
Informing Science InSITE - “Where Parallels Intersect” June 2003

Paper Accepted as a Regular Paper

RepCom: A Report Generator Component System using
XML-driven, Component-based Development Approach

Leong Chee Hoong and Lee Sai Peck
University of Malaya, Kuala Lumpur, Malaysia.

chleong98@hotmail.com saipeck@fsktm.um.edu.my

Abstract
It is undeniable that report generation is one of the most important tasks in many companies regardless
of the size of the company. A good report generation mechanism can increase a company’s productivity
in terms of effort and time. This is more obvious in some startup companies, which normally use some
in-house report generators. Application development could be complex and thus software developers
might require substantial efforts in maintaining application program code. In addition, most of the report
generators use a different kind of format to store the report model. An application is no longer consid-
ered an enterprise- level product if XML is not being used elsewhere. This paper introduces a XML-
driven and Component-based development approach to report generation with the purpose of promoting
portability, flexibility and genericity. In this approach, report layout is specified using user-defined
XML elements together with querie s that retrieve data from different databases. A report is output as an
HTML document, which can be viewed using an Internet browser. This paper presents the approach us-
ing an example and discusses the usage of the XML-driven report schema and how the proposed reus-
able report engine of a customisable report generator component system works to output an HTML re-
port format. The customisable report generator component system is implemented to support heteroge-
neous database models.

Keywords : report model, report schema, report generator, XML, Component-based development

Introduction
It is undeniable that report generation is one of the most important tasks in many companies regardless
of the size of the company. A good report generation mechanism can increase a company’s productivity
in terms of effort and time. This is more obvious in some startup companies, which normally use some
in-house report generators.

Application development could be complex and thus software developers might require substantial ef-
forts in maintaining application program code (Cleaveland 1988). In addition, most of the report genera-
tors use a different kind of format to store the report model. In common practice, a big company nor-
mally uses more than one report generator to cater for their reporting needs. The lack of a generic format
of report model has the impact that reports generated in one report generator very unlikely work on an-

other report generator due to the proprietary for-
mat used by different vendors.

An application is no longer considered an enter-
prise- level product if XML is not being used
elsewhere (McLaughlin 2002). This paper intro-
duces a XML-driven and Component-based de-
velopment approach to report generation with the
purpose of promoting portability, flexibility and

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

RepCom: A Report Generator Component System

54

genericity. In this approach, report layout is specified using user-defined XML elements together with
queries that retrieve data from different databases. A report is output as an HTML document, which can
be viewed with an Internet browser.

The report generation mechanism of this approach supports heterogeneous database models, and there-
fore, reports generated by an application are independent from other database models. The report layout
and content can be specified using XML elements, which eventually made up the report schema. The
XML report schema can be used to help application developers create reports even much more faster as
well as code maintenance can be relatively done much more easier.

In Section 2, the conceptual architecture for realising the XML-driven and Component-based develop-
ment approach to report generation will be described. Section 3 presents the report schema with an ex-
ample of the usage through an application system. Section 4 presents the report model and report engine,
which is the core component of the system. Section 5 describes the data mapping to reports. Finally, a
conclusion is drawn in Section 6.

Overview
The proposed conceptual architecture for realising the XML-driven and Component-based development
approach to report generation consisting of various conceptual components is depicted in Figure 1. The
database contains dynamic data, which are changed from time to time, and therefore, the corresponding
contents of a generated report will change accordingly whenever the report model is executed (Chan
1998).

The report schema is in XML format. The report schema defines the possible layout of the report. Each
report has its own report schema and report model. The report model is the representative of the report
schema in Java format. It is derived from the report schema after the report engine has parsed it. The
parsing process is done by three main components, namely report parser, DOM parser and lastly the re-
port factory component. It takes the report schema as input and produces the report model as output.

Report Schema
(an XML file) Report Model

Report Parser DOMParser Report Factory
Report attributes

Report
Manager HTML file

Database

Database attributes

Data
Provider

Report Schema
(an XML file) Report Model Report Model

Report Parser DOMParser Report Factory Report Parser Report Parser DOMParser DOMParser Report Factory
Report attributes

Report
Manager HTML file HTML file

Database Database

Report Engine

Database attributes

Data
Provider
Data
Provider

Figure 1: A Conceptual Architecture.

 Hoong & Peck

 55

Only a successful parsing will generate the report model.

The report model consists of the report layout and attributes such as report title, report name, report
header, report data, report queries and report footer, database driver type and URL. Any queries speci-
fied in the report schema will be converted into proper SQL statements by the report engine. The data
are drawn from the database to fill the report. Data will be restructured in the report model before it can
be understood by the report manager. The report manager is only capable of reading data row by row.

In this approach, it is assumed that different databases use queries expressed only in SQL query lan-
guage which is widely used in multiple database models such Oracle, DB2, Informix and SyBase. Data-
base queries imposed on a specific database schema and database are specified in the report schema.
These SQL query statements defined in the XML report schema are used to retrieve the data from the
database to fill the report. As reports are desired to be presented via an Internet browser, therefore,
HTML reports are considered for this purpose.

Report Schema
The modeling of a report starts with the definition of a report schema, which captures the layout struc-
ture of the report. The report schema will be parsed and transformed into a report model by the report
engine. A good report schema will help in further processing of the report model as well as generating
the final report using the proposed approach described in Section 1.0. It is important to note that one re-
port will have only one report schema and one report model respectively. Specifying a report with this
approach is a matter of putting in the heading of the report and titles for various rows and columns with
the data contents left to be specified with the help of the SQL query language. The example of the full
report schema for a student report is shown as below:

<?xml version="1.0"?>
<!DOCTYPE JavaXML:Report SYSTEM "JavaXML.dtd">
<JavaXML:Report id="StudentReport">
 <JavaXML:Header>
 <JavaXML:Text>UM Student Report </JavaXML:Text>
 <JavaXML:Date>Date: </JavaXML:Date>
 <JavaXML:Time>Time: </JavaXML:Time>
 <JavaXML:PageNo>Page No : </JavaXML:PageNo>
 </JavaXML:Header>
 <JavaXML:Title>
 <JavaXML:Component id="name" length="20">Student Name</JavaXML:Component>
 <JavaXML:Component id="phone" length="20">House Phone</JavaXML:Component>
 <JavaXML:Component id="result" length="20" isTotalRequired="true">Marks</JavaXML:Component>
 </JavaXML:Title>
 <JavaXML:Total>
 <JavaXML:Component id="average" length="40">Average</JavaXML:Component>
 <JavaXML:Component id="total" length="20" totalMask="##0.0" fid="result"></JavaXML:Component>
 </JavaXML:Total>
 <JavaXML:Body>
 <JavaXML:Data>
 <JavaXML:Query id="name">
 <JavaXML:SQL>select studentname from table_student</JavaXML:SQL>
 </JavaXML:Query>
 <JavaXML:Query id="phone">
 <JavaXML:SQL>select phone from table_student</JavaXML:SQL>
 </JavaXML:Query>
 <JavaXML:Query id="result">
 <JavaXML:SQL>select result from table_student</JavaXML:SQL>
 </JavaXML:Query>

RepCom: A Report Generator Component System

56

 </JavaXML:Data>
 <JavaXML:RowTotal>
 <JavaXML:Query id="total" fid="result">
 <JavaXML:SQL>select avg(result) from table_student </JavaXML:SQL>
 </JavaXML:Query>
 </JavaXML:RowTotal>
 </JavaXML:Body>
 <JavaXML:Footer>
 <JavaXML:Text>End of Report</JavaXML:Text>
 </JavaXML:Footer>
 <JavaXML:DataProvider>
 <JavaXML:Driver>sun.jdbc.odbc.JdbcOdbcDriver</JavaXML:Driver>
 <JavaXML:Url>jdbc:odbc:Student</JavaXML:Url>
 </JavaXML:DataProvider>
</JavaXML:Report>

The report schema starts by defining the heading of the report, which consists of elements such as Text,
Date, Time and PageNo. In this example, the heading of the report consists of the Text element, which
represents the title of the report and followed by the Date, Time and PageNo descriptions. As shown in
the above example, the student report contains 3 columns, which are defined by the Title element. The
isTotalRequired attribute of the sub-element of JavaXML:Title is used to indicate the column having a
total. Having a column with a total, the report schema will have to specify the JavaXML:Total element
to reflect the requirement. A JavaXML:Total takes two inputs, one is the caption text and another is the
spaceholder for the total value. Typically, the JavaXML:Total is an empty element, in other words, it is
legal to specify that this element contains no textual data but attributes. The fid attribute of the
JavaXML:Total must always reference back to the component id that is defined in the JavaXML:Title.
The impact of wrong reference will cause improper display of the total value in the report.

The report engine depends on the DataProvider component to fill up the report. The JavaXML:Driver
and JavaXML:Url elements define the database connectivity protocol and database schema respec-
tively. These two elements are used by the DataProvider component to access the source of the data. As
shown in the example, the JDBC OBDC driver is used to access the student database schema. It should
be noted that the application developer needs to modify the JavaXML:Url and JavaXML:Driver element
data for constructing different types of reports, for instance, sales report.

The report ends by specifying the footer element, which contains the Text element for the application
developer to define the footer description. Finally, a student report can then be constructed according to
the content structure described in the report schema. After the SQL query statements are executed, the
report will become completely filled. The output is illustrated in Figure 2.

UM Student Report Date:Apr 28 2002 Time:10:00 Page No : 1

Student Name House Phone Result

Leong Chee Hoong 03-80681220 100

Yee Choi Len 03-80681220 96

Lim Choon Peng 03-80681220 65

Average: 87

End of Report

 Hoong & Peck

 57

Figure 2: A Sample Student Report.

A Data Type Definition (DTD) file is used to constrain all the report schemas by defining the structure
of the data. In the StudentReport.xml document, the file JavaXML.dtd, which is located on the local
filesystem is declared as the DTD for this XML document by the DOCTYPE syntax. The main purpose
of this DTD file is to define how data must be formatted. It defines each allowed element in the XML
file, the allowed attributes, the nesting and occurrences of each element, and any external ent ities. The
JavaXML.dtd file is defined like the following after all the allowed element nestings are determined:

<!ELEMENT JavaXML:Report
(JavaXML:Header,JavaXML:Title,JavaXML:Total,JavaXML:Body,JavaXML:Footer,JavaXML:DataProvider)>
<!ELEMENT JavaXML:Header (JavaXML:Text,JavaXML:Date,JavaXML:Time,JavaXML:PageNo)>
<!ELEMENT JavaXML:Title (JavaXML:Component+)>
<!ELEMENT JavaXML:Total (JavaXML:Component+)>
<!ELEMENT JavaXML:Body (JavaXML:Data,JavaXML:RowTotal)>
<!ELEMENT JavaXML:Data (JavaXML:Query+)>
<!ELEMENT JavaXML:RowTotal (JavaXML:Query+)>
<!ELEMENT JavaXML:Query (JavaXML:SQL)>
<!ELEMENT JavaXML:Footer (JavaXML:Text)>
<!ELEMENT JavaXML:DataProvider (JavaXML:Driver,JavaXML:Url)>
<!ELEMENT JavaXML:Text (#PCDATA)>
<!ELEMENT JavaXML:Date (#PCDATA)>
<!ELEMENT JavaXML:Time (#PCDATA)>
<!ELEMENT JavaXML:PageNo (#PCDATA)>
<!ELEMENT JavaXML:Component (#PCDATA)>
<!ELEMENT JavaXML:Driver (#PCDATA)>
<!ELEMENT JavaXML:Url (#PCDATA)>
<!ELEMENT JavaXML:SQL (#PCDATA)>
<!ATTLIST JavaXML:Report id CDATA #IMPLIED>
<!ATTLIST JavaXML:Component id CDATA #IMPLIED>
<!ATTLIST JavaXML:Component length CDATA #IMPLIED>
<!ATTLIST JavaXML:Component isTotalRequired CDATA #IMPLIED>
<!ATTLIST JavaXML:Component totalMask CDATA #IMPLIED>
<!ATTLIST JavaXML:Query id CDATA #IMPLIED>
<!ATTLIST JavaXML:Query fid CDATA #IMPLIED>

Transformation of Report Schema to Reports
Before a report model is created, the report factory component has to be invoked to transform the report
schema to the report model as depicted in Figure 3. After the transformation, the report model will be
made up by a set of reusable report components (Jacobson 1997) as shown in Table 1.

Report model
In the report model, a report object is a generic object or a container object for other objects like head
object, title object, data object or foot object as explained in Table 1. The header report object and footer
report object have only one head object or foot object respectively, whereas, the data report object con-
sists of the combination of title object and data object. This logical report model applies to the above
example report schema (StudentReport.xml) where there is only one liner of heading, footer, title de-
scription and one whole chunk of report content. A report object is essential in a report model to become
a major object holder and this is taken care by the report manager component, which will be discussed in
the next section. A report object can have a one-to-one relationship or one-to-many relationship with
other objects like title object and data object. It is therefore possible to construct a report object to have
more than one title and data object depending on the complexity of the report.

RepCom: A Report Generator Component System

58

Objects Purpose

Report object The root object of the report

Head object Heading object of the report

Title object Title object of the report

Data object The content object of the report

Total object The total object for a particular column

Foot object The footer object of the report

Component object An inner object that contains string value

TABLE 1: Objects in report model

Another key component in the report model is the component object. A component object contains the
information like alignment (left, right, justify), text value, length of the text, etc. As shown in the Figure
3, the component object is the inner-most object in a report model. For instance, the JavaXML:Text,
JavaXML:Date, JavaXML:Time and XML:PageNo in the header element will be converted into indi-
vidual component objects respectively.

Report
Header

Report
Data

Report
Footer

Report Object
Head Object

component
object

component
object

component
object

component
object

Report Object
Foot Object

component
object

component
object

component
object

component
object

Report Object

Title Object

component
object

component
object

component
object

component
object

Data Object

Figure 3: A logical report model.

 Hoong & Peck

 59

Report engine
The report engine is the main component of this approach. In general, the report engine is made up of
several sub components such as the report parser component, a third-party DOM parser component, re-
port factory component, report manager as well as data provider component and a set of reusable report
components.

The report parser component is built on top of the DOM parser. The DOM parser gives a tree structure
as output and allows the application to process the “tree” object by accessing the data at each node of the
tree. A set of interfaces and classes that define and implement the DOM is specified in the report parser
component. The report parser component parses the XML document and prepares the tree structure for
the report factory component. A document object will be created after the parsing. The document object
is obtained in the report parser component and passed to the report factory to process. A set of methods
is defined in the report factory component to process the XML document object. Each node in the “tree”
object is processed accordingly to build the report model accordingly.

The transformation from the report schema to the report model is done by the report factory component.
It begins by mapping the JavaXML:Header node into the head object in the report model. Subsequently,
the JavaXML:Title node will be transformed into the title object, JavaXML:Data node will be the data
object and JavaXML:Footer node will be the foot object. The header attributes defined within the
JavaXML:Header node such as text, date, time and page number are the component objects in the report
header.

As part of the report engine, the report manager is perceived as an interpreter of the report model. The
interpretation of a report model is a matter of converting the report objects into a more presentable for-
mat. In this case, the report model is converted into HTML format for output display to the user. Each
object of the report model is restructured and added the HTML attributes such as font size, font type,
alignment, etc. For example, the JavaXML:Header when converted to head object is justified to fit in the
default report length with an underline to separate from the content.

Mapping Data to Report Model
The SQL query language forms the contents of the report (Oracle 1995). In other words, in order to map
the data retrieved from the database to a report, SQL query language is widely used in this approach.
Data can be retrieved either directly from a particular column or specified table views that the
application developers need to define or from a particular SQL function.

Figure 4 shows a mapping between the data from the database to the report objects defined in the report
model. A report can be simply viewed as a tree. The tree starts from the report node and branches out to
header, footer, title and body nodes. In this case, only the body node is further broken down into several
sub nodes for discussion.

Using the example of the student report, the student record is mapped directly to the body object. Name,
phone and result tuples are extracted from the database. Data will be restructured and mapped to the
query under the data node respectively. Each query object under the data node as shown in the figure
represents a physical column in the report except the rowtotal’s query object. Another possible mapping
is the average tuple, which is mapped to the query object of the rowtotal node. The rowtotal’s query
object is an ordinary row data which represents the running total, for example, the average result from
the three students in this case.

RepCom: A Report Generator Component System

60

It should be noted that the number of query objects in the data node must be the same with the number
of component objects in the title node which is not demostrated in Figure 4. A wrong reference for data
node to the title node will cause runtime exception even though the mapping from data to report is
correct. The mapping is a straight forward process as long as the XML rules and constraints are followed
and used correctly. The report displays the result according to the order of the query element in the
report schema if the given id attribute of the query element is accurate.

Conclusion
RepCom is designed to help users generate web reports with minimum understanding of programming
knowledge. In this approach, a set of user-defined XML tags are developed to allow web reports of dif-
ferent complexities and sizes to be unified for different database models. With this approach, data are
retrieved from the database using SQL queries and reports are specified independently as HTML docu-
ments. The report structure is defined using the XML language, which provides a lot more flexibility
and simplicity. However, application developers have to follow the strict conformity of the XML speci-
fications used in this approach to develop reports.

RepCom was developed to allow application developers to build reports either using the XML report
schema or reusable report components directly. The latter provides more satisfaction to the application
developers though it is a bit tedious and requires more efforts to master the new components.

The benefits of this approach are simplicity, genericity and independence. The approach is simple be-
cause the user-defined XML-based report schema is very easy to undersand and does not require much
expertise in any programming languages. Due to the use of HTML format, this approach also provides
some degree of genericity compared to other formats. The approach is said to be independent because it
does not bind to any database models. Each individual report can be specified to retrieve data from any
database system. This is not usually the case with other approaches. In a nutshell, this approach pro-
motes two important technologies (XML and Java) to offer the ease of generating reports and the flexi-
bility of retrieving data from any database systems.

report

header
title footer

body

data rowtotal

query
query query

name

student record

phone result average

query

report

header
title footer

body

data rowtotal

query
query query

name

student record

phone result averagename

student record

phone result average

query

Figure 4: Mapping data to report model

 Hoong & Peck

 61

References
Oracle Corporation, U.S.A..(1995). Building Reports Manuals. 2.5 edition.

Daniel Chan. (1998). A Document-driven Approach to Database Report Generation. Proceeding of the Ninth International
Workshop on Database and Expert Systems Applications, Le Chesnay, France.

Ivar Jacobson. (1997). Software Reuse Architecture Process And Organization For Business Success. Addison-Wesley , pg
38.

Brett McLaughlin. (2000). Java and XML, pg 16-19.

J.Craig Cleaveland. (1988). Building Application Generators, pg 25-33.

Biography
Lee Sai Peck is an associate professor at Faculty of Computer Science & Information technology, Uni-
versity of Malaya. She obtained her Ph.D. Degree in Computer Science from University of Pantheon-
Sorbonne(Paris I) in 1994 and her Master of Computer Science from University of Malaya in 1990, and
her Diploma d’Etudes Approfondies(D.E.A) in Computer Science from University of Pierre et Marie
Curie(Paris VI) in 1991. She has published a number of research papers in several computer science
journals as well as in local and international conferences. She is a member of IEEE Computer Society.

Leong Chee Hoong is currently a student in the Master of Software Engineering at Faculty of Computer
Science & Information technology, University of Malaya. He obtained his Bachelor Degree of Informa-
tion technology from University of Northern Malaysia in June 1992. His research interest is Component-
Based Development, Internet Computing and Reporting Tools.

