very simple – examples
to put the different diagram notations in some
practical context.

The syntax of the UML diagrams is often not ex-
plained by using the UML metamodel (Kobryn,
1999). Instead a more intuitive way is chosen. Au-
thors often prefer explaining the use of UML dia-
grams with the aid of isolated simple examples.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

Using UML in Software Requirements Analysis

176

No doubt, this might be an appropriate way for books that aim at an initial introduction of the UML.

However we have to ask the question if this approach is sufficient to enable students to develop an un-
derstanding of the UML at a depth sufficient to see the advantages of using the UML in software deve l-
opment projects and to build effective models.

For this reason we took a random sample of ten UML courses from universities in North-America, Aus-
tralia, Asia and Europe (Southern Polytechnic State University (Georgia, USA), University of Missouri
(Kansas City, USA), Western Illinois University (USA), University of Calgary (Canada), University of
Newbrunswick (Canada), University of Newcastle (Australia), Swinburne University (Australia), Uni-
versität Magdeburg (Germany), University of Aarhus (Denmark), University of Hongkong). Our inves-
tigations into these ten courses confirm even for university courses that the UML is preferably intro-
duced by appealing to students’ intuition and to foster their initial imagina tion by simple examples to
demonstrate how UML is to be used “correctly”.

Our own teaching experience and course evaluations show that this approach is inadequate to qualify
students to use the UML effectively in software development projects. The students have extensive
knowledge of diagram notations but the majority of them is not able to put this (theoretical) knowledge
into an application context. Provided that they are successful in drawing some UML diagrams sepa-
rately, students will fail in realizing relationships and interdependencies between these different UML
diagrams. Students are widespread confronted with the problem that they do not really know how the
UML helps them in development projects to build good software.

Some of the reasons for this inability to build effective UML models are:

• Definition and exercise of the different UML diagrams are being dealt with separately.

• Students have not been mad familiar with some typical software development process (see e.g.
Sommerville 2000), which they could use as a guide for gaining an understanding how software de-
velopment projects employing UML are being run.

• No presentation of examples extensive enough and of such broad applicability to gather practical
knowledge.

• Variety of the modeling possibilities in the UML

To improve the quality of teaching the UML we created –in cooperation with a software deve lopment
company- a project, exposing students to the real world of object-oriented analysis and design with the
UML. The primary objective of the students enrolment in this project is to make the requirement analy-
sis of a customer relationship management system (CRM system) using the UML, feeling in an envi-
ronment which resembles the real working conditions of systems developer.

After describing the project in more detail we present some evaluation results of this project. Further we
suggest consequences for teaching UML in university courses, which are based on the evaluation results.

Certainly the sample size of 30 students in one course is not sufficient to empirically prove the sugges-
tions for improvement of teaching UML, this has to be done in future work and is beyond the scope of
this paper.

The purpose of this paper is to present first results of an ongoing study and to initiate a discussion about
alternative training methods in the field of object-oriented analysis and design of information systems.

 Frosch-Wilke

 177

The Project

Aims of the Project
The aim of this project was to simulate a real working environment in which the students could train the
their knowledge about object-oriented analysis and design with the UML. Furthermore this project of-
fered the possibility for practical project management and estimations of software development costs.
An additional important aim was to allow the students improving their soft skills (like team- or commu-
nication skills) that rate very high on the agenda of IT employers (Janczewski, 2001).

Project Organization
Six project teams were established from thirty participants of a software engineering course. In the
course of the project these six teams represented fictitious and competing companies, which tendered for
a CRM software development contract.

The client was a real software development company, which supported this project with three employ-
ees. These three employees represented the marketing, controlling and IT departments of the client.

The students were responsible to organize the project teams. They chose the project leader and defined
responsibilities for different project tasks within the teams on their own.

For collaborative work within the project teams and between teams and client the BSCW-GroupWare
tool (BSCW, 2002) was used among other communication channels. The students could use two differ-
ent CASE tools for the UML modeling: Rational Rose (Rational, 2002) and Poseidon for UML (Gen-
tleware, 2002).

The project period was three months.

The Project Exercise
All six projects teams had to work on the following tasks when conceiving a CRM system:

• Drawing up and updating of a project plan

• Keeping a project log

• Requirement analysis and design of a CRM system using the UML

• Calculation of a software development offer

• Final presentation of the project results

The overall rating of these tasks was the decisive factor for the fictitious placement of the deve lopment
order.

The Project Evaluation

Subject of Evaluation
The continuous evaluation of the project was divided into three subject areas:

• General aspects of the project (e.g. students gain, use of GroupWare tools)

• Cooperation with the software development company

• Use of UML in object-oriented requirement analysis

Using UML in Software Requirements Analysis

178

Subsequently we will present some results from the last subject area, because the results here are most
relevant to conclude consequences for teaching the UML in university courses.

The Main Results

General use of the UML in OOA
As Figure 1 shows, the overall student assessment is that practical project work is necessary for learning
the UML.

The relevance of an extensive practical project work for ge t-
ting a better understanding of the benefits of some modeling
language like the UML in software development is under-
lined by the evaluation results represented in Figure 2. It can
be seen on this figure that the students’ opinion about the
usefulness of the UML for requirement analysis has signifi-
cantly changed during the practical work experience. Imme-
diately after the course teaching the UML “traditionally” (as
described above) only a minority of students was convinced
that using the UML could improve the quality of the re-
quirement analysis. This opinion has dramatically changed
after the students had the possibility to work with the UML
in a bigger software development project.

After the project work the vast majority of students were convinced that the UML helps them to improve
the communication within the project team about certain concepts and between the project members and
the domain experts. Especially achieving good communication along with good understanding of the
users’ world is understood to be the key for developing the “right” software system (Fowler, 2000).

All student project teams used use cases for addressing this. After getting an adequate external view of
the CRM system by using use cases the students used mainly class diagrams and sequence diagrams to
look at more complex details.

Experiences with Using UML Diagrams
One of the goals behind the development of the UML was to keep it as simple as possible while still be-
ing able to model the spectrum of systems that needed to be built (Booch et al., 1999). However it is

low
0% high

33%

very high
67%

Figure 1: Relevance of practical
project work for learning OOA

with UML

no
remommend-

ation
75%

strong
recommend-

ation
0%

recommen-
dation
25%

recommen-
dation
83%

no
recommen-

dation
0%

strong
recommen-

dation
17%

 a) before project work b) after project work

Figure 2: Recommendation of using the UML for software requirement analysis

 Frosch-Wilke

 179

more complicated than previously developed object-oriented methods, because it is intended to be more
comprehensive. As a result, UML diagrams are often difficult to develop especially for the novice.

In what follows we will present some empirical results about how students use the UML in requirement
analysis and about the problems they are confronted with when doing this. These results indicate how
teaching the UML may be improved which we will discuss in the next paragraph.

Furthermore you can use these results to examine the limitations of an informal definition of UML dia-
grams. We assume that the absence of some stringent specification in UML courses and textbooks and
the isolated treatment of UML elements prevent students from gaining a deep understanding of the UML
which is indispensable to handle complex problems in practical work. Proofing the evidence of this,
however, is beyond the scope of this paper and has to be explored in future work.

Figure 3 summarizes the reasons
and their weightings for follow-
ing a use-case driven approach in
requirement analysis and using
the use case diagram.

The main reasons for the students
to describe use cases and to visu-
alize them with the use case dia-
gram are to get a better overview
of all business processes which
should be supported by the CRM
software and to know external
systems which have to be inte-
grated within the CRM system.
Although the majority of students
use UML diagrams for communi-
cation with the domain experts

(as stated before), only 50% communicate with the customer by using a use case diagram. The reason
for that might be that the student teams had defined personal responsibility for different tasks in re-
quirement analysis. Therefore not every student was involved in the discussion about business processes
with the domain experts.

Figure 3 indicates further that the identification of relatio nships between use cases, which one can ex-
press with three kinds of relationship in the UML, is of less importance for students. The hypothesis that
there is a statistical dependency between problems with mode ling an use case diagram and not using it
for identification of process relationship had to be rejected with Pearson’s χ2 –test (Weiss, 2001).

Using class diagram technique has become truly central within object-oriented analysis. The class dia-
gram is not only widely used, but it also has the greatest range of modeling concepts. The last point
might be the reason why many students had problems to describe objects in the CRM system and the
various kinds of static relationships among them from a conceptual perspective. Figure 4 shows the main
problems of students by using the class diagram technique.

The reason for the difficulty to identify appropriate classes is that there exists no “cooking-recipe” for
doing this. Certainly there are some possible methods that can be used to identify classes in some struc-
tured process, but most of these methods will produce a lot of insignificant classes. As many students
noted in the evaluation process it is difficult for them to identify significant classes because they lack
experience in doing this.

30

15

25

15

5

0

5

10

15

20

25

30

Overview of
business

processes to
support by the

software

Identification of
process

dependencies

Identification of
systems for
integration

Communication
with customer

Other reasons

Figure 3: Reasons for using the use-case-diagram

(multiple student answers were possible)

Using UML in Software Requirements Analysis

180

Among the UML diagrams one
of the most difficult diagram to
develop is the sequence dia-
gram (Song, 2001). We evalu-
ated some problems students
have to develop this form of
object interaction diagram.
Figure 5 summarizes the re-
sults.

The reason for the difficulties
summarized in Figure 5 might
be that the UML does not pro-
vide a process or specific steps
that students can follow to pro-
duce an effective diagram.
Therefore it is often up to the
student to develop a method
that assists him or her in creat-
ing a sequence diagram.

The last range of problems we will address here is about consistency and interrelationships among dif-
ferent UML diagrams used in building conceptual domain models. Although it is good practice to draw
diagrams without worrying about there connection at the beginning of requirement analysis in order to
get quickly good initial understanding, it is necessary to consolidate the various diagrams into a single
consistent domain model. The condition for diagram consolidation is to understand the relationships be-
tween different UML diagrams. For this reason we asked the students if they saw relationships between
class diagram and sequence diagrams before and after the practical project.

15

10

15

10 10

5

0

2

4

6

8

10

12

14

16

Seperation of
user interaction
and actions of

the system

Identification of
responsibilities

for control of the
modelled
scenario

Identification of
all involved

objects

Identification of
sending object

and acting
object

To ensure the
consistency

between class
diagram and

sequence
diagram

Other reasons

Figure 5: Problems by developing sequence diagrams

20

10

0

25

5

0

5

10

15

20

25

Identification of
Classes

Identification of
associations

Use of
Gen/Spec

relationships

Avoidance of
redundant

associations

Specification of
multiplicities for

associations

Figure 4: Main problems by using class diagrams
(multiple student answe rs were possible)

 Frosch-Wilke

 181

Figure 6 demonstrates that an overwhelming majority of students see connections between different
UML diagrams after practical work exper iences but had not been able to see this before.

Consequences for Teaching UML
Based on the empirical results presented in the paragraph before, we draw now some conclusions for
teaching UML in university courses.

The “traditional” method to teach UML by appealing to students’ intuition seems to be a good starting
point to reach a basic understanding of the diagram notation. A more rigorous approach by using the
UML metamodel would certainly help to define more well- formed models, but only using the meta-
model in teaching would prevent students from getting an understanding of how the use of UML can
help in software development.

As the empirical results show, however, the “traditional” teaching method is not sufficient to convince
students that using the UML in software requirement analysis will give them adva ntages. One reason for
that might be that they do not realize the benefits of the UML diagrams for this task and for further steps
in software development processes and that they do not really understand the relationships between dif-
ferent diagrams.

As a result some additional teaching methods and contents are necessary:

• Integration of practical orientated project work : “Learning by doing” seems to be the key factor for
enabling students to understand the extensive benefits of using the UML in software development, to
produce effective diagrams, to build consolidated models and to select UML diagrams commensu-
rate to the problem to be solved. Isolated exercises of UML diagrams are insufficient for gaining
these results. A real life project work – ideally in cooperation with real business organization –
seems to be indispensable for that purpose. In addition, the project work trains some supplementary
skills like communication or project planning – no doubt important abilities for information system
students.

• Use of methods for developing diagrams: The use of processes for developing diagrams (especially
for developing interaction diagrams) seems to be important for a novice in modeling with UML. Be-
ginners are often unable to use the UML effectively in software development because they do not
know how to build diagrams which can really help them. Experienced designers will be able to
choose or develop a method that assists them creating a model. Beginners like students, however,
need advice how to develop UML diagrams. Unfortunately there are only few authors who even
mentioned possible methods (see e.g. Song, 2001; Rosenberg, 1999).

yes
17%

no
83%

yes
83%

no
17%

 a) before project work b) after project work

Figure 6: Students’ assessment about a relationship between class-
and sequence diagrams

Using UML in Software Requirements Analysis

182

• Draw students attention on diagrams’ consistency: Students are often not able to see the relation-
ships between different UML diagrams because of the sequential and sometimes isolated teaching of
UML diagrams. Thus focusing on diagrams’ consistency in UML courses helps students to under-
stand the connection between different UML models.

• Use of the UML within the context of a software development process: UML techniques are to be put
in context of some software development process even if one can use the UML with any process.
This will help students to understand which diagrams are valuable for which kind of tasks in soft-
ware development projects and they can learn how object-oriented development works. We have
made good experiences with some kind of iterative software deve lopment process though we are
convinced that you need various kinds of development processes for developing different software
systems.

• Take care of perspectives: There are different perspectives you can use in drawing an UML diagram.
Following (Cook, 1994) you can distinguish between the conceptual, specification and implementa-
tion perspective. Taking care of these perspectives will help students to understand better different
kinds of information included in diagrams and, again, how they can use UML diagrams for particu-
lar purposes in software development.

Conclusion
In this paper we present results from the evaluation of a software engineering course for Info rmation
Systems and Business Administration students. The main objective of this course is object-oriented
analysis and design with UML.

Traditional textbooks and teaching methods in this area are often insufficient to enable students to use
effectively the UML in software development projects. Based on the empirical results we have drawn
some consequences for teaching the UML in university courses.

An integral part of UML courses should be a real-life project. “Learning by doing” seems to be the key
factor for students to gain an extensive understanding for benefits of using the UML in software devel-
opment and to produce effective diagrams. Furthermore, students need assistance like processes or steps
that can be followed to produce effective diagrams.

Further work will be concentrated on organizational aspects and content of the practical training of the
UML. Although this study did not vary the training methods, use of alternative training approaches will
be useful future extension of this ongoing study. Also additional data collectio n is necessary to use a
more robust empirical analysis.

References
Alhir, S. (2002). Guide to Successfully Applying the UML. Springer - Telos.

BSCW. (2002). BSCW – Basic Support for Cooperative Work: Introduction. Retrieved November 20, 2002 from the World
Wide Web http://www.bscw.de/index_en.html

Booch, G., Rumbaugh, J. & Jacobsen, I. (1999). The Unified Modeling Language: User Guide. Addison-Wesley.

Cook, S. & Daniels, J. (1994). Designing Object Systems: Object-Oriented Modeling with Syntropy. Prentice-Hall.

Fowler, M. (2000). UML Distilled. Boston: Addison-Wesley.

Gentleware. (2002). Poseidon for UML . Retrieved November 20, 2002 from the World Wide Web
http://www.gentleware.com/products/index.php3

Janczewski, L. (2001). Communication Skills for Information System Students. Proceedings of the 2001 Informing Science
Conference, Krakow (Poland), 274-278.

 Frosch-Wilke

 183

Kobryn, C. (1999). UML 2001: A Standardization Odyssey. Communications of the ACM, Vol. 42, No. 10, 29 -37.

Martin, J. & Odell, J. (1997). Object Oriented Methods: A Foundation, UML Edition. Prentice Hall.

Oestereich, B. (2002). Developing Software with UML. Boston: Addison-Wesley.

Rational. (2002). Product Features of Rational Rose. Retrieved November 20, 2002 from the World Wide Web
http://www.rational.com/products/rose/index.jsp.

Rosenberg, D. (1999). Use Case Driven Object Modeling with UML: A Practical Approach . Addison-Wesley.

Scott, K. (2001). UML Explained. Boston: Addison-Wesley.

Schmuller, J. (2001). Teach Yourself UML in 24 Hours . Sams.

Sommervile, I. (2000). Software Engineering. Addison-Wesley.

Song, I. (2001). A Heuristic for Developing Object Interaction Diagrams . Proceedings of the 2001 Informing Science Con-
ference, Krakow (Poland), 487-492.

Weiss, N. (2001). Introductory Statistics. Boston: Addison-Wesley.

Biography
Dr. Dirk Frosch-Wilke is a Professor of Business Information Systems at the University of Applied
Sciences Kiel. His research interests include the strategic applications of informat ion technology to
organizational productivity, electronic commerce and software engineering techniques. He has consulted
companies in e-commerce and software development projects. He has presented papers at both national
and international conferences. He is editor of the book Marketingcommunication in the Internet (Braun-
schweig: Vieweg:2002; in German) and he has contributed chapters to other texts.

