
Informing Science InSITE - “Where Parallels Intersect” June 2002

Markov Chain-based Test Data Adequacy Criteria:
a Complete Family

Mohammed Al-Ghafees and James A. Whittaker
Florida Institute of Technology, FL, USA

malghafees@hotmail.com jw@cs.fit.edu

Abstract
The idea of using white box data flow information to select test cases is well established and has proven
an effective testing strategy. This paper extends the concept of data flow testing to the case in which the
source code is unavailable and only black box information can be used to make test selection decisions. In
such cases, data flow testing is performed by constructing a behavior model of the software under test to
act as a surrogate for the program flow graph upon which white box data flow testing is based. The behav-
ior model is a graph representation of externally-visible software state and input-induced state transitions.
We first summarize the modeling technique and then define the new data flow selection rules and describe
how they are used to generate test cases. Theoretical proof of concept is provided based on a characteristic
we call transition variation. Finally, we present results from a laboratory experiments in which we com-
pare the fault detection capability of black box data flow tests to other common techniques of test genera-
tion from graphs, including simple random sampling, operational profile sampling and state transition
coverage.

Keywords: Behavior model, operational profile, random testing, software testing,
test data adequacy criteria, transition variation.

Introduction
From a white-box, code-based perspective, data and data-flow are easily defined. Data is represented by
program variables and data structures; data flow is defined by uses of data (e.g., predicates) and changes
to data values (e.g., assignments).

Data flow is useful to software testers to help them prioritize code paths for testing purposes. The general
idea is that paths which define and modify data are higher priority paths to test because manipulating data
forces the software to exhibit its functionality. Indeed, this is intuitively very pleasing: since fundamen-
tally software stores and manipulates data, then it makes sense to consider data flow when selecting test
cases. As long as the set of paths selected cause all program data to be initialized and used, then one has a
certain degree of confidence in the completeness of the test. Untested paths will not contain untested data.

Laski and Corel [7] defined the first testing strategy based on data flow as an alternative to control flow
strategies which where prevalent at the time [8].
Later Rapps and Weyuker [13] proposed a number
of test selection criteria so that test cases could be
chosen based on their ability to define and modify
program data. A number of subsequent analyses
and case studies have served to mainstream white
box, data flow testing [3, 5, 15, 16].

Material published as part of these proceedings, either on-line or in
print, is copyrighted by Informing Science. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation on
the first page. It is permissible to abstract these works so long as
credit is given. To copy in all other cases or to republish or to post
on a server or to redistribute to lists requires specific permission
from the publisher at Publisher@InformingScience.org

mailto:Publisher@InformingScience.org
mailto:malghafees@hotmail.com
mailto:jw@cs.fit.edu

Markov Chain-based Test Data Adequacy Criteria

14

This paper defines a new family of data flow testing criteria inspired by the work cited above. However,
we treat the case that source code is unavailable for consideration and test selection must be based only on
external information: the interface, inputs and outputs. Thus, we must first define exactly what we mean
by data and data flow from a black box perspective before defining the selection criteria.

Most testers are comfortable with the notion of the program flow graph [8] in which source code is mod-
eled as a directed graph where nodes are defined by individual (or blocks of) program statements and
edges by control flow changes due to looping and branching structures. White box data flow criteria fit
easily into this model by defining, for example, subpaths of the flow graph that begin at a node in which
data gets initialized and end at a node in which the same data gets used or modified. Thus, paths through
the model define sequences of source statements that can be executed in a target environment. Indeed, the
flow graph model defines only paths that can be executed and rules out statement sequences that are not
realizable.

We extend this graphical concept to external program behavior by defining a behavior model which de-
scribes sequences of inputs that can be executed (in order) against the software under test. Like the pro-
gram flow graph, behavior models describe only sequences that are realizable and rule out impossible in-
put sequencing (like pressing a button on a dialog box before the box appears on the screen). For behavior
models we define nodes to be a collection of variables which describe the state of the application under
test and the edges to be inputs which can be applied at a particular state. Thus, data flow path selection
criteria can be made to apply to black box testing by treating the variables that define software states ex-
actly as program variables are treated in white box testing.

Methods for identifying external data flow and constructing a behavior model are presented in section 0
along with an illustrative example. We conjecture that improvements in overall test quality (coverage of
behavior or failure detection) will mirror those of white box data flow. Thus, in cases where the data de-
sign is complex and defines much of the application’s behavior, we expect data flow criteria will be a
good choice for test selection. Our new test selection criteria are presented in section 0.

In order to provide proof-of-concept, In section 4 and 5 we provide a theoretical analysis of a characteris-
tic we call transition variation1 then we present results from laboratory experiments in which software
systems with known faults is tested by structurally-identical behavior models using three different test se-
lection strategies: random path selection (including operational profiles), structure-guided path selection
(node and edge coverage) and path selection guided by our new criteria. In order to counter the possibility
that the random selection was unlucky (i.e., that a path that avoided all the failures was selected), we re-
peated the random experiment a number of times using different random seeds. We also used three varia-
tions of an operational profile: uniform, slightly tilted—to simulate a diverse operational profile—and sig-
nificantly tilted—to simulate a specialized operational profile.

Our results for these experiments are encouraging. Specifically, they show that testing guided by our new
data flow criteria outperforms all three types of random testing and behavior model coverage testing in the
number of faults identified. In addition, even if we allow substantially more random testing to be per-
formed, the data flow tests are still more productive. In effect, we are able to find more faults in less time
using the data flow criteria than we could using random testing. Thus data flow testing from a black box
perspective can achieve favorable results. Experiments with larger applications and production systems
are underway.

1 Transition variation is a quantitative measure that gives an indication about the coverage of all combina-
tions of adjacent transitions of length two or more.

 Al-Ghafees & Whittaker

 15

Behavior Models for Software2
We define a behavior model for software testing to be the couple (S, δ) where S is the set of all opera-
tional states of a software system and δ:S×I×[0…1]→S is the non-deterministic transition function, where
I is the set of externally generated inputs to the software. Operational states describe internal or external
objects (as long as they are identifiable from an external perspective) which influence the behavior of the
software under test. In general, we are interested in objects that affect the way the software reacts to exter-
nal inputs. We say that software is in state j when a collection of objects have certain values and in state k
when they have different values. State j is characterized by which external inputs are allowable and which
are prevented (or, at least reacted to in a different manner) by the software. State k will have a different set
of allowable inputs that mark it as distinct from state j.

The transition function δ describes how the application of external inputs cause state changes within the
software. The optional probability distribution associated with each state can represent the operational
profile, i.e., the probability that the corresponding inputs will be applied during typical use, for that state
or any other distribution that might be helpful to testers, such as an easy to establish uniform distribution.

Defining S and δ are accomplished by identifying the software’s operational modes. An operational mode
is a variable that abstracts system objects which govern the way the software responds to input. For exam-
ple the variable “phone status = ringing or not ringing” is an operational mode for a phone switch because
it governs whether the output for the “take the phone off the hook” input is “connected to caller” or “dial
tone,” respectively. I.e., if the phone is ringing the behavior will be to connect the two parties, if the phone
is not ringing the output will be to emit a dial tone. Since a ringing phone can be detected external to the
system (without consulting the actual source code), we say that this variable is black box data. A state s∈ S
is formed by assigning a specific value to each operational mode of the system.

Operational modes represent situations where: 1) the software treats the same input differently, e.g., it may
allow it at a given point during execution of the software and disallow it at others and/or 2) the software
produces different output given the same user input. Operational modes thus allow us to model not only
which input sequences are allowed and which are prevented (which is important for test case generation),
but also how the software will behave given a specific sequence of inputs (which is important for
determining expected results).

Operational modes are defined from a software’s specification by considering the above situations. For
example, in [18] we modeled a clock application using operational modes similar to the following.

• System = {not invoked, invoked}

• Window = {main form, change dialog, about dialog}

• Setting = {analog, digital}

• Display = {all, clock only}

• Cursor = {time, date}

Let O represent the set of all operational modes relevant to testing a software system. The state set S is
formed by taking the cross product of the modes and removing the impossible combinations, i.e., S⊆ (o1 ×
o 2 × …× o m) where m is the total number of operational modes. In this manner, the following states are
defined for the clock application:

2 Software testing based on behavior models is supported by a number of commercial tools including
Teradyne’s TestMaster® (www.teradyne.com) and Q-Lab’s toolSET_Certify® (www.q-labs.com).

Markov Chain-based Test Data Adequacy Criteria

16

1. {System = not invoked, Window = any, Setting =analog, Display =any, Cursor = any}
2. {System = invoked, Window = main form, Setting =analog, Display =all, Cursor = any}
3. {System = invoked, Window = main form, Setting = analog, Display = clock-only, Cursor = any}
4. {System = invoked, Window = change dialog, Setting = analog, Display = all, Cursor =time}
5. {System = invoked, Window = change dialog, Setting = analog, Display = all, Cursor =date}
6. {System = invoked, Window = about dialog, Setting = analog, Display = all, Cursor = any}
7. {System = invoked, Window = about dialog, Setting = digital, Display = all, Cursor = any}
8. {System = invoked, Window = main form, Setting = digital, Display = all, Cursor = any}
9. {System = invoked, Window = main form, Setting = digital, Display = clock-only, Cursor = any}
10. {System = invoked, Window = change dialog, Setting = digital, Display = all, Cursor =time}
11. {System = invoked, Window = change dialog, Setting = digital, Display = all, Cursor =date}
12. {System = not invoked, Window = any, Setting =digital, Display =any, Cursor = any}

The first execution of the software will be from state 1 and will end in either state 1 or 2. Subsequent runs
will begin in either state 1 or 2, exactly where the previous run terminated.

The behavior model is constructed from the state set by defining the transition function δ. A transition
from state s1 to state s2 is defined by 1) a subset of inputs from I which cause the software to change the
value of one or more operational modes represented by s1 to the values in s2 and 2) an optional probability
that reflects the likelihood of a user submitting the corresponding input to the software. In the event that
more than one input causes the transition, each input is assigned a separate probability under the Mark-
ovian restriction that the exit probabilities from each state must sum to exactly 1. The behavior model for
the clock application appears in figure 1. For readability, we omitted probability labels and self-looping
transitions.

 Al-Ghafees & Whittaker

 17

Sample Selection
Generating tests from the behavior model is a graph traversal problem. Obvious methods for such tra-
versal include:

• Random walks [17]. Beginning in the start state, select the next state according to the discrete prob-
ability distribution assigned to the exit transitions. Continue the random walk until any of the path ter-
mination states are reached.

Random test selection is easy to implement and can result in a large number of test cases in a short pe-
riod of time. One might then argue that there is no need for complex test data adequacy criteria since
large numbers of random tests can overcome their individual ineffectiveness. However, test case gen-
eration isn’t the expensive part of testing. The actual execution and evaluation—checking whether the
software’s behavior matches its specification—is much more difficult and time consuming. Execution
and evaluation are hard to automate and can often be the bottleneck tasks during testing. In addition to
spending resources on building a good oracle, it is also productive to consider methods to generate
fewer but more effective tests.

• Structure-guided selection [14]. Choose paths from the start state to any of the termination states
based on algorithms to minimize transition retraversal.

Variants of the travelling salesman algorithm and the Chinese postman algorithm [14] can be used to
achieve this outcome and significantly reduce the size of the sample.

Both of these strategies somewhat miss the point of good path selection: to choose a sequence of transi-
tions, that as an ensemble, force the software to exhibit desired behavior. Random testing, by its very na-
ture, generates significant variation in which transitions are traversed. Our experience has been that de-
spite tilted operational profiles, the paths generated are sometimes nonsensical in that the transitions ap-
pearing in a specific sequence have little to do with actually making the software do real work. Imagine a
model for a word processor that doesn’t generate a sequence in which a document is typed, formatted,

Main, analog,
clock-only

Not invoked,
analog

dblclk .c-o

invoke

Main, analog,
all

.change

end

Chang ,analog
all, time move

Change ,analog
all, date

.exit ok

.about About, analog
all

Main ,digital ,
clock-only

Main, digital,
all

Chang ,digital
all, time

About, digital
all

Chang ,digital
all, date

.exit

dblclk .c-o

.change

end

ok

.about

move

.digital

.analog

Not invoked,
,digital

invoke

S1 S2

S3
S4

 S6

 S5

 S7

 S8 S12

 S9
 S10

 S11

Figure 1. The Behavior Model of the Example Clock Program

Markov Chain-based Test Data Adequacy Criteria

18

spell checked and then printed. Certainly many sequences do each of these things in isolation, but putting
them all together is left to chance.

Structure-guided transition selection takes the remedy to the opposite extreme. By minimally covering the
model’s structure, one also lessens the chance interesting combinations of transitions will occur in the
same execution of the software.3 Another method is needed.

Our motivation is to improve on the manner in which transitions are selected by developing criteria that
guide the selection of related transitions. Taking inspiration from white box data-flow criteria, we propose
that focusing on data-oriented aspects of the model, instead of model structure, is beneficial. In the case of
behavior models, the data of interest are the operational modes that define states. Intuitively, transitions
that cause operational modes to change value are “better” than transitions that cause no such change. Our
reasoning is similar to Rapps and Weyuker’s in that by explicitly forcing data to be initialized and subse-
quently modified, we are forcing software to manipulate stored data. When software manipulates data, it
exercises functionality and could potentially fail.

Our conjecture is that by focusing on model data, we will have a better chance of identifying which transi-
tions are related and should appear together in the same test sequence. If two transitions are structurally
unrelated but both manipulate similar data, then they may well be represented by an operational mode
(given that the operational modes are defined correctly, of course). If so, then forcing the operational
mode to change values may exercise the related transitions.

One can think of the path selection problem as follows:

• Pick a starting point for the path. This is usually a state in the model.

• Pick an ending point for the path (another state).

• Choose the route or routes to take from the starting point to get to the ending point.

We define the basic set of model data criteria as follows:

Given behavior model M with operational modes o1 , o2 , …, om we define one or more starting states for
oi to be the set of states in which oi first receives its initial value.

DEFINITION: The initial value is the first value assigned to a specific operational mode other than the
value”any” after invoking the software. Every mode has at least one initial value.

DEFINITION: The initialization state is the location at which an operational mode first receives its ini-
tial value. Each operational mode has one or more states at which it is initialized.

For the example model of figure 1, the set of initialization states are described in table 1.

Table 1
Initialization States for each Operational Mode of the Clock Example

Operational Mode State(s) where mode is first initialized

System {System=not invoked, Window=any, Setting=analog, Display=any, Cursor=any}

This is the model’s starting state.

Window {System=invoked, Window=main form, Setting=analog, Display=all, Cursor=any}

3 Other structure-guided path generation methods exist such as loop-free paths and n-iteration-paths [8] in
which traversals through loops and cycles in the graph are allowed. However, the only variation addressed
in these criteria are the appearance of transitions that reside within loops and cycles. Thus, the problem
remains.

 Al-Ghafees & Whittaker

 19

Setting {System=not invoked, Window=main, Setting=analog, Display=any, Cursor=any}

This is the model’s starting state.

Display {System=invoked, Window=main form, Setting=analog, Display=all, Cursor=any}

Cursor {System=invoked, Window=change, Setting=analog, Display=all, Cursor=time}

{System=invoked, Window=change, Setting=digital, Display=all, Cursor=time}

As with white-box data flow testing, it is of interest to generate paths that force data to change values.
Thus, we can define the ending points for each sequence to be the point at which the mode in question as-
sumes a new value. We can then define the family of criteria below:

Let Paths(M) represent the infinite set of all connected state sequences (paths) from a model’s starting
state to any of its terminal states. We are interested in generating a finite subset of paths, P⊂ Paths(M),
that allow more transition-variation per path than either random or structure-guided walks.

Since a given operational mode can have multiple initialization states, we begin with more restrictive cri-
teria.4 For each criterion, it is of interest to generate a path that satisfies the criterion (start at the starting
state and terminated immediately after that criterion under consideration is satisfied) and the set of all sat-
isfying paths (paths in which loops and cycles are traversed only once). For simplicity, we label these sin-
gle-satisfying-path and all-satisfying-paths, respectively.

Definition 1. The pair (M,P) satisfies the single-initializations/single-values criterion iff P contains a sub-
path p that causes each operational mode o∈ O to change from any of that mode’s initial values at least
once.

The shortest single-initialization/single-value path for the behavior model in figure 1 appears in table 2
with explanation.

Table 2
The Shortest Single-initialization/Single-value Path for the Clock Model

State in Subpath p Single-initialization/Single-value Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode changes value to clock-only.

{invoked, main, digital, all}

{invoked, change, digital, all, time} Cursor mode initialized to time.

All modes have now been initialized.

Window mode changes value to change.

{invoked, change, digital, all, date} Cursor mode changes value to date.

All modes have now changed values at least once.

4 We adopt the notation of Clarke et al [3] as representative of work in this area.

Markov Chain-based Test Data Adequacy Criteria

20

The shortest path may or may not be the best path that satisfies the criterion. Obviously, the reason for
considering the shortest path is that, given all transitions are equally expensive to execute, it will be the
least expensive path. However, selecting the shortest path also limits the amount of variation in the se-
quence. We call this transitional variation and as the data will show, it can be the difference in locating or
missing a failure.

An alternative to the shortest path is to select a set of paths, each of which satisfies the criterion and pos-
sesses different transitional variation. The paths we choose are all-satisfying single-initialization/single-
value paths: all non-looping paths which satisfy the criterion.

Obviously, the single-initialization/single-value criterion misses certain modal values, namely, the about
value of the Window mode. In fact, modal values for any non binary-valued mode may be excluded. The
next criterion allows us to cover each value of a mode with the exception of the initial value (i.e., all
“other” values).

Definition 2. The pair (M,P) satisfies the single-initializations/other-values criterion iff P contains a sub-
path p that causes each operational mode o∈ O to take on each of its other legal values from any of that
mode’s initial values at least once.

Since only the Window mode has more than one other value, we simply need to visit any state where Win-
dow=about dialog. A simple modification of the path in table 2 can suffice to satisfy this criterion as
shown in table 3.

Table 3
The Shortest Single-initialization/Other-values Path for the Clock Model

State in Subpath p Single-initialization/Other-values Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode changes value to clock-only.

{invoked, main, digital, all}

{invoked, change, digital, all, time} Cursor mode initialized to time.

All modes have now been initialized.

Window mode changes value to change

{invoked, change, digital, all, date} Cursor mode changes value to date.

{invoked, main, digital, all}

{invoked, about, digital, all} Window mode changes value to about

 All modes have now been assigned each value other than the initial.

An obvious continuation of this line of investigation is to require that each mode change also include re-
turning to the initial value.

 Al-Ghafees & Whittaker

 21

Definition 3. The pair (M,P) satisfies the single-initializations/all-values criterion iff P contains a subpath
p that causes each operational mode o∈ O to change to each of its legal values (including the initial value)
from any of that mode’s initial values at least once.

Using the subpath of table 3, we note that both the Window and Display modes have already been changed
back to their initial values, thus, we need to modify the subpath to change Cursor=time, Setting=analog
and System=not invoked. The subpath in table 4 is the shortest path to satisfy this criterion.

Table 4
The Shortest Single-initialization/All-values Path for the Clock Model

State in Subpath p Single-initialization/All-values Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode changes value to clock-only.

{invoked, main, digital, all} Display mode changes value to all.

{invoked, change, digital, all, time} Cursor mode initialized to time.

All modes have now been initialized.

Window mode changes value to change

{invoked, change, digital, all, date} Cursor mode changes value to date.

{invoked, change, digital, all, time} Cursor mode changes value to time.

{invoked, main, digital, all}

{invoked, about, digital, all} Window mode changes value to about.

{invoked, main, digital, all} Window mode changes value to main form.

{invoked, main, analog, all} Setting mode changes value to analog.

{not invoked, analog} System mode changes value to not invoked

All modes have now been assigned all values.

We proceed by defining the same criteria but expanding the starting point of the paths to every state in
which a mode is initialized. Specifically, we see that the Cursor mode has two distinct initialization states.

Definition 4. The pair (M,P) satisfies the all-initializations/single-values criterion iff P contains a subpath
p that causes each operational mode o∈ O to change from each of that mode’s initial values at least once.

The shortest sequence satisfying this criterion appears in table 5.

Table 5
The Shortest All-initializations/Single-value Path for the Clock Model

State in Subpath p All-initialization/Single-value Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Markov Chain-based Test Data Adequacy Criteria

22

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode change value to clock-only.

{invoked, main, digital, all}

{invoked, change, digital, all, time} Cursor mode initialized to time.

This is the first initialization of Cursor.

All modes have now been initialized.

Window mode changes value to change

{invoked, change, digital, all, date} Cursor mode changes value to date.

{invoked, main, digital, all}

{invoked, main, analog, all} Setting mode changes value to analog.

{invoked, change, analog, all, time} Cursor mode initialized to time.

This is the second initialization of Cursor.

Window mode changes value to change

{invoked, change, analog, all, date} Cursor mode changes value to date.

All requirements of the criterion are now satisfied.

Definition 5. The pair (M,P) satisfies the all-initializations/other-values criterion iff P contains a subpath
p that causes each operational mode o∈ O to take on each of its other legal values from each of that
mode’s initial values at least once.

The shortest sequence satisfying this criterion appears in table 6.

Table 6
The Shortest All-initializations/Other-values Path for the Clock Model

State in Subpath p All-initialization/Other-values Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode change value to clock-only.

{invoked, main, digital, all}

{invoked, change, digital, all, time} Cursor mode initialized to time.

 This is the first initialization of the Cursor.

 All modes have now been initialized.

{invoked, change, digital, all, date} Cursor mode changes value to date.

{invoked, main, digital, all}

 Al-Ghafees & Whittaker

 23

{invoked, about, digital, all} Window mode changes value to about.

{invoked, main, digital, all}

{invoked, main, analog, all} Setting mode changes value to analog.

{invoked, change, analog, all, time} Cursor mode initialized to time.

 This is the second initialization of the Cursor.

Window mode changes value to change.

{invoked, change, analog, all, date} Cursor mode changes value to date.

 All requirements of the criterion are now satisfied.

Definition 6. The pair (M,P) satisfies the all-initializations/all-values criterion iff P contains a subpath p
that causes each operational mode o∈ O to change to each of its legal values (including the initial value)
from each of that mode’s initial values at least once.

The shortest sequence satisfying this criterion appears in table 7.

Table 7
The Shortest All-initializations/All-values Path for the Clock Model

State in Subpath p All-initialization/All-values Criterion Coverage

{not invoked, analog} System mode initialized to not invoked.

Setting mode initialized to analog.

{invoked, main, analog, all} System mode changes value to invoked.

Window mode initialized to main form.

Display mode initialized to all.

{invoked, main, digital, all} Setting mode changes value to digital.

{invoked, main, digital, clock-only} Display mode change value to clock-only.

{invoked, main, digital, all} Display mode change value to all.

{invoked, change, digital, all, time } Cursor mode initialized to time.

 This is the first initialization of the Cursor.

 All modes have now been initialized.

Window mode changes value to change.

{invoked, change, digital, all, date } Cursor mode changes value to date.

{invoked, change, digital, all, time } Cursor mode changes value to time.

{invoked, main, digital, all} Window mode changes value to main form.

{invoked, about, digital, all} Window mode changes value to about.

{invoked, main, digital, all}

{invoked, main, analog, all} Setting mode changes value to analog.

{invoked, change, analog, all, time} Cursor mode initialized to time.

 This is the second initialization of the Cursor.

{invoked, change, analog, all, date} Cursor mode changes value to date.

{invoked, change, analog, all, time } Cursor mode changes value to time.

{invoked, main, analog, all}

Markov Chain-based Test Data Adequacy Criteria

24

{not invoked, analog} System mode changes value to not invoked

All requirements of the criterion are now satisfied.

Since a given operational mode can have multiple initialization states, more restrictive criteria are intro-
duced here. All the criteria already covered are based on the unique starting state of software. At this point
more variation can be added by expanding the starting point of the paths to every state in which a mode is
initialized. For example, the clock model has four candidate starting states:

1) S1: at which operational modes System and Setting are initialized.
2) S3: at which operational modes Window and Display are initialized.
3) S7 and S9: are different locations that operational mode Cursor is initialized.

Thus, three criteria (7, 8,and 9) can be defined as follow:

Definition 7. The pair (M,P) satisfies the all-initialization-states/single-values criterion iff for each ini-
tialization state s, P contains a subpath p that start at s and causes each operational mode o∈ O to change at
least once.

Definition 8. The pair (M,P) satisfies the all-initialization-states/other-values criterion iff for each ini-
tialization state s, P contains a subpath p that start at s and causes each operational mode o∈ O to take on
each of its other legal values at least once.

Definition 9. The pair (M,P) satisfies the all-initialization-states/all-values criterion iff for each initializa-
tion state s, P contains a subpath p that start at s and causes each operational mode o∈ O to change to each
of its legal values (including the values at s) at least once.

The test cases that satisfy definitions 7-9 are too large to include but follow directly from the above exam-
ples. Simply start in the initial state, select a path that forces each mode to change values and then repeat
this for each mode initialization state in the model (S1, S3, S7, and S9). The shortest paths satisfying defi-
nitions 7 through 9 are 23 transitions, 44 transitions and 50 transitions, respectively as will be shown in
the next section.

The only way left to add variation to the starting state is to require that each and every state act as a start
state.

Definition 10. The pair (M,P) satisfies the all-states/single-values criterion iff for each state s, P contains
a subpath p that start at s and causes each operational mode o∈ O to change at least once.

Definition 11. The pair (M,P) satisfies the all-states/other-values criterion iff for each state s, P contains a
subpath p that start at s and causes each operational mode o∈ O to take on each of its other legal values at
least once.

Definition 12. The pair (M,P) satisfies the all-states/all-values criterion iff for each state s, P contains a
subpath p that start at s and causes each operational mode o∈ O to change to each of its legal values (in-
cluding the values at s) at least once.

The test cases that satisfy definitions 10-12 are also too large to include but follow directly from the above
examples. The shortest path satisfying definitions 10-11 are 76 transitions, 141 transitions and 152 transi-
tions, respectively as will be shown in the next section.

All the definitions covered up to this point are seeking the shortest single-satisfying path. Another set of
criteria can be introduced here that seeking all-satisfying paths. Experimental Results and analysis will be
shown in the next section. Definitions of them are as follow:

 Al-Ghafees & Whittaker

 25

Definition 13. The pair (M, P) satisfies the single-initializations/single-values/all-satisfying paths crite-
rion iff P contains all subpaths p that causes each operational mode o∈ O to change from any of that
mode’s initial values at least once.

Definition 14. The pair (M, P) satisfies the single-initializations/other-values/all-satisfying paths criterion
iff P contains all subpaths p that causes each operational mode o∈ O to take on each of its other legal val-
ues from any of that mode’s initial values at least once.

Definition 15. The pair (M, P) satisfies the single-initializations/all-values/all-satisfying paths criterion
iff P contains all subpaths p that causes each operational mode o∈ O to change to each of its legal values
(including the initial value) from any of that mode’s initial values at least once.

Definition 16. The pair (M,P) satisfies the all-initializations/single-values/all-satisfying paths criterion iff
P contains all subpaths p that causes each operational mode o∈ O to change from each of that mode’s ini-
tial values at least once.

Definition 17. The pair (M,P) satisfies the all-initializations/other-values/all-satisfying paths criterion iff
P contains all subpaths p that causes each operational mode o∈ O to take on each of its other legal values
from each of that mode’s initial values at least once.

Definition 18. The pair (M,P) satisfies the all-initializations/all-values/all-satisfying paths criterion iff P
contains all subpaths p that causes each operational mode o∈ O to change to each of its legal values (in-
cluding the initial value) from each of that mode’s initial values at least once.

Definition 19. The pair (M,P) satisfies the all-initialization-states/single-values/all-satisfying paths crite-
rion iff for each initialization state s, P contains all subpaths p that start at s and causes each operational
mode o∈ O to change at least once.

Definition 20. The pair (M,P) satisfies the all-initialization-states/other-values/all-satisfying paths crite-
rion iff for each initialization state s, P contains all subpaths p that start at s and causes each operational
mode o∈ O to take on each of its other legal values at least once.

Definition 21. The pair (M,P) satisfies the all-initialization-states/all-values/all-satisfying paths criterion
iff for each initialization state s, P contains all subpaths p that start at s and causes each operational mode
o∈ O to change to each of its legal values (including the values at s) at least once.

Definition 22. The pair (M,P) satisfies the all-states/single-values/all-satisfying paths criterion iff for
each state s, P contains all subpaths p that start at s and causes each operational mode o∈ O to change at
least once.

Definition 23. The pair (M,P) satisfies the all-states/other-values/all-satisfying paths criterion iff for each
state s, P contains all subpaths p that start at s and causes each operational mode o∈ O to take on each of
its other legal values at least once.

Definition 24. The pair (M,P) satisfies the all-states/all-values/all-satisfying paths criterion iff for each
state s, P contains all subpaths p that start at s and causes each operational mode o∈ O to change to each of
its legal values (including the values at s) at least once.

Proof of Concept
Two proofs of concept are provided here. The first one is a theoretical one through a characteristic, which
we call transition variation. The second proof of concept is from experimental standpoint through three
deferent experiments, which will be shown in the next section.

Markov Chain-based Test Data Adequacy Criteria

26

Transition variation is a quantitative measure that gives an indication about the coverage of all combina-
tions of adjacent transitions of length two or more. Covering high percentage of these transitions imply a
high level of transition variation, which means improving the coverage of the testing process. It is argued
that the Markov chain-based test data adequacy criteria has a higher transition variation score than both
the structural criteria and the random test case generation. To proof this theory, transition variation of the
new criteria and the structural coverage (Chinese postman) is studied based on the Markov chain behavior
model of the clock application. Three level of comparisons are targeted: states coverage, all single transi-
tion coverage (involve two states: the from and the to states), and all combinations of two adjacent transi-
tions coverage (involve three states: A ->B ->C). Table 8 shows the state coverage of the new criteria sat-
isfied by 24 transitions and above along with the Chinese postman. This data indicate that state coverage
is taken care of by both the new criteria and the structural coverage. The second level of comparison is the
coverage of single transition.

Table 8
States Coverage Comparison

 Criteria AIS/ AIS/ AIS/ AS/ AS/ AS/ SI/ SI/ SI/ AI/ AI/ AI/ AIS/ AIS/ AIS/ AS/ AS/ AS/ Chinese

 SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ OV/ SV/ OV/ AV/ Post

 SP SP SP SP SP SP AP AP AP AP AP AP AP AP AP AP AP AP Man

States 24 t 40 t 48 t 74 t 110 t 140 t 86 t 104 t 124 t 102 t 120 t 148 t 331 t 486 t 583 t 1008 t 1363 t 1702 t 28 t

Total States Cov-
ered

Out of 12
7 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

As table 9 shows, the Chinese postman and most of the new criteria did cover all transitions in the model.
However, transition variation cannot be compared using states coverage or only single transitions. There-
fore, the third level of comparison (all combinations of two adjacent transitions coverage: A ->B ->C) was
needed. A total of 77 combinations of two adjacent transitions were generated from the Markov chain be-
havior model of the clock application, which represents all possible combinations of adjacent transitions
of length two. Table 10 shows how well the criteria did over the Chinese postman. Most of them perform
much better than the Chinese postman. In the best case, the criteria All-states/All-values/All-satisfying-
path covered 66 combination out of 77 and only 22 out of 77 covered by the Chinese postman.

Table 9
Single Transition Coverage Comparison

 Criteria AIS/ AIS/ AIS/ AS/ AS/ AS/ SI/ SI/ SI/ AI/ AI/ AI/ AIS/ AIS/ AIS/ AS/ AS/ AS/ Chinese

 SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ OV/ SV/ OV/ AV/ Post

 SP SP SP SP SP SP AP AP AP AP AP AP AP AP AP AP AP AP Man

Trans. 24 t 40 t 48 t 74 t 110 t 140 t 86 t 104 t 124 t 102 t 120 t 148 t 331 t 486 t 583 t 1008 t 1363 t 1702 t 28 t

Total of Single

Transition Covered

 Out of 24

18 20 23 22 22 24 22 24 24 24 24 24 24 24 24 24 24 24 24

Table 10

 Al-Ghafees & Whittaker

 27

Two Transition Coverage Comparison

 Criteria AIS/ AIS/ AIS/ AS/ AS/ AS/ SI/ SI/ SI/ AI/ AI/ AI/ AIS/ AIS/ AIS/ AS/ AS/ AS/ Chinese

 SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ AV/ SV/ OV/ OV/ SV/ OV/ AV/ Post

 SP SP SP SP SP SP AP AP AP AP AP AP AP AP AP AP AP AP Man

Trans. 24 t 40 t 48 t 74 t 110 t 140 t 86 t 104 t 124 t 102 t 120 t 148 t 331 t 486 t 583 t 1008 t 1363 t1702 t 28 t

The total adjacent transitions

 of length two covered out of

 the 77 possible combinations

11 21 28 22 32 43 33 36 41 32 36 40 41 44 50 61 62 66 22

Laboratory Experiments

Experiment I:
In order to experiment with our criteria and convince industry partners to support full-scale case studies,
we performed a modified form of fault seeding [10] to test the ability of the criteria to find faults. We
could also have studied the ability of tests to cover requirements but we believe that eliciting failure is
more difficult, in general, and would be a better test of the criteria’s fitness.

Instead of injecting artificial faults into a program, we injected real faults as follows. We commissioned
third party development of the clock program described above and recorded the failures found during the
review and testing process. After the program was complete, we reinserted the causal faults back into the
software. A total of seven faults were recorded along with the sequence of state transitions required to ex-
pose the failure during test. The faults are described in table 8 along with three additional real faults that
were unknown at the time of test.5

Table 11
Faults Found During Testing of the Clock Application

Failure Description Exposing Sequence(s)

Fault 1 The initial position of the tab stop is incorrectly set to the
Date field instead of the Time field on the Change Time/Date
form.

First occurrence of :

{inv, change form, analog, all, time} or

{inv, change form, digital, all, time}.

Fault 2 The digital mode is not unloaded when the user switches to
analog mode causing two clocks to appear simultaneously.

The state:

{inv, main form, digital, all, any} must occur
before {inv, main form, analog, all, any} in the
same sequence.

5 Obviously more faults could very well exist in the software but these were the only ones detected by our
oracle, a simple comparison of the debugged application with the test application. The oracle was capable
of comparing the applications and also detecting gross deviation of actual and specified output (from a
written description of input-output pairs). Since every test was monitored by the same oracle and each test
history was carefully examined for causal input patterns, we ensured that each test selection strategy had
access to the same set of detectable faults.

Markov Chain-based Test Data Adequacy Criteria

28

Fault 3 In the Change Time/Date form, the Tab key moves between
fields in the wrong order.

First occurrence of :

{inv, change form, analog, all, time} or

{inv, change form, digital, all, time} which
must be followed by at least two Tab inputs.

Fault 4 When the Change Time/Date form is unloaded in digital
mode, the Main form is displayed in analog mode.

First occurrence of :

{inv, main form, digital, all, any} immediately
preceded by

{inv, change form, digital, all, time}.

Fault 5 The text on the About form is misaligned if the Clock-only
form was visited prior to the About form.

The state:

{inv, main form, analog, clock-only, any}

occurred before

{inv, about form, analog, all, any}

in the same sequence.

Fault 6 When the About form is unloaded in digital mode, the Main
form is displayed in analog mode.

First occurrence of :

{inv, main form, digital, all, any} preceded by

{inv, about form, digital, all, any}.

Fault 7 Analog second hand overlays the digital display on the
Clock-only form when both Clock-only forms (analog and
digital) are displayed in the same sequence.

Must visit:

{inv, main form, analog, clock-only, any}

before:

{inv, main form, digital, clock-only, any} in the
same sequence.

Fault 8 Unable to invoke the clock in digital mode due to incorrect
handling of the operating system registry.

Any sequence that begins with:

{not inv, any, digital, any, any}.

Fault 9 The Clock-only form is not unloaded. First occurrence of :

{inv, main form, analog, all, any} immediately
preceded by

{inv, main form, analog, clock-only, any} or

{inv, main form, digital, all, any} immediately
preceded by

{inv, main form, digital, clock-only, any}

Fault 10 Cursor behaves incorrectly when dates are entered. Either {inv, change form, analog, all, date} or
{inv, change form, digital, all, date} is followed
by a valid entry for the date field.

The exposing sequence for each fault is a good indicator of the difficulty of finding the fault. Faults 1, 2, 8
and 9 will be detected by simply traversing each transition in the behavior model. We term these “easy
bugs.” Each of the easy bugs were found during manual ad hoc testing. Faults 4, 5, 6 and 10 have more
complicated exposing sequences and require more sophisticated tests to detect them. We term these
“moderate bugs” and note that two of the three moderate bugs were detected during manual testing. The
final category, called “hard bugs” are faults 3 and 7, neither of which were found during manual testing.
The exposing sequences are more difficult to arrange in advance.

We then tested the clock application using the behavior model as a test generator. Three categories of tests
were independently generated and applied, criteria-guided tests, random tests, and structural tests. In this
manner we are ensuring that each set of tests is working on equal footing to each other set: since they are

 Al-Ghafees & Whittaker

 29

each originating from the same model, they have equal ability to exercise the software and have the capa-
bility to elicit the same set of failures (and, thus, find the same faults).

Obviously, testing this small application does not validate our criteria, nor does it bear any statistical sig-
nificance since it is only a sample of one trial. However, we believe the experiment does show that the
new criteria can favorably compete with existing behavioral test selection methods and prove that the con-
cept warrants additional research and, perhaps, limited use in practice.

Criteria-Guided Tests
The twenty-four criteria proposed represents two main sets each with twelve criteria::

• Single satisfying paths: sequences satisfy the criterion as quickly as the requirements of that spe-
cific criterion satisfied with minimal duplication of subpaths. Obviously, the idea here is that
quicker is better. The length of sequences to satisfy each of the criteria ranged from 7 transitions to
140 transitions.

• All satisfying paths: sequences represent every possible subpath that will satisfy a specific crite-
rion. This set of paths emphasizes variation in choosing transitions to satisfy the criteria. Obvi-
ously, this strategy can require a large number of sequences to satisfy. The length of sequences to
satisfy each of the criteria ranged from 86 transitions to 1702 transitions.

Table 12
Number of Transition to Find Each Fault and Satisfy Criteria Guided Tests

(blank entries indicate the fault was not found)

No. Transitions to Find Fault:
Criterion

No.
Trans.
to Sat-

isfy 1 2 3 4 5 6 7 8 9 10
Single-init/Single-value/Single-satisfying-path 7 6 5 6

Single-init/Other-value/Single-satisfying-path 9 6 5 6

Single-init/All-value/Single-satisfying-path 11 6 5 6

All-init/Single-value/Single-satisfying-path 10 6 10 5 6

All-init/Other-value/Single-satisfying-path 12 6 11 5 6

All-init/All-value/Single-satisfying-path 15 6 13 14 5 6

All-init-states/Single-values/Single-satisfying-path 24 6 20 22 5 6

All-init-states/Other-values/Single-satisfying-path 40 6 31 29 31 5 6

All-init-states/All-values/Single-satisfying-path 48 6 34 35 48 5 6

All-states/Single-values/Single-satisfying-path 74 6 20 45 70 5 6

All-states/Other-values/Single-satisfying-path 110 6 31 39 29 103 5 6

All-states/All-values/Single-satisfying-path 140 6 34 105 44 35 130 5 6

Single-init/Single-value/All-satisfying-path 86 4 38 47 81 3 5

Single-init/Other-value/All-satisfying-path 104 4 44 28 67 97 3 5

Single-init/All-value/All-satisfying-path 124 4 11 102 32 77 115 3 5

All-init/Single-value/All-satisfying-path 102 4 41 38 94 3 5

All-init/Other-value/All-satisfying-path 120 4 46 29 70 110 3 5

Markov Chain-based Test Data Adequacy Criteria

30

All-init/All-value/All-satisfying-path 148 4 13 98 36 91 136 3 5

All-init-states/Single-values/All-satisfying-path 331 4 38 127 47 81 3 5

All-init-states/Other-values/All-satisfying-path 486 4 44 346 28 67 97 3 5

All-init-states/All-values/All-satisfying-path 583 4 11 102 32 77 115 3 5

All-states/Single-values/All-satisfying-path 1008 4 38 822 823 127 47 265 81 3 5

All-states/Other-values/All-satisfying-path 1363 4 44 1008 346 28 67 318 97 3 5

All-states/All-values/All-satisfying-path 1702 4 11 1235 102 32 77 380 115 3 5

As table 12 shows, all four aspects of a path definition (Single-initialization, All- initialization, All-
initialization-states, All-states) matter in finding faults. As the criteria chosen for starting point, ending
point and route become harder to satisfy, more faults are exposed. For example, the All-init/.../Single-
satisfying-path criterion found 4, 4 and 5 faults respectively whereas their counterparts for Single-init/All-
value/Single-satisfying-path found only 3, 3 and 3 faults, respectively. Another example, the all-
states/../Single-satisfying-path criterion found 6, 7 and 8 faults respectively whereas their counterparts for
All-init-states/Single-values/Single-satisfying-path found only 5, 6 and 6 faults, respectively. In fact, the
most stringent Single-satisfying-path criterion found all but two faults—and did so with only 130 transi-
tions (the criterion was met after 140 transitions). Since each transition amounts to seconds of test time,
this is very fast indeed for this particular application.

Random Tests
Random testing has proven very useful in useful in come studies [4, 6, 11] and using non-uniform opera-
tional profiles is an integral part of certain testing methodologies [9, 12]. We established three operational
profiles for the example behavior model to generate random tests for our experiment:

• The uniform profile consists of uniform probability distributions across the exit arcs of each state.

• The slightly tilted profile consists of exit arc probability distributions in which the high and low val-
ues differ by 0.1 at most.

• The highly tilted profile consists of exit arc probability distributions in which the highest and lowest
probability differs by at least 0.5.

Table 13
Number of Trans. to Find Each Fault and Satisfy Random Criteria

No. Transitions to Find Fault:
Criterion

No. Trans.
to Satisfy 1 2 3 4 5 6 7 8 9 10

uniform 823 26 7 125 332 122 29 95

slightly tilted 823 43 20 102 276 18 109

highly tilted 823 56 43 263 295 38 49

To account for random seeds being “unlucky” we generated 30 samples for each profile type and averaged
the outcome. Each sample contained 823 transitions to correspond to the minimum number of states gen-
erated to find all ten bugs by the All-states/Single-values/All-satisfying-path criterion.

 Al-Ghafees & Whittaker

 31

Structural Tests
Structural tests from a behavior model are analogous to structural coverage of program paths.

• State coverage means finding a traversal to cover each state at least once.

• Transition coverage means finding a traversal to cover each transition at least once.

Table 14
Number of Trans. to Find Each Fault and Satisfy Structural Criteria

No. Transitions to Find Fault:
Criterion

No. Trans.
to Satisfy 1 2 3 4 5 6 7 8 9 10

All-States 17 4 16 3 5

All-Transitions

(Chinese Postman)

28 5 16 14 4 27

Table 15 shows the performance of these additional criteria in locating the same failures as above.
Table 15

Number of Faults Found While Satisfying Each Criterion
Number of Transitions Criteria

7 9 11 12 15 18 30 40 48 74 110 150 331 486 583 1008 1363 1702

SI/SV/SP 3 (Three faults found by this criterion after seven transitions)

SI/OV/SP 3 3 (Three faults found by this criterion after seven trans. and five faults after nine trans.)

SI/AV/SP 3 3 3

AI/SV/SP 3 3 4

AI/OV/SP 3 3 4 4

AI/AV/SP 3 3 3 3 5

AIS/SV/SP 3 3 3 3 3 3 5

AIS/OV/SP 3 3 3 3 3 3 4 6

AIS/AV/SP 3 3 3 3 3 3 4 5 6

AS/SV/SP 3 3 3 3 3 3 4 4 5 6

AS/OV/SP 3 3 3 3 3 3 4 6 6 6 7

AS/AV/SP 3 3 3 3 3 3 3 5 6 6 7 8

SI/SV/AP 3 3 3 3 3 3 3 4 5 5 6

SI/OV/AP 3 3 3 3 3 3 3 4 5 6 7

SI/AV/AP 3 3 4 4 4 4 4 5 5 5 7 8

AI/SV/AP 3 3 3 3 3 3 3 3 5 5 6

AI/OV/AP 3 3 3 3 3 3 3 4 5 6 7 7

AI/AV/AP 3 3 3 3 4 4 4 5 5 5 7 8

AIS/SV/AP 3 3 3 3 3 3 3 4 5 5 6 7

AIS/OV/AP 3 3 3 3 3 3 4 4 5 6 7 7 7 8

AIS/AV/AP 3 3 4 4 4 4 4 5 5 5 7 8 8 8 8

AS/SV/AP 3 3 3 3 3 3 3 4 5 5 6 7 7 8 8 10

AS/OV/AP 3 3 3 3 3 3 4 4 5 6 7 7 7 7 9 10 10

AS/AV/AP 3 3 4 4 4 4 4 5 5 5 7 8 8 8 9 10 10 10

Markov Chain-based Test Data Adequacy Criteria

32

Uniform 1 1 1 1 1 1 3 3 3 3 4 6 6 6 7 7

Slightly tilted 0 0 0 0 0 1 2 2 3 3 5 5 5 5 6 6

Highly tilted 0 0 0 0 0 0 0 1 2 4 4 4 4 6 6 6

All-States 3 3 3 3 3 4

All-
Transitions

2 2 2 2 3 4 5

For example, after 15 transitions only six criteria have been satisfied. However, one of the criteria (involv-
ing all-values and indicated by shaded entries) have found a whopping five faults. That is fifty percent of
the known faults in what constitutes only seconds of testing. At this point in testing, none of the other cri-
teria found more than four faults including the random and the structural criteria. After 50 transitions,
many of the criteria gain ground and are closely matched; eighteen criteria (indicated by shaded entries)
have found five or more faults. Neither random nor structural criteria could catch up with the content cri-
teria. Closer analysis reveals that the more values of operational modes are forced to change, the more
faults are uncovered. The all-values criteria have been always much better than both single-value and
other-value criteria.

The all-transitions criterion is the best performer of the structural and random criteria in the early stages
but is satisfied too early to find many of the more complex faults. The reason for the “poor” performance
of the structural criteria is that many of the failures in the clock program are associated with multiple tran-
sitions. The strength of these criteria, on the other hand, is in covering single transitions as quickly as pos-
sible. They are, by definition, ill equipped to find complicated multi-transition failures: they lack the abil-
ity to generate sequences with significant variation in the transitions.

Random testing does indeed generate sequences with substantial transition variation. However, the varia-
tion that occurs is strictly by chance and not by design. From the data in Table 12 it is obvious that leaving
such variation to chance can cause a failure to go unobserved for a very long time. Each of the random
tests has streaks of tests in which no failures are found despite the fact that many failures remain. Cer-
tainly over the long run, the random criteria catch up but if large testing budgets are problematic then this
may not be an effective means of testing software to find faults.

The new criteria remove this element of chance and replace it with careful design. The criteria are based
on the premise that transitions related to a single value of an operational mode should appear in the same
test sequence. This means that transition variation is directly addressed in the satisfaction of the criteria.

Experiment II:
The goal of this experiment is to confirm the findings from the first experiment and to provide more un-
derstanding about the detection ability of this new family of test data adequacy criteria. The first experi-
ment intended to be relatively small to get high level of control over the application of these new criteria.
However, this second experiment is totally real life problem and much bigger in size. It started when a
team of testers assigned to a contract with Microsoft for testing some of the models in MS Windows-CE
loaded in the Pocket PCs. During the testing activates, bugs found were documented to be used as a meas-
ure for the detection ability of the new criteria. These bugs are not artificial or injected bugs, they are real
bugs delivered with Microsoft Windows-CE. A total of ten faults were recorded along with the sequence
of state transitions required to expose them. The Markov model of the first experiment contain 12 states,
however, the Markov model of the second experiment contain 49 states. Just like what has been done in
the first experiment, three test sets are generated: random tests, structural tests, and criteria-guided tests
using the new family of test data adequacy criteria. Table 13 shows all 24 criteria along with two struc-
tural criteria and three random operational profiles.

 Al-Ghafees & Whittaker

 33

Table 16

Number of Transition to Find Each Fault and Satisfy a Criteria

Guided Selection Results
No. Transitions to Find Fault:

Criterion

N0.
Trans.
To Sat-

isfy 1s 2s 3 4 5 6 7 8 9s 10
Single-init/Single-value/Single-
satisfying-path 17 3 9

Single-init/Other-value/Single-
satisfying-path 19 3 10

Single-init/All-value/Single-satisfying-
path 20 3 10

All-states/Single-values/Single-
satisfying-path 275 3 4 34 9 238

All-states/Other-values/Single-
satisfying-path 351 3 175 47 10 273 153

All-states/All-values/Single-
satisfying-path 375 3 41 53 10 291 187

Single-init/Single-value/All-satisfying-
path 328 2 277 19 18 9 283 26

Single-init/Other-value/All-satisfying-
path 342 2 340 21 23 10 313 28

Single-init/All-value/All-satisfying-
path 358 2 316 22 25 10 327 29

All-states/Single-values/All-
satisfying-path 13807 2 277 19 12013 18 931 9 283 3971 26

All-states/Other-values/All-satisfying-
path 16475 2 340 21 14391 23 1015 10 313 2402 28

All-states/All-values/All-satisfying-
path 20711 2 316 22 18310 25 1178 10 327 5561 29

Structural Coverage Results
All-States Coverage

Depth First Traversal
86 58 6 28

All-Transitions / Chinese postman 584 580 91 77 7 552 438

Random Coverage Results
Uniform Random 13807 8 3120 97 351 76 312 585

slightly tilted Random 13807 16 4231 75 459 274 1034 678

highly tilted Random 13807 34 189 1103 1211 384 941 2354

Data in table 16 are consistent with the data of the first experiment shown in table 9. Two more finding
should be highlighted here:

1) Self loops: The Markov chain model used in the first experiment has no self loops, however
the Markov model of the second experiment has it. This gave the opportunity of analyzing

Markov Chain-based Test Data Adequacy Criteria

34

which criterion covers the self-loops and it turned to be the criteria associated with All-
satisfying-paths does cover them.

2) The new criteria vs. the random: comparing the performance of the new criteria vs. the ran-
dom confirms that the bug detection rate of the random goes down over time. For example, in
the experiment 13807 transitions are generated to satisfies both All-states /Single-values/All-
satisfying-path and the random coverage. In the case of the random the last bug detected was
after 4231 transitions. On the other hand, the last bug detected by the All-states/Single-
values/All-satisfying-path criterion was after 12013 transitions. This incident draw attention to
an important feature of this new family, which I call “ Transition Variation”. In the random
case transition variation is not targeted and traversal of the model is random where redundancy
is maximum. However, the transitions generated by the new criteria focus in maximizing the
transition variation where the sequence of transition and states are always guided by the criteria
satisfaction requirements and not left to chances. This decreases the probability that a specific
sequence of states or transitions is cover more than one time.

Experiment III:
The purpose of this experiment is to measure the scalability of this new family of test data adequacy crite-
ria. The metrical unit of testing in our case is the transition. The cost of generating, executing and evaluat-
ing a transition is the unit cost used to estimate the cost of satisfying specific criterion. Table 14 show the
cost of each criterion based in number of transitions needed to satisfy it. Three different experiments sizes
are used to assess the difference of cost, as software gets bigger. The table shows the MS Clock model
with 12 states, the Inbox model with 49 states, and the Inbox model with 864 states. The new criteria are
compared against two structural criteria: All-states coverage and All-transition coverage (Chinese post-
man). Data shows that as software under test gets bigger, more of the new criteria become less expensive
than the structural criteria. (All operational modes of the second and third experiments are initialized in
the model starting state, which means that any criterion involves more than initial state is not applicable
(N/A)).

Table 17
Criteria Cost Comparison

Number of Transitions to Satisfy

Criterion MS Clock
12 States

Pocket PC
49 States

Pocket PC
864 States

Single-init/Single-value/Single-satisfying-path 7 17 35

Single-init/Other-value/Single-satisfying-path 9 19 35

Single-init/All-value/Single-satisfying-path 11 20 38

All-init/Single-value/Single-satisfying-path 10 N/A N/A

All-init/Other-value/Single-satisfying-path 12 N/A N/A

All-init/All-value/Single-satisfying-path 15 N/A N/A

All-init-states/Single-values/Single-satisfying-path 24 N/A N/A

All-init-states/Other-values/Single-satisfying-path 40 N/A N/A

All-init-states/All-values/Single-satisfying-path 48 N/A N/A

All-states/Single-values/Single-satisfying-path 74 275 9182

All-states/Other-values/Single-satisfying-path 110 351 11215

 Al-Ghafees & Whittaker

 35

All-states/All-values/Single-satisfying-path 140 375 15743

Single-init/Single-value/All-satisfying-path 86 328 19004

Single-init/Other-value/All-satisfying-path 104 342 20062

Single-init/All-value/All-satisfying-path 124 358 22186

All-init/Single-value/All-satisfying-path 102 N/A N/A

All-init/Other-value/All-satisfying-path 120 N/A N/A

All-init/All-value/All-satisfying-path 148 N/A N/A

All-init-states/Single-values/All-satisfying-path 331 N/A N/A

All-init-states/Other-values/All-satisfying-path 486 N/A N/A

All-init-states/All-values/All-satisfying-path 583 N/A N/A

All-states/Single-values/All-satisfying-path 1008 13807 16963320

All-states/Other-values/All-satisfying-path 1363 16475 17333568

All-states/All-values/All-satisfying-path 1702 20711 19168704

Structural Coverage
All-States Coverage 17 86 2449

All-Transitions / Chinese postman 28 584 22704

Summary and Future Work
We presented a family of black box data flow criteria that are useful to practitioners who use behavior
models or similar finite-state machines to model and generate test inputs. The criteria focus on exercising
software functionality by forcing value changes in data objects (operational modes) that affect system be-
havior. Our objective is to make the software do more work in less time, hopefully resulting in more thor-
ough testing. Our initial laboratory experiments comparing criteria-guided testing to random testing and
simulated operational profile testing are encouraging.

Since graph-based techniques for software testing are abundant [2, 14] and supported by popular commer-
cial tools [1], we believe that practitioners will readily find uses for these new criteria. We provided ex-
perimental results that are based on different software system sizes and range from a somewhat-larger-
than-a-toy example to big application. Note that new experiments are necessary to determine more pre-
cisely the effectiveness of the criteria. Granted, the examples was simple and many of the faults fairly easy
to find, however, the new criteria competed on even terms with established test case selection techniques
and performed impressively.

We also derived and code algorithms that automate each criterion for testing from arbitrary behavior mod-
els. Such a tool allowed us to perform additional laboratory experiments and field trials to further study
the effectiveness of testing using the criteria on real software. We have begun such trials in cooperation
with Microsoft but no data is yet available.

In the current study, we compared our criteria only to random testing and obvious graph coverage criteria.
Our reasons were that these are currently the techniques espoused by practitioners of behavioral testing
[1, 14]. The overall efficiency of the criteria will be investigated in future work. One such interesting in-
vestigation is to compare criteria based on code structure and data flow. This is a interesting step in de-
termining the usefulness of the proposed criteria and might provide insight into the white box vs. black
box debate.

Markov Chain-based Test Data Adequacy Criteria

36

One final area of research is to expand the criteria to force value changes on pairs, triplets, etc, of related
operational modes. It may be that we may more easily expose subtle faults which manifest as a function of
multiple operational modes value changes.

Acknowledgments
We thank the many students of software engineering at Florida Tech who have scrutinized this work and
used our criteria in their own testing experiments. Also, we acknowledge the helpful discussions with H.
Robinson, S. Rosaria and J. Tierney of Microsoft and M. Houghtaling of IBM who are experimenting
with our criteria on their products.

References
1. L. Apfelbaum, “Specification-based Tests Make Sure Telecom Software Works,” IEEE Spectrum,

Vol. 34, No. 11, pp. 77-83, Nov. 1997.
2. B. Beizer, “Software Testing Techniques,” Van Nostrand Reinhold, New York, 1990.
3. L. A. Clarke, A Podgurski, D. J. Richardson and S. J. Zeil, “A Formal Evaluation of Data Flow Path

Selection Criteria,” IEEE Trans. Software Eng., vol 15, no. 11, pp. 1318-1332, Nov. 1989.
4. J. W. Duran and S. C. Ntafos, “An Evaluation of Random Testing.” IEEE Trans. Software Eng., vol.

10, no. 4, pp. 438-444, July 1984.
5. P. Frankl and E. Weyuker, “An Applicable Family of Data Flow Testing Criteria,” IEEE Trans. Soft-

ware Eng., vol. 14, no. 10, pp.1483-1498, Oct. 1988.
6. D. Hamlet and R. Taylor, “Partition Testing Does Not Inspire Confidence,” IEEE Trans. Software

Eng., vol. 16, no. 12, pp. 1402-1411, Dec. 1990.
7. J. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE Trans. Software Eng.,

vol. 9, no. 3, pp.347-354, May 1983.
8. E. Miller and W. E. Howden, Tutorial: Software Testing and Validation Techniques, IEEE Computer

Society Press, 1981.
9. J. D. Musa, “Software Reliability Engineered Testing,” IEEE Software, vol. 29, no. 11, pp. 61-68,

Nov. 1996.
10. G. Myers, The Art of Software Testing, Wiley, New York, 1979.
11. D. L. Parnas, “An Evaluation of Safety-Critical Software,” Comm. of the ACM, vol. 23, no. 6, pp. 636-

648, June 1990.
12. J. H. Poore, H. D. Mills and D. Mutchler, “Planning and Certifying Software System Reliability,”

IEEE Software, vol. 10, no. 1, pp. 88-99, Jan. 1993.
13. S. Rapps and E. J. Weyuker, “Selecting Software Test Data Using Data Flow Information,” IEEE

Trans. Software Eng., vol. 11, no. 4, pp. 367-375, Apr. 1985.
14. H. Robinson, “Model-Based Testing on a Shoestring Budget,” to appear in Proceedings of the Soft-

ware Testing Analysis and Review Conference, San Jose, CA, Nov. 1999.
15. E. Weyuker, “More Experience with Data Flow Testing,” IEEE Trans. Software Eng., vol. 19, no. 9,

pp. 912-919, Sept. 1993.
16. E. Weyuker, “The Cost of Data Flow Testing: An Empirical Study,” IEEE Trans. Software Eng., vol.

16, no. 2, pp. 121-128, Feb. 1990.
17. J. A. Whittaker and M. G. Thomason, “A Markov Chain Model for Statistical Software Testing,”

IEEE Trans. Software Eng., vol. 20, no. 10, pp. 812-824, Oct. 1994.

 Al-Ghafees & Whittaker

 37

18. J. A. Whittaker, “Stochastic Software Testing,” Annals of Software Eng., Vol. 4, pp. 115-131, Oct.
1997.

19. J. A. Whittaker and M. A. Al-Ghafees, “Markov chain-based test data adequacy criteria,” 2000 IRMA
International Conference, Alaska: IDEA Group Pub.

	Markov Chain-based Test Data Adequacy Criteria: �a Complete Family
	Mohammed Al-Ghafees and James A. Whittaker�Florida Institute of Technology, FL, USA
	malghafees@hotmail.com jw@cs.fit.edu

	Abstract
	Introduction
	Behavior Models for Software
	Sample Selection
	Proof of Concept
	
	
	
	
	States Coverage Comparison

	Laboratory Experiments
	Experiment I:
	Criteria-Guided Tests
	Random Tests
	Structural Tests
	Experiment II:
	Guided Selection Results

	Criterion
	
	
	Random Coverage Results
	Structural Coverage

	Acknowledgments
	References

