
Informing Science InSITE - “Where Parallels Intersect” June 2002

Language Trends in Introductory Programming Courses

Michael de Raadt, Richard Watson and Mark Toleman
University of Southern Queensland, Australia

deraadt@usq.edu.au rwatson@usq.edu.au markt@usq.edu.au

Abstract
Deciding what to teach novice programmers about programming and, in particular, which programming
language to teach to novice programmers, and how to teach it, is a common topic for debate within uni-
versities. Should an industry relevant programming language be taught, or should a language designed
for teaching novices be used? In order to design tools and methodologies for the teaching of novice pro-
grammers it is important to uncover what is being taught, and in turn, what will be taught in the future. A
census of introductory programming courses administered within all Australian universities has been un-
dertaken. The census aimed to reveal not only what computer programming languages are being taught,
but also how they are being taught. From the results of this census two key factors emerged: perceived
industry pressure for graduates with certain language skills versus academic training for generic pro-
gramming skills.

Keywords: novice programming, teaching programming languages

Introduction
Since the inception of introductory programming courses, there has been significant debate about how to
teach programming to novices. When constructing an introductory programming course, instructors must
consider what language to teach, how their course will benefit their students’ programming skills for later
study or employment, what paradigm should be used and what tools, if any, could assist in the teaching of
their students. The intention of this paper is to examine how these issues are being dealt with in universi-
ties.

Pham (Pham, 1996) discussed the pressures on universities that affect the ‘purpose’ of computing courses.
These included advancing technology, demand for industry relevant skills and government pressure
through funding of universities to “cater for a mass clientele”. Many papers express experiences of con-
ducting a single introductory programming course, (eg. Clark, MacNish & Royal, 1998, Hagan, 1997),
but these do not reflect the population of introductory programming courses, and do not allow for analysis
of trends in this academic endeavour.

Prior to 1970, languages that could be taught to novices were limited to those available, including FOR-
TRAN and Cobol. In 1971 Niklaus Wirth introduced the language Pascal (Wirth, 1971) specifically for
teaching novices programmers. At various times between 1971 and 1997, 92% of universities in Austra-
lian taught Pascal. In 1995, Levy (Levy, 1995) reported a movement away from Pascal claiming it was
no longer capable of demonstrating all necessary concepts and was not a commercial language, this while

Java was just being released. In 1997, Pascal was
taught in an Australian university for the last time.

In the wake of the decline of Pascal, the current
study was conceived to discover exactly what has
filled the vacuum created in introductory program-
ming.

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:deraadt@usq.edu.au
mailto:rwatson@usq.edu.au
mailto:markt@usq.edu.au

Language Trends

330

Courses investigated by this study assume no prior programming experience and run for one semester
(usually the first semester within a first year undergraduate program). The courses cover the basics of
programming, including algorithms and problem solving, sequence, selection, repetition and data types.
These are typical courses worldwide so the results of this study are widely applicable.

Surveys have been conducted involving introductory programming courses within Australian universities
(McDonald, 1999, Robins, 1998). While fulfilling their goals of revealing language choice decisions,
these studies did not cover trends in language choice, types of students taught, paradigms taught, and did
not provide a context for examining these choices. These surveys covered only a small part of the popula-
tion of Australian universities.

Because of the number of Australian universities (thirty-nine) it was possible to carry out a comprehen-
sive census rather than a more common, less reliable survey. The census sought to address the following
questions.

• What programming languages are being taught?
• Are universities teaching industry relevant languages or are they using teaching languages?
• Does language choice depend on the kind of university? In particular, do older, more research-

oriented universities differ from their younger counterparts on this choice?
• Is there a distinction in the languages taught to students studying for different disciplines?
• How long do universities use an introductory language before it is updated?
• Do Object Oriented languages dominate introductory programming, and are they taught using an

‘Object Early’ approach (where objects and classes are presented from the beginning of the course)?
• What tools are being used when teach novices in introductory programming courses?

This paper is organised as follows: the construction of the census and how it was undertaken is described
in the next section; results from the census are presented and analysed in the following section; and fi-
nally, conclusions and possible future work are suggested.

Census: Trends in Novice Programming
The census covered all thirty-seven of the thirty-nine universities that offered introductory programming
courses. The census was undertaken during the first half of 2001.

Construction of the Census
A list of questions was drafted, refined and piloted. In an attempt to answer the research questions posed
in the introduction, the questions asked in the census were as follows.

1. What programming language is being used?
2. Why was this language chosen?
3. Are there plans to change the language?
4. Which languages were taught previously in the course and when did use of the current language

start?
5. For what type of student is your first programming course designed?
6. How many students are currently undertaking this course?
7. Are environments and/or tools beyond simple editors and command-line compilers used to support

teaching of the language in practical sessions?
8. What paradigm is being taught using the language (regardless of what is traditionally thought to

apply to this language)?

 de Raadt, Watson, & Toleman

 331

Method of Data Collection
In order to determine who should be asked to participate, a list of universities that offer degrees accredited
by the Australian Computer Society (Australian Computer Society, 2000) was used. An attempt was
made to cover all introductory programming courses within each university, not just those taught in com-
puter science schools/departments.

To maximise the participation rate, the census was conducted by telephone. All people who were asked
agreed to participate.

Results and Discussion
A summary of the results is shown in Table 1. In terms of student participation, 19,900 implies approxi-
mately 4% of all undergraduates were studying an introductory programming course during the first half
of 2001. Participants were asked when they had started using the current language in their teaching. The
figure for ‘average years of using current language’ is a measure of this.

Languages Currently Taught
Nine different languages are being taught in Austra-
lian universities. Participants were asked to indi-
cate what language was taught prior to these current
languages. The number of ‘dropped’ languages
was eighteen (double the current number). Lan-
guage diversity has reduced; analysis of the census
data shows that 18 languages were taught in 1996,
17 in 1997, 16 in 1998, 14 in 1999, 11 in 2000 and
9 in 2001. Table 2 shows the number of courses using particular languages currently, and the number of
courses that used particular languages prior to their current language. Six of these nine current languages
(Java, VB, C++, C, Eiffel, Delphi and Jbase) are widely used in industry. By student numbers 86% of
students are being taught an industry relevant language.

Pascal is no longer taught in any Australian university, nor are its descendants (Modula, Oberon or Com-
ponent Pascal). One course uses Delphi, however the participant responsible for this course indicated that
they would be moving to C++ at the end of the current run of the course.

Use of languages, weighted by the number of students taught these languages, is shown in Figure 1. The
most widely taught language is Java, followed by Visual Basic, although, if C and C++ are combined (as
they are often taught interchangeably), then this surpasses VB.

Courses 57
Universities 37
Students (Approx) 19,900
Average Students per Course 349
Average Years of Using Current Language 4.13

Table 1 General results.

Language Currently
Used

Dropped

Java 23 1
Visual Basic 14 2
C++ 8 6
C 4 8
Haskell 3 1
Eiffel 2
Ada 1 4
Delphi 1 1
JBase 1
Pascal 13
Modula 2 3
Smalltalk 3
Miranda 2
Others (Basic, Blue, Cobol,
DBase, Gopher, Turing) (6)

Table 2 Languages currently and previously taught.

Language Trends

332

Worthy of note is the fact that four of the six courses teaching ‘non-commercial’ languages (Ada, Eiffel
and Haskell) are run within the ‘Sandstone’ universities (Australian universities established before 1950
(Ashenden & Milligan, 1999)). If these universities are excluded, the use of non-commercial languages,
weighted by student numbers, falls from 14% to 4%. There is a clear distinction between the Sandstone
universities and other universities in the languages they teach. These Sandstone universities are ranked in
(Ashenden & Milligan, 1999) as the highest for ‘Prestige’ and ‘Student Demand’. This suggests that uni-
versities not competing for students are more confident in choosing non-commercial languages.

Participants were asked to indicate why they had chosen their particular language. The responses are
summarised in Table 3. The reasons given by participants for choosing the language they are currently
teaching was dominated by a willingness to satisfy the perceived need to teach a language that will pro-
vide their graduates with marketable skills. To most participants this was more important than the peda-
gogical benefits available in the language they had cho-
sen to teach.

As well as choosing different languages, Sandstone
universities made their choices using different criteria,
as shown in Table 4. This distinction reinforces the
difference between Sandstone and non-sandstone uni-
versities.

Types of Students Taught
Introductory programming courses target students from a range of disciplines. Census participants nomi-
nated student discipline groups for which their course was designed. The disciplines recorded were Com-
puter Science/Information Technology, Engineering, Business, and Other. Many courses were designed
for a range of disciplines. The proportion of students undertaking the courses based on kind of course are
as follows:

• Computer Science/IT only 26.5%
• Computer Science/IT & Engineering 20.7%
• All disciplines 16.5%
• Business and Other 8.5%
• Engineering only 4.7%
• Other combinations 20.1%

Industry relevance/Marketable/Student demand 33
Pedagogical benefits of language 19
Structure of degree/Department politics 16
OOP language wanted 15
GUI interface 6
Availability/Cost to students 5
Easy to find appropriate texts 2
Table 3 Count of reasons given for language choice in all

universities.

Pedagogical benefits of language 6
Industry relevance/Marketable/Student demand 4
Structure of degree/Department politics 2
Availability/Cost to students 2
OOP language wanted 2
Easy to find appropriate texts 1
Table 4 Count of reasons given for language choice by

participants from ‘Sandstone’ universities.

Languages Taught Weighted by Student Numbers Taught

Figure 1 Use of languages weighted by student numbers

VB
19%

Java
43%

Eiffel
3%

C++
15%

Ada
2%Jbase

1%
C
6%

Haskell
9%

Delphi
2%

All Universities Sandstone
Universities

Java

C
5%

C++
20%

VB
25%

42%

Delphi
3%

Eiffel
2%

JBase
1%

Ada
2%

Non-Sandstone
Universities

C
6% Eiffel

9%

Haskell
36%

Java
49%

Languages Taught Weighted by Student Numbers Taught

Figure 1 Use of languages weighted by student numbers

VB
19%

Java
43%

Eiffel
3%

C++
15%

Ada
2%Jbase

1%
C
6%

Haskell
9%

Delphi
2%

All Universities Sandstone
Universities

Java

C
5%

C++
20%

VB
25%

42%

Delphi
3%

Eiffel
2%

JBase
1%

Ada
2%

Non-Sandstone
Universities

C
6% Eiffel

9%

Haskell
36%

Java
49%

 de Raadt, Watson, & Toleman

 333

An examination of the types of languages being taught within courses designed with specific types of stu-
dents in mind shows why these languages may have been chosen.

• The popularity of Java is uniform across all disciplines.
• Visual Basic is taught widely within courses designed exclusively for business or other (non-

engineering/non-computer-science/non-IT) students; Visual Basic is taught in 78% of such courses.
• Courses for Computer Science and Engineering students show a higher use of C++ and Haskell.

Trends in Language Use
Participants were asked if they had definite plans to change the language they were teaching. Only five of
the fifty-seven participants indicated that they had definite plans to change, although many participants
stated that the language taught was constantly under review. Those who did indicate they had definite
plans to change the language taught were not consistent in the language to which they were switching.
For example, one participant indicated they were planning to change from VB to Java, while another indi-
cated the opposite. Efforts to predict future trends are therefore limited to a study of the past.

There appears to be very little correlation between language previously taught and language currently
taught. Although it might be expected that instructors would chose new languages with the same para-
digm or similar language features, this is not the case. Instead, these decisions appear to be more moti-
vated by reasons shown in Table 3 and Table 4.

When courses are grouped by language and measured by the average length that courses have used a par-
ticular language then the results are as shown in Figure 2.

In this figure the average length that each language has been taught, measured in years, is indicated by the
horizontal width of each bar and the value next to each bar. The number of courses teaching this language
is indicated by the vertical height of each bar and the value in parentheses next to each bar.

Of note is that Java is the most widely taught language, and it has been taught, on average, for only a
short period of time.

Paradigm Taught
Participants were also asked what paradigm they
were employing in their teaching. In many cases,
paradigm was restricted by language taught, but
of great interest is the distinction between OOP
languages that are taught initially using an Object
Early approach or a Procedural approach. Over
half of all students are initially taught using a Pro-
cedural approach, 40% using an Object Early ap-
proach, and 9% using a functional paradigm.
However, 81% of students are being taught OOP
languages. Courses teaching OOP languages, and
the paradigms initially used within these courses,
are broken down by language as show in Figure 3.

Figure 2 Average length of language use and
number of units teaching that language

Average Length of Course in Years

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Ada

JBase
Eiffel

VB

C++

Delphi

Java

Haskell

Years

C
7.50 (1)

7.00 (4)
5.50 (1)
5.50 (2)

4.79 (14)

4.56 (8)

3.50 (1)

2.91 (23)

2.50 (3)

(N
um

ber of Units Teaching Language)

Figure 2 Average length of language use and
number of units teaching that language

Average Length of Course in Years

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Ada

JBase
Eiffel

VB

C++

Delphi

Java

Haskell

Years

C
7.50 (1)

7.00 (4)
5.50 (1)
5.50 (2)

4.79 (14)

4.56 (8)

3.50 (1)

2.91 (23)

2.50 (3)

(N
um

ber of Units Teaching Language)

Average Length of Course in Years

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Ada

JBase
Eiffel

VB

C++

Delphi

Java

Haskell

Years

C
7.50 (1)

7.00 (4)
5.50 (1)
5.50 (2)

4.79 (14)

4.56 (8)

3.50 (1)

2.91 (23)

2.50 (3)

(N
um

ber of Units Teaching Language)

Language Trends

334

Early calls for a transition to teaching the Object
Paradigm caused much debate (Decker &
Hirshfield, 1992, Wallingford, 1996) which contin-
ues today. Some authors acclaim the benefits of
teaching OOP languages, but express disappoint-
ment at the less than adequate suitability of com-
mercial OOP languages for teaching (Andreae et al,
1999, Kölling, Koch & Rosenberg, 1995). OOP
languages have become widespread in industry and
these languages are taught widely in Australian
universities. Teaching methods, however, have not
changed as rapidly. Some 86% of languages taught
are OOP languages, but less than half are taught
using an Object Early approach. An exception to
this is the teaching of Java, which is taught with an
early introduction of objects and classes in 70% of
courses that teach it. Teaching non-OO Java may
seem impossible to some, but means that 30% of
instructors are asking their students to ignore class
declarations in Java until later.

Environments and/or Tools Used
Participants were asked to indicate what tools they used to assist teaching in practical sessions, other than
simple editors and command-line compilers. Figure 4 indicates the environments/tools being used. Some
languages are limited to environments in which they can be taught, but the greatest number of participants
answered they were avoiding using such technologies, indicating the following reasons:

• cost for students,
• time required to familiarise students with environments, and
• the blurring of distinct steps in the programming process.

Courses not teaching a language that force the use of an integrated environment, continue to use facilities
such as text editors and command-line compilers,
that have been available since the inception of the
introductory programming course. This is despite
the existence of many more sophisticated program-
ming tools and environments used by professional
programmers. Clearly there is a lack of tools that
are designed specifically for novice programmers,
are freely available, easy to use, do not obscure the
details of the programming process, and in which
instructors can be confident in teaching.

Conclusions and Future Work
In conclusion, the questions raised in the introduc-
tion are addressed and future research directions are
considered.

What languages are being taught?

Environments or Tools Used
Weighted by Student Numbers Taught

VB IDE
19%

No Tool
45%

BlueJ
4%

Other IDE
13%

Other Tool
10%

Functional Env
9%

Figure 4 Environments and/or tools used for
teaching in practical sessions.

Environments or Tools Used
Weighted by Student Numbers Taught

VB IDE
19%

No Tool
45%

BlueJ
4%

Other IDE
13%

Other Tool
10%

Functional Env
9%

Figure 4 Environments and/or tools used for
teaching in practical sessions.

C++

Eiffel

Java

VB

Taught OO

Taught Procedural

How OO Languages are Taught

Figure 3 Paradigm used to teach OO
languages

C++

Eiffel

Java

VB

Taught OO

Taught Procedural

How OO Languages are Taught

Figure 3 Paradigm used to teach OO
languages

 de Raadt, Watson, & Toleman

 335

The main languages being taught are Java, Visual Basic, C/C++ and Haskell. A trend in the reduc-
tion of the number of languages being taught was noted. Perceived industry pressure and pedagogi-
cal reasons are directing universities towards a smaller pool of languages. It would be reasonable to
concede that this trend will continue, perhaps until only the four languages above remain. A study
is planned within two years to follow this trend.

Are universities teaching industry relevant languages?
In most cases, universities are making compromises that they feel will produce the greatest benefits
for their graduates. The proportion of students being taught an ‘industry relevant’ language is 86%.
The first reason given by most participants for choosing a language was perceived industry demand,
or pressure from students for a commercial language. This does not indicate that participants ac-
tively surveyed industry demand for particular languages. A study of how the programming lan-
guages perceived as demanded by industry differ from actual demand is a possible future direction.

Is there a distinction between Sandstone universities and other universities?
Different languages are being taught in Sandstone universities when compared to non-sandstone
universities. Sandstone universities also have different priorities for choosing a language. Courses
within these universities are in great demand from students, which permits a focus on what will
benefit them best pedagogically rather than what will attract students. In the future other universi-
ties may take the lead of the sandstone universities and teach academic languages, or the sandstone
universities may take on more commercial languages. A planned study within two years will reveal
if either of these possibilities has occurred.

Is there a distinction between languages taught to students of different disciplines?
Java is popular across all disciplines. Java is a popular language seen as relevant to industry. Vis-
ual Basic is popular within courses designed for students of non-technical disciplines. The
GUI/event-driven features of VB allow interesting solutions to be created quickly. Some partici-
pants involved in courses from non-technical disciplines stated that this was important, as students
in these courses are not likely to attempt any further programming courses. C/C++ and Haskell are
popular within courses designed for students of technical disciplines. These languages allow a fo-
cus on computing principles necessary for later programming.

Introductory programming is no longer taught exclusively within computer science settings. Future
studies may examine the growth of introductory programming courses outside computer science,
and what distinguishes these courses.

How long do universities use an introductory language?
From examining the use of current languages, at least four years is the average life of a language
used in a course. Repetition of this study will provide longitudinal trends of this factor. At this
stage however, there seems to be no new languages on the horizon capable of overthrowing the cur-
rent most popular languages.

Does an Object Paradigm dominate?
Over eighty percent of students are being taught OOP languages. This may be because of perceived
popularity of these languages or perhaps simply a need to teach object oriented languages. With
this in mind, however, over half of the courses using these languages are not using an Object Early
approach. One possible reason for this is the experience of instructors who previously taught using
a procedural paradigm and, while accepting an OO language, are reluctant to adopt an Object Early
approach. A future study may discover exactly why this is the case.

Language Trends

336

What tools are being used?
Of participants who were not restricted to an environment by the language they teach, the majority
indicated that they chose to use simple text editors and command-line compilers. Participants rea-
soned that complex environments require additional instruction, which consumes valuable teaching
time. Future research into programming tools designed specifically for novices would be wise to
consider the reasons given by participants for not choosing a tool, before creating such tools.

A future study, planned within two years, will reveal further trends, and add more longitudinal data to this
study. Additional questions may be added to reveal:

• Is there a distinction in the instruction provided to non-technical students?
• What methods of assessment are being used?
• How many hours are dedicated to teaching of algorithms and problem solving within the course?

Industry, it seems, can influence languages taught within tertiary institutions, and the languages taught in
tertiary institutions in turn influence the languages used within industry. But which comes first? Is it the
chicken or the egg? Who is making the decisions that will guide the future of programming? Some sug-
gest that we are driven toward debate over technological issues of introductory programming when we
should be focussing on teaching algorithms and problem solving. Should universities teach generic skills
that can be applied to many languages, or should they teach specific languages in a technology-based
manner? Is it even necessary to introduce any specific language at all in an introductory course (Lister,
2000)?

References
Ashenden, D. & Milligan, S (1999). The good universities guide: Universities, TAFE and private colleges in 2000. Hobsons

Australia.

Andreae, P., Biddle, R., Dobbie. G., Gale. A., Miller, L. & Tempero, E (1999). Surprises in teaching CS1 with Java (Techni-
cal report). Online. Internet. [1999]. Retrieved September 5, 2001 via FTP: ftp://ftp.mcs.vuw.ac.nz/doc/vuw-
publications/CS-TR-98/CS-TR-98-9.ps.gz

Australian Computer Society (2000). Accredited courses. Retrieved August 29, 2001 on the World Wide Web:
http://203.58.197.209/acs/events_ admin/course20_6.htm

Clark, D., MacNish, C. & Royle, G.F (1998). Java as a teaching language--opportunities, pitfalls and solutions. The proceed-
ings of the third Australasian conference on computer science education (July 1998), ACM Press, 173-179.

Decker, R. & Hirshfield, S (1992). A case for, and an instance of, objects in CS1. Addendum to the proceedings on Object-
oriented programming systems, languages, and applications (Addendum) (October 1992), ACM Press, 309-312.

Hagan, D. Monitoring and evaluating a redesigned first year programming course. Proceedings of the conference on Integrat-
ing technology into computer science education (June 1997), ACM Press, 37-39.

Kölling M., Koch, B. & Rosenberg, J. (1995). Requirements for a first year object-oriented teaching language. Papers of the
26th SIGCSE technical symposium on computer science education (March 1995), ACM Press, 173-177.

Levy, S.P. (1995). Computer language usage in CS1: Survey results. SIGCSE Bulletin, 27, 21-26.

Lister, R. (2000). On blooming first year programming, and its blooming assessment. Proceedings of the Australasian com-
puting education conference. (December 2000), ACM Press, 158-162.

McDonald, C. (1999). 1st year programming languages in Australian and New Zealand universities. Retrieved June 26, 2001
on the World Wide Web: http://www.cs.uwa.edu.au/~chris/java-in-cs1/anzacs.html

Pham, B. (1996). The changing curriculum of computing and information technology in Australia. Proceedings of the second
Australasian conference on computer science education (July 1996), ACM Press, 149-154.

Robins, A. (1998). First language survey. Retrieved June 15, 2001 on the World Wide Web:
http://www.cs.otago.ac.nz/survey/surveyhome.html

http://203.58.197.209/acs/events_
http://www.cs.wm.edu/sigcse99/format.doc
http://www.cs.wm.edu/sigcse99/format.doc

 de Raadt, Watson, & Toleman

 337

Wallingford, E. (1996). Toward a first course based on object-oriented patterns. Proceedings of the twenty-seventh SIGCSE
technical symposium on Computer science education (February 1996), ACM Press, 27-31.

Wirth, N. (1971). The Programming Language Pascal. Acta Informatica, 1, 35-63.

Biographies
Michael de Raadt is a PhD student and instructor of programming at the University of Southern Queen-
sland. Michael undertook undergraduate study at the University of Western Sydney and achieved his
Bachelor of Applied Science Degree with Distinction in 1998, and achieved First Class Honours and was
awarded the UWS University Medal in 1999. Michael is also a recipient of the ACS prize for Highest
Achievement.

Dr Richard Watson is a lecturer in the Department of Mathematics and Computing at the University of
Southern Queensland. He has taught programming to undergraduates at all levels for the past 12 years.
He conducts research into functional programming languages.

Dr Mark Toleman is an Associate Professor of Information Systems at the University of Southern Queen-
sland where he has taught computing subjects to engineers, scientists and business students for 15 years.
He has a PhD in computer science from the University of Queensland and is an Associated Academic of
the Software Verification Research Centre there.

